Revision control

Copy as Markdown

Other Tools

//! Execution scheduling
//!
//! See Also
use crate::{Errno, Result};
#[cfg(linux_android)]
pub use self::sched_linux_like::*;
#[cfg(linux_android)]
mod sched_linux_like {
use crate::errno::Errno;
use crate::unistd::Pid;
use crate::Result;
use libc::{self, c_int, c_void};
use std::mem;
use std::option::Option;
use std::os::unix::io::{AsFd, AsRawFd};
// For some functions taking with a parameter of type CloneFlags,
// only a subset of these flags have an effect.
libc_bitflags! {
/// Options for use with [`clone`]
pub struct CloneFlags: c_int {
/// The calling process and the child process run in the same
/// memory space.
CLONE_VM;
/// The caller and the child process share the same filesystem
/// information.
CLONE_FS;
/// The calling process and the child process share the same file
/// descriptor table.
CLONE_FILES;
/// The calling process and the child process share the same table
/// of signal handlers.
CLONE_SIGHAND;
/// If the calling process is being traced, then trace the child
/// also.
CLONE_PTRACE;
/// The execution of the calling process is suspended until the
/// child releases its virtual memory resources via a call to
/// execve(2) or _exit(2) (as with vfork(2)).
CLONE_VFORK;
/// The parent of the new child (as returned by getppid(2))
/// will be the same as that of the calling process.
CLONE_PARENT;
/// The child is placed in the same thread group as the calling
/// process.
CLONE_THREAD;
/// The cloned child is started in a new mount namespace.
CLONE_NEWNS;
/// The child and the calling process share a single list of System
/// V semaphore adjustment values
CLONE_SYSVSEM;
// Not supported by Nix due to lack of varargs support in Rust FFI
// CLONE_SETTLS;
// Not supported by Nix due to lack of varargs support in Rust FFI
// CLONE_PARENT_SETTID;
// Not supported by Nix due to lack of varargs support in Rust FFI
// CLONE_CHILD_CLEARTID;
/// Unused since Linux 2.6.2
#[deprecated(since = "0.23.0", note = "Deprecated by Linux 2.6.2")]
CLONE_DETACHED;
/// A tracing process cannot force `CLONE_PTRACE` on this child
/// process.
CLONE_UNTRACED;
// Not supported by Nix due to lack of varargs support in Rust FFI
// CLONE_CHILD_SETTID;
/// Create the process in a new cgroup namespace.
CLONE_NEWCGROUP;
/// Create the process in a new UTS namespace.
CLONE_NEWUTS;
/// Create the process in a new IPC namespace.
CLONE_NEWIPC;
/// Create the process in a new user namespace.
CLONE_NEWUSER;
/// Create the process in a new PID namespace.
CLONE_NEWPID;
/// Create the process in a new network namespace.
CLONE_NEWNET;
/// The new process shares an I/O context with the calling process.
CLONE_IO;
}
}
/// Type for the function executed by [`clone`].
pub type CloneCb<'a> = Box<dyn FnMut() -> isize + 'a>;
/// `clone` create a child process
///
/// `stack` is a reference to an array which will hold the stack of the new
/// process. Unlike when calling `clone(2)` from C, the provided stack
/// address need not be the highest address of the region. Nix will take
/// care of that requirement. The user only needs to provide a reference to
/// a normally allocated buffer.
///
/// # Safety
///
/// Because `clone` creates a child process with its stack located in
/// `stack` without specifying the size of the stack, special care must be
/// taken to ensure that the child process does not overflow the provided
/// stack space.
///
/// See [`fork`](crate::unistd::fork) for additional safety concerns related
/// to executing child processes.
pub unsafe fn clone(
mut cb: CloneCb,
stack: &mut [u8],
flags: CloneFlags,
signal: Option<c_int>,
) -> Result<Pid> {
extern "C" fn callback(data: *mut CloneCb) -> c_int {
let cb: &mut CloneCb = unsafe { &mut *data };
(*cb)() as c_int
}
let combined = flags.bits() | signal.unwrap_or(0);
let res = unsafe {
let ptr = stack.as_mut_ptr().add(stack.len());
let ptr_aligned = ptr.sub(ptr as usize % 16);
libc::clone(
mem::transmute(
callback
as extern "C" fn(*mut Box<dyn FnMut() -> isize>) -> i32,
),
ptr_aligned as *mut c_void,
combined,
&mut cb as *mut _ as *mut c_void,
)
};
Errno::result(res).map(Pid::from_raw)
}
/// disassociate parts of the process execution context
///
pub fn unshare(flags: CloneFlags) -> Result<()> {
let res = unsafe { libc::unshare(flags.bits()) };
Errno::result(res).map(drop)
}
/// reassociate thread with a namespace
///
pub fn setns<Fd: AsFd>(fd: Fd, nstype: CloneFlags) -> Result<()> {
let res = unsafe { libc::setns(fd.as_fd().as_raw_fd(), nstype.bits()) };
Errno::result(res).map(drop)
}
}
#[cfg(any(linux_android, freebsdlike))]
pub use self::sched_affinity::*;
#[cfg(any(linux_android, freebsdlike))]
mod sched_affinity {
use crate::errno::Errno;
use crate::unistd::Pid;
use crate::Result;
use std::mem;
/// CpuSet represent a bit-mask of CPUs.
/// CpuSets are used by sched_setaffinity and
/// sched_getaffinity for example.
///
/// This is a wrapper around `libc::cpu_set_t`.
#[repr(transparent)]
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct CpuSet {
#[cfg(not(target_os = "freebsd"))]
cpu_set: libc::cpu_set_t,
#[cfg(target_os = "freebsd")]
cpu_set: libc::cpuset_t,
}
impl CpuSet {
/// Create a new and empty CpuSet.
pub fn new() -> CpuSet {
CpuSet {
cpu_set: unsafe { mem::zeroed() },
}
}
/// Test to see if a CPU is in the CpuSet.
/// `field` is the CPU id to test
pub fn is_set(&self, field: usize) -> Result<bool> {
if field >= CpuSet::count() {
Err(Errno::EINVAL)
} else {
Ok(unsafe { libc::CPU_ISSET(field, &self.cpu_set) })
}
}
/// Add a CPU to CpuSet.
/// `field` is the CPU id to add
pub fn set(&mut self, field: usize) -> Result<()> {
if field >= CpuSet::count() {
Err(Errno::EINVAL)
} else {
unsafe {
libc::CPU_SET(field, &mut self.cpu_set);
}
Ok(())
}
}
/// Remove a CPU from CpuSet.
/// `field` is the CPU id to remove
pub fn unset(&mut self, field: usize) -> Result<()> {
if field >= CpuSet::count() {
Err(Errno::EINVAL)
} else {
unsafe {
libc::CPU_CLR(field, &mut self.cpu_set);
}
Ok(())
}
}
/// Return the maximum number of CPU in CpuSet
pub const fn count() -> usize {
#[cfg(not(target_os = "freebsd"))]
let bytes = mem::size_of::<libc::cpu_set_t>();
#[cfg(target_os = "freebsd")]
let bytes = mem::size_of::<libc::cpuset_t>();
8 * bytes
}
}
impl Default for CpuSet {
fn default() -> Self {
Self::new()
}
}
/// `sched_setaffinity` set a thread's CPU affinity mask
///
/// `pid` is the thread ID to update.
/// If pid is zero, then the calling thread is updated.
///
/// The `cpuset` argument specifies the set of CPUs on which the thread
/// will be eligible to run.
///
/// # Example
///
/// Binding the current thread to CPU 0 can be done as follows:
///
/// ```rust,no_run
/// use nix::sched::{CpuSet, sched_setaffinity};
/// use nix::unistd::Pid;
///
/// let mut cpu_set = CpuSet::new();
/// cpu_set.set(0).unwrap();
/// sched_setaffinity(Pid::from_raw(0), &cpu_set).unwrap();
/// ```
pub fn sched_setaffinity(pid: Pid, cpuset: &CpuSet) -> Result<()> {
let res = unsafe {
libc::sched_setaffinity(
pid.into(),
mem::size_of::<CpuSet>() as libc::size_t,
&cpuset.cpu_set,
)
};
Errno::result(res).map(drop)
}
/// `sched_getaffinity` get a thread's CPU affinity mask
///
/// `pid` is the thread ID to check.
/// If pid is zero, then the calling thread is checked.
///
/// Returned `cpuset` is the set of CPUs on which the thread
/// is eligible to run.
///
/// # Example
///
/// Checking if the current thread can run on CPU 0 can be done as follows:
///
/// ```rust,no_run
/// use nix::sched::sched_getaffinity;
/// use nix::unistd::Pid;
///
/// let cpu_set = sched_getaffinity(Pid::from_raw(0)).unwrap();
/// if cpu_set.is_set(0).unwrap() {
/// println!("Current thread can run on CPU 0");
/// }
/// ```
pub fn sched_getaffinity(pid: Pid) -> Result<CpuSet> {
let mut cpuset = CpuSet::new();
let res = unsafe {
libc::sched_getaffinity(
pid.into(),
mem::size_of::<CpuSet>() as libc::size_t,
&mut cpuset.cpu_set,
)
};
Errno::result(res).and(Ok(cpuset))
}
/// Determines the CPU on which the calling thread is running.
pub fn sched_getcpu() -> Result<usize> {
let res = unsafe { libc::sched_getcpu() };
Errno::result(res).map(|int| int as usize)
}
}
/// Explicitly yield the processor to other threads.
///
pub fn sched_yield() -> Result<()> {
let res = unsafe { libc::sched_yield() };
Errno::result(res).map(drop)
}