Revision control

Copy as Markdown

Other Tools

use crate::{is_zero, Line, Plane};
use euclid::{
approxeq::ApproxEq,
default::{Point2D, Point3D, Rect, Transform3D, Vector3D},
};
use smallvec::SmallVec;
use std::{iter, mem};
/// The projection of a `Polygon` on a line.
pub struct LineProjection {
/// Projected value of each point in the polygon.
pub markers: [f64; 4],
}
impl LineProjection {
/// Get the min/max of the line projection markers.
pub fn get_bounds(&self) -> (f64, f64) {
let (mut a, mut b, mut c, mut d) = (
self.markers[0],
self.markers[1],
self.markers[2],
self.markers[3],
);
// bitonic sort of 4 elements
// we could not just use `min/max` since they require `Ord` bound
//TODO: make it nicer
if a > c {
mem::swap(&mut a, &mut c);
}
if b > d {
mem::swap(&mut b, &mut d);
}
if a > b {
mem::swap(&mut a, &mut b);
}
if c > d {
mem::swap(&mut c, &mut d);
}
if b > c {
mem::swap(&mut b, &mut c);
}
debug_assert!(a <= b && b <= c && c <= d);
(a, d)
}
/// Check intersection with another line projection.
pub fn intersect(&self, other: &Self) -> bool {
// compute the bounds of both line projections
let span = self.get_bounds();
let other_span = other.get_bounds();
// compute the total footprint
let left = if span.0 < other_span.0 {
span.0
} else {
other_span.0
};
let right = if span.1 > other_span.1 {
span.1
} else {
other_span.1
};
// they intersect if the footprint is smaller than the sum
right - left < span.1 - span.0 + other_span.1 - other_span.0
}
}
/// Polygon intersection results.
pub enum Intersection<T> {
/// Polygons are coplanar, including the case of being on the same plane.
Coplanar,
/// Polygon planes are intersecting, but polygons are not.
Outside,
/// Polygons are actually intersecting.
Inside(T),
}
impl<T> Intersection<T> {
/// Return true if the intersection is completely outside.
pub fn is_outside(&self) -> bool {
match *self {
Intersection::Outside => true,
_ => false,
}
}
/// Return true if the intersection cuts the source polygon.
pub fn is_inside(&self) -> bool {
match *self {
Intersection::Inside(_) => true,
_ => false,
}
}
}
/// A convex polygon with 4 points lying on a plane.
#[derive(Debug, PartialEq)]
pub struct Polygon<A> {
/// Points making the polygon.
pub points: [Point3D<f64>; 4],
/// A plane describing polygon orientation.
pub plane: Plane,
/// A simple anchoring index to allow association of the
/// produced split polygons with the original one.
pub anchor: A,
}
impl<A: Copy> Clone for Polygon<A> {
fn clone(&self) -> Self {
Polygon {
points: [
self.points[0].clone(),
self.points[1].clone(),
self.points[2].clone(),
self.points[3].clone(),
],
plane: self.plane.clone(),
anchor: self.anchor,
}
}
}
impl<A> Polygon<A>
where
A: Copy,
{
/// Construct a polygon from points that are already transformed.
/// Return None if the polygon doesn't contain any space.
pub fn from_points(points: [Point3D<f64>; 4], anchor: A) -> Option<Self> {
let edge1 = points[1] - points[0];
let edge2 = points[2] - points[0];
let edge3 = points[3] - points[0];
let edge4 = points[3] - points[1];
if edge2.square_length() < f64::EPSILON || edge4.square_length() < f64::EPSILON {
return None;
}
// one of them can be zero for redundant polygons produced by plane splitting
//Note: this would be nicer if we used triangles instead of quads in the first place...
let normal_rough1 = edge1.cross(edge2);
let normal_rough2 = edge2.cross(edge3);
let square_length1 = normal_rough1.square_length();
let square_length2 = normal_rough2.square_length();
let normal = if square_length1 > square_length2 {
normal_rough1 / square_length1.sqrt()
} else {
normal_rough2 / square_length2.sqrt()
};
let offset = -points[0].to_vector().dot(normal);
Some(Polygon {
points,
plane: Plane { normal, offset },
anchor,
})
}
/// Construct a polygon from a non-transformed rectangle.
pub fn from_rect(rect: Rect<f64>, anchor: A) -> Self {
let min = rect.min();
let max = rect.max();
Polygon {
points: [
min.to_3d(),
Point3D::new(max.x, min.y, 0.0),
max.to_3d(),
Point3D::new(min.x, max.y, 0.0),
],
plane: Plane {
normal: Vector3D::new(0.0, 0.0, 1.0),
offset: 0.0,
},
anchor,
}
}
/// Construct a polygon from a rectangle with 3D transform.
pub fn from_transformed_rect(
rect: Rect<f64>,
transform: Transform3D<f64>,
anchor: A,
) -> Option<Self> {
let min = rect.min();
let max = rect.max();
let points = [
transform.transform_point3d(min.to_3d())?,
transform.transform_point3d(Point3D::new(max.x, min.y, 0.0))?,
transform.transform_point3d(max.to_3d())?,
transform.transform_point3d(Point3D::new(min.x, max.y, 0.0))?,
];
Self::from_points(points, anchor)
}
/// Construct a polygon from a rectangle with an invertible 3D transform.
pub fn from_transformed_rect_with_inverse(
rect: Rect<f64>,
transform: &Transform3D<f64>,
inv_transform: &Transform3D<f64>,
anchor: A,
) -> Option<Self> {
let min = rect.min();
let max = rect.max();
let points = [
transform.transform_point3d(min.to_3d())?,
transform.transform_point3d(Point3D::new(max.x, min.y, 0.0))?,
transform.transform_point3d(max.to_3d())?,
transform.transform_point3d(Point3D::new(min.x, max.y, 0.0))?,
];
// Compute the normal directly from the transformation. This guarantees consistent polygons
// generated from various local rectanges on the same geometry plane.
let normal_raw = Vector3D::new(inv_transform.m13, inv_transform.m23, inv_transform.m33);
let normal_sql = normal_raw.square_length();
if normal_sql.approx_eq(&0.0) || transform.m44.approx_eq(&0.0) {
None
} else {
let normal = normal_raw / normal_sql.sqrt();
let offset = -Vector3D::new(transform.m41, transform.m42, transform.m43).dot(normal)
/ transform.m44;
Some(Polygon {
points,
plane: Plane { normal, offset },
anchor,
})
}
}
/// Bring a point into the local coordinate space, returning
/// the 2D normalized coordinates.
pub fn untransform_point(&self, point: Point3D<f64>) -> Point2D<f64> {
//debug_assert!(self.contains(point));
// get axises and target vector
let a = self.points[1] - self.points[0];
let b = self.points[3] - self.points[0];
let c = point - self.points[0];
// get pair-wise dot products
let a2 = a.dot(a);
let ab = a.dot(b);
let b2 = b.dot(b);
let ca = c.dot(a);
let cb = c.dot(b);
// compute the final coordinates
let denom = ab * ab - a2 * b2;
let x = ab * cb - b2 * ca;
let y = ab * ca - a2 * cb;
Point2D::new(x, y) / denom
}
/// Transform a polygon by an affine transform (preserving straight lines).
pub fn transform(&self, transform: &Transform3D<f64>) -> Option<Polygon<A>> {
let mut points = [Point3D::origin(); 4];
for (out, point) in points.iter_mut().zip(self.points.iter()) {
let mut homo = transform.transform_point3d_homogeneous(*point);
homo.w = homo.w.max(f64::approx_epsilon());
*out = homo.to_point3d()?;
}
//Note: this code path could be more efficient if we had inverse-transpose
//let n4 = transform.transform_point4d(&Point4D::new(0.0, 0.0, T::one(), 0.0));
//let normal = Point3D::new(n4.x, n4.y, n4.z);
Polygon::from_points(points, self.anchor)
}
/// Check if all the points are indeed placed on the plane defined by
/// the normal and offset, and the winding order is consistent.
pub fn is_valid(&self) -> bool {
let is_planar = self
.points
.iter()
.all(|p| is_zero(self.plane.signed_distance_to(p)));
let edges = [
self.points[1] - self.points[0],
self.points[2] - self.points[1],
self.points[3] - self.points[2],
self.points[0] - self.points[3],
];
let anchor = edges[3].cross(edges[0]);
let is_winding = edges
.iter()
.zip(edges[1..].iter())
.all(|(a, &b)| a.cross(b).dot(anchor) >= 0.0);
is_planar && is_winding
}
/// Check if the polygon doesn't contain any space. This may happen
/// after a sequence of splits, and such polygons should be discarded.
pub fn is_empty(&self) -> bool {
(self.points[0] - self.points[2]).square_length() < f64::EPSILON
|| (self.points[1] - self.points[3]).square_length() < f64::EPSILON
}
/// Check if this polygon contains another one.
pub fn contains(&self, other: &Self) -> bool {
//TODO: actually check for inside/outside
self.plane.contains(&other.plane)
}
/// Project this polygon onto a 3D vector, returning a line projection.
/// Note: we can think of it as a projection to a ray placed at the origin.
pub fn project_on(&self, vector: &Vector3D<f64>) -> LineProjection {
LineProjection {
markers: [
vector.dot(self.points[0].to_vector()),
vector.dot(self.points[1].to_vector()),
vector.dot(self.points[2].to_vector()),
vector.dot(self.points[3].to_vector()),
],
}
}
/// Compute the line of intersection with an infinite plane.
pub fn intersect_plane(&self, other: &Plane) -> Intersection<Line> {
if other.are_outside(&self.points) {
log::debug!("\t\tOutside of the plane");
return Intersection::Outside;
}
match self.plane.intersect(&other) {
Some(line) => Intersection::Inside(line),
None => {
log::debug!("\t\tCoplanar");
Intersection::Coplanar
}
}
}
/// Compute the line of intersection with another polygon.
pub fn intersect(&self, other: &Self) -> Intersection<Line> {
if self.plane.are_outside(&other.points) || other.plane.are_outside(&self.points) {
log::debug!("\t\tOne is completely outside of the other");
return Intersection::Outside;
}
match self.plane.intersect(&other.plane) {
Some(line) => {
let self_proj = self.project_on(&line.dir);
let other_proj = other.project_on(&line.dir);
if self_proj.intersect(&other_proj) {
Intersection::Inside(line)
} else {
// projections on the line don't intersect
log::debug!("\t\tProjection is outside");
Intersection::Outside
}
}
None => {
log::debug!("\t\tCoplanar");
Intersection::Coplanar
}
}
}
fn split_impl(
&mut self,
first: (usize, Point3D<f64>),
second: (usize, Point3D<f64>),
) -> (Option<Self>, Option<Self>) {
//TODO: can be optimized for when the polygon has a redundant 4th vertex
//TODO: can be simplified greatly if only working with triangles
log::debug!("\t\tReached complex case [{}, {}]", first.0, second.0);
let base = first.0;
assert!(base < self.points.len());
match second.0 - first.0 {
1 => {
// rect between the cut at the diagonal
let other1 = Polygon {
points: [
first.1,
second.1,
self.points[(base + 2) & 3],
self.points[base],
],
..self.clone()
};
// triangle on the near side of the diagonal
let other2 = Polygon {
points: [
self.points[(base + 2) & 3],
self.points[(base + 3) & 3],
self.points[base],
self.points[base],
],
..self.clone()
};
// triangle being cut out
self.points = [first.1, self.points[(base + 1) & 3], second.1, second.1];
(Some(other1), Some(other2))
}
2 => {
// rect on the far side
let other = Polygon {
points: [
first.1,
self.points[(base + 1) & 3],
self.points[(base + 2) & 3],
second.1,
],
..self.clone()
};
// rect on the near side
self.points = [
first.1,
second.1,
self.points[(base + 3) & 3],
self.points[base],
];
(Some(other), None)
}
3 => {
// rect between the cut at the diagonal
let other1 = Polygon {
points: [
first.1,
self.points[(base + 1) & 3],
self.points[(base + 3) & 3],
second.1,
],
..self.clone()
};
// triangle on the far side of the diagonal
let other2 = Polygon {
points: [
self.points[(base + 1) & 3],
self.points[(base + 2) & 3],
self.points[(base + 3) & 3],
self.points[(base + 3) & 3],
],
..self.clone()
};
// triangle being cut out
self.points = [first.1, second.1, self.points[base], self.points[base]];
(Some(other1), Some(other2))
}
_ => panic!("Unexpected indices {} {}", first.0, second.0),
}
}
/// Split the polygon along the specified `Line`.
/// Will do nothing if the line doesn't belong to the polygon plane.
#[deprecated(note = "Use split_with_normal instead")]
pub fn split(&mut self, line: &Line) -> (Option<Self>, Option<Self>) {
log::debug!("\tSplitting");
// check if the cut is within the polygon plane first
if !is_zero(self.plane.normal.dot(line.dir))
|| !is_zero(self.plane.signed_distance_to(&line.origin))
{
log::debug!(
"\t\tDoes not belong to the plane, normal dot={:?}, origin distance={:?}",
self.plane.normal.dot(line.dir),
self.plane.signed_distance_to(&line.origin)
);
return (None, None);
}
// compute the intersection points for each edge
let mut cuts = [None; 4];
for ((&b, &a), cut) in self
.points
.iter()
.cycle()
.skip(1)
.zip(self.points.iter())
.zip(cuts.iter_mut())
{
if let Some(t) = line.intersect_edge(a..b) {
if t >= 0.0 && t < 1.0 {
*cut = Some(a + (b - a) * t);
}
}
}
let first = match cuts.iter().position(|c| c.is_some()) {
Some(pos) => pos,
None => return (None, None),
};
let second = match cuts[first + 1..].iter().position(|c| c.is_some()) {
Some(pos) => first + 1 + pos,
None => return (None, None),
};
self.split_impl(
(first, cuts[first].unwrap()),
(second, cuts[second].unwrap()),
)
}
/// Split the polygon along the specified `Line`, with a normal to the split line provided.
/// This is useful when called by the plane splitter, since the other plane's normal
/// forms the side direction here, and figuring out the actual line of split isn't needed.
/// Will do nothing if the line doesn't belong to the polygon plane.
pub fn split_with_normal(
&mut self,
line: &Line,
normal: &Vector3D<f64>,
) -> (Option<Self>, Option<Self>) {
log::debug!("\tSplitting with normal");
// figure out which side of the split does each point belong to
let mut sides = [0.0; 4];
let (mut cut_positive, mut cut_negative) = (None, None);
for (side, point) in sides.iter_mut().zip(&self.points) {
*side = normal.dot(*point - line.origin);
}
// compute the edge intersection points
for (i, ((&side1, point1), (&side0, point0))) in sides[1..]
.iter()
.chain(iter::once(&sides[0]))
.zip(self.points[1..].iter().chain(iter::once(&self.points[0])))
.zip(sides.iter().zip(&self.points))
.enumerate()
{
// figure out if an edge between 0 and 1 needs to be cut
let cut = if side0 < 0.0 && side1 >= 0.0 {
&mut cut_positive
} else if side0 > 0.0 && side1 <= 0.0 {
&mut cut_negative
} else {
continue;
};
// compute the cut point by weighting the opposite distances
//
// Note: this algorithm is designed to not favor one end of the edge over the other.
// The previous approach of calling `intersect_edge` sometimes ended up with "t" ever
// slightly outside of [0, 1] range, since it was computing it relative to the first point only.
//
// Given that we are intersecting two straight lines, the triangles on both
// sides of intersection are alike, so distances along the [point0, point1] line
// are proportional to the side vector lengths we just computed: (side0, side1).
let point =
(*point0 * side1.abs() + point1.to_vector() * side0.abs()) / (side0 - side1).abs();
if cut.is_some() {
// We don't expect that the direction changes more than once, unless
// the polygon is close to redundant, and we hit precision issues when
// computing the sides.
log::warn!("Splitting failed due to precision issues: {:?}", sides);
break;
}
*cut = Some((i, point));
}
// form new polygons
if let (Some(first), Some(mut second)) = (cut_positive, cut_negative) {
if second.0 < first.0 {
second.0 += 4;
}
self.split_impl(first, second)
} else {
(None, None)
}
}
/// Cut a polygon with another one.
///
/// Write the resulting polygons in `front` and `back` if the polygon needs to be split.
pub fn cut(
&self,
poly: &Self,
front: &mut SmallVec<[Polygon<A>; 2]>,
back: &mut SmallVec<[Polygon<A>; 2]>,
) -> PlaneCut {
//Note: we treat `self` as a plane, and `poly` as a concrete polygon here
let (intersection, dist) = match self.plane.intersect(&poly.plane) {
None => {
let ndot = self.plane.normal.dot(poly.plane.normal);
let dist = self.plane.offset - ndot * poly.plane.offset;
(Intersection::Coplanar, dist)
}
Some(_) if self.plane.are_outside(&poly.points[..]) => {
//Note: we can't start with `are_outside` because it's subject to FP precision
let dist = self.plane.signed_distance_sum_to(&poly);
(Intersection::Outside, dist)
}
Some(line) => {
//Note: distance isn't relevant here
(Intersection::Inside(line), 0.0)
}
};
match intersection {
//Note: we deliberately make the comparison wider than just with T::epsilon().
// This is done to avoid mistakenly ordering items that should be on the same
// plane but end up slightly different due to the floating point precision.
Intersection::Coplanar if is_zero(dist) => PlaneCut::Sibling,
Intersection::Coplanar | Intersection::Outside => {
if dist > 0.0 {
front.push(poly.clone());
} else {
back.push(poly.clone());
}
PlaneCut::Cut
}
Intersection::Inside(line) => {
let mut poly = poly.clone();
let (res_add1, res_add2) = poly.split_with_normal(&line, &self.plane.normal);
for sub in iter::once(poly)
.chain(res_add1)
.chain(res_add2)
.filter(|p| !p.is_empty())
{
let dist = self.plane.signed_distance_sum_to(&sub);
if dist > 0.0 {
front.push(sub)
} else {
back.push(sub)
}
}
PlaneCut::Cut
}
}
}
/// Returns whether both polygon's planes are parallel.
pub fn is_aligned(&self, other: &Self) -> bool {
self.plane.normal.dot(other.plane.normal) > 0.0
}
}
/// The result of a polygon being cut by a plane.
/// The "cut" here is an attempt to classify a plane as being
/// in front or in the back of another one.
#[derive(Debug, PartialEq)]
pub enum PlaneCut {
/// The planes are one the same geometrical plane.
Sibling,
/// Planes are different, thus we can either determine that
/// our plane is completely in front/back of another one,
/// or split it into these sub-groups.
Cut,
}
#[test]
fn test_split_precision() {
let mut polygon = Polygon::<()> {
points: [
Point3D::new(300.0102, 150.00958, 0.0),
Point3D::new(606.0, 306.0, 0.0),
Point3D::new(300.21954, 150.11946, 0.0),
Point3D::new(300.08844, 150.05064, 0.0),
],
plane: Plane {
normal: Vector3D::zero(),
offset: 0.0,
},
anchor: (),
};
let line = Line {
origin: Point3D::new(3.0690663, -5.8472385, 0.0),
dir: Vector3D::new(0.8854436, 0.46474677, -0.0),
};
let normal = Vector3D::new(0.46474662, -0.8854434, -0.0006389789);
polygon.split_with_normal(&line, &normal);
}