Revision control
Copy as Markdown
Other Tools
use std::fs::File;
use std::io::{stdout, Read, Write};
use std::os::unix::prelude::*;
use std::path::Path;
use libc::_exit;
use nix::fcntl::{open, OFlag};
use nix::pty::*;
use nix::sys::stat;
use nix::sys::termios::*;
use nix::sys::wait::WaitStatus;
use nix::unistd::{pause, write};
/// Test equivalence of `ptsname` and `ptsname_r`
#[test]
#[cfg(linux_android)]
fn test_ptsname_equivalence() {
let _m = crate::PTSNAME_MTX.lock();
// Open a new PTY master
let master_fd = posix_openpt(OFlag::O_RDWR).unwrap();
assert!(master_fd.as_raw_fd() > 0);
assert!(master_fd.as_fd().as_raw_fd() == master_fd.as_raw_fd());
// Get the name of the slave
let slave_name = unsafe { ptsname(&master_fd) }.unwrap();
let slave_name_r = ptsname_r(&master_fd).unwrap();
assert_eq!(slave_name, slave_name_r);
}
/// Test data copying of `ptsname`
// TODO need to run in a subprocess, since ptsname is non-reentrant
#[test]
#[cfg(linux_android)]
fn test_ptsname_copy() {
let _m = crate::PTSNAME_MTX.lock();
// Open a new PTTY master
let master_fd = posix_openpt(OFlag::O_RDWR).unwrap();
// Get the name of the slave
let slave_name1 = unsafe { ptsname(&master_fd) }.unwrap();
let slave_name2 = unsafe { ptsname(&master_fd) }.unwrap();
assert_eq!(slave_name1, slave_name2);
// Also make sure that the string was actually copied and they point to different parts of
// memory.
assert_ne!(slave_name1.as_ptr(), slave_name2.as_ptr());
}
/// Test data copying of `ptsname_r`
#[test]
#[cfg(linux_android)]
fn test_ptsname_r_copy() {
// Open a new PTTY master
let master_fd = posix_openpt(OFlag::O_RDWR).unwrap();
// Get the name of the slave
let slave_name1 = ptsname_r(&master_fd).unwrap();
let slave_name2 = ptsname_r(&master_fd).unwrap();
assert_eq!(slave_name1, slave_name2);
assert_ne!(slave_name1.as_ptr(), slave_name2.as_ptr());
}
/// Test that `ptsname` returns different names for different devices
#[test]
#[cfg(linux_android)]
fn test_ptsname_unique() {
let _m = crate::PTSNAME_MTX.lock();
// Open a new PTTY master
let master1_fd = posix_openpt(OFlag::O_RDWR).unwrap();
// Open a second PTTY master
let master2_fd = posix_openpt(OFlag::O_RDWR).unwrap();
// Get the name of the slave
let slave_name1 = unsafe { ptsname(&master1_fd) }.unwrap();
let slave_name2 = unsafe { ptsname(&master2_fd) }.unwrap();
assert_ne!(slave_name1, slave_name2);
}
/// Common setup for testing PTTY pairs
fn open_ptty_pair() -> (PtyMaster, File) {
let _m = crate::PTSNAME_MTX.lock();
// Open a new PTTY master
let master = posix_openpt(OFlag::O_RDWR).expect("posix_openpt failed");
// Allow a slave to be generated for it
grantpt(&master).expect("grantpt failed");
unlockpt(&master).expect("unlockpt failed");
// Get the name of the slave
let slave_name = unsafe { ptsname(&master) }.expect("ptsname failed");
// Open the slave device
let slave_fd =
open(Path::new(&slave_name), OFlag::O_RDWR, stat::Mode::empty())
.unwrap();
#[cfg(solarish)]
// TODO: rewrite using ioctl!
#[allow(clippy::comparison_chain)]
{
use libc::{ioctl, I_FIND, I_PUSH};
// On illumos systems, as per pts(7D), one must push STREAMS modules
// after opening a device path returned from ptsname().
let ptem = b"ptem\0";
let ldterm = b"ldterm\0";
let r = unsafe { ioctl(slave_fd, I_FIND, ldterm.as_ptr()) };
if r < 0 {
panic!("I_FIND failure");
} else if r == 0 {
if unsafe { ioctl(slave_fd, I_PUSH, ptem.as_ptr()) } < 0 {
panic!("I_PUSH ptem failure");
}
if unsafe { ioctl(slave_fd, I_PUSH, ldterm.as_ptr()) } < 0 {
panic!("I_PUSH ldterm failure");
}
}
}
let slave = unsafe { File::from_raw_fd(slave_fd) };
(master, slave)
}
/// Test opening a master/slave PTTY pair
///
/// This uses a common `open_ptty_pair` because much of these functions aren't useful by
/// themselves. So for this test we perform the basic act of getting a file handle for a
/// master/slave PTTY pair.
#[test]
fn test_open_ptty_pair() {
let (_, _) = open_ptty_pair();
}
/// Put the terminal in raw mode.
fn make_raw<Fd: AsFd>(fd: Fd) {
let mut termios = tcgetattr(&fd).unwrap();
cfmakeraw(&mut termios);
tcsetattr(&fd, SetArg::TCSANOW, &termios).unwrap();
}
/// Test `io::Read` on the PTTY master
#[test]
fn test_read_ptty_pair() {
let (mut master, mut slave) = open_ptty_pair();
make_raw(&slave);
let mut buf = [0u8; 5];
slave.write_all(b"hello").unwrap();
master.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"hello");
let mut master = &master;
slave.write_all(b"hello").unwrap();
master.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"hello");
}
/// Test `io::Write` on the PTTY master
#[test]
fn test_write_ptty_pair() {
let (mut master, mut slave) = open_ptty_pair();
make_raw(&slave);
let mut buf = [0u8; 5];
master.write_all(b"adios").unwrap();
slave.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"adios");
let mut master = &master;
master.write_all(b"adios").unwrap();
slave.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"adios");
}
#[test]
fn test_openpty() {
// openpty uses ptname(3) internally
let _m = crate::PTSNAME_MTX.lock();
let pty = openpty(None, None).unwrap();
// Writing to one should be readable on the other one
let string = "foofoofoo\n";
let mut buf = [0u8; 10];
write(&pty.master, string.as_bytes()).unwrap();
crate::read_exact(&pty.slave, &mut buf);
assert_eq!(&buf, string.as_bytes());
// Read the echo as well
let echoed_string = "foofoofoo\r\n";
let mut buf = [0u8; 11];
crate::read_exact(&pty.master, &mut buf);
assert_eq!(&buf, echoed_string.as_bytes());
let string2 = "barbarbarbar\n";
let echoed_string2 = "barbarbarbar\r\n";
let mut buf = [0u8; 14];
write(&pty.slave, string2.as_bytes()).unwrap();
crate::read_exact(&pty.master, &mut buf);
assert_eq!(&buf, echoed_string2.as_bytes());
}
#[test]
fn test_openpty_with_termios() {
// openpty uses ptname(3) internally
let _m = crate::PTSNAME_MTX.lock();
// Open one pty to get attributes for the second one
let mut termios = {
let pty = openpty(None, None).unwrap();
tcgetattr(&pty.slave).unwrap()
};
// Make sure newlines are not transformed so the data is preserved when sent.
termios.output_flags.remove(OutputFlags::ONLCR);
let pty = openpty(None, &termios).unwrap();
// Must be valid file descriptors
// Writing to one should be readable on the other one
let string = "foofoofoo\n";
let mut buf = [0u8; 10];
write(&pty.master, string.as_bytes()).unwrap();
crate::read_exact(&pty.slave, &mut buf);
assert_eq!(&buf, string.as_bytes());
// read the echo as well
let echoed_string = "foofoofoo\n";
crate::read_exact(&pty.master, &mut buf);
assert_eq!(&buf, echoed_string.as_bytes());
let string2 = "barbarbarbar\n";
let echoed_string2 = "barbarbarbar\n";
let mut buf = [0u8; 13];
write(&pty.slave, string2.as_bytes()).unwrap();
crate::read_exact(&pty.master, &mut buf);
assert_eq!(&buf, echoed_string2.as_bytes());
}
#[test]
fn test_forkpty() {
use nix::sys::signal::*;
use nix::sys::wait::wait;
// forkpty calls openpty which uses ptname(3) internally.
let _m0 = crate::PTSNAME_MTX.lock();
// forkpty spawns a child process
let _m1 = crate::FORK_MTX.lock();
let string = "naninani\n";
let echoed_string = "naninani\r\n";
let res = unsafe { forkpty(None, None).unwrap() };
match res {
ForkptyResult::Child => {
write(stdout(), string.as_bytes()).unwrap();
pause(); // we need the child to stay alive until the parent calls read
unsafe {
_exit(0);
}
}
ForkptyResult::Parent { child, master } => {
let mut buf = [0u8; 10];
assert!(child.as_raw() > 0);
crate::read_exact(&master, &mut buf);
kill(child, SIGTERM).unwrap();
let status = wait().unwrap(); // keep other tests using generic wait from getting our child
assert_eq!(status, WaitStatus::Signaled(child, SIGTERM, false));
assert_eq!(&buf, echoed_string.as_bytes());
}
}
}