Revision control
Copy as Markdown
Other Tools
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The class implementing a QUIC connection.
use std::{
cell::RefCell,
cmp::{max, min},
fmt::{self, Debug},
iter, mem,
net::{IpAddr, SocketAddr},
num::NonZeroUsize,
ops::RangeInclusive,
rc::{Rc, Weak},
time::{Duration, Instant},
};
use neqo_common::{
event::Provider as EventProvider, hex, hex_snip_middle, hrtime, qdebug, qerror, qinfo,
qlog::NeqoQlog, qtrace, qwarn, Datagram, Decoder, Encoder, Role,
};
use neqo_crypto::{
agent::CertificateInfo, Agent, AntiReplay, AuthenticationStatus, Cipher, Client, Group,
HandshakeState, PrivateKey, PublicKey, ResumptionToken, SecretAgentInfo, SecretAgentPreInfo,
Server, ZeroRttChecker,
};
use smallvec::SmallVec;
use crate::{
addr_valid::{AddressValidation, NewTokenState},
cid::{
ConnectionId, ConnectionIdEntry, ConnectionIdGenerator, ConnectionIdManager,
ConnectionIdRef, ConnectionIdStore, LOCAL_ACTIVE_CID_LIMIT,
},
crypto::{Crypto, CryptoDxState, CryptoSpace},
ecn::EcnCount,
events::{ConnectionEvent, ConnectionEvents, OutgoingDatagramOutcome},
frame::{
CloseError, Frame, FrameType, FRAME_TYPE_CONNECTION_CLOSE_APPLICATION,
FRAME_TYPE_CONNECTION_CLOSE_TRANSPORT,
},
packet::{DecryptedPacket, PacketBuilder, PacketNumber, PacketType, PublicPacket},
path::{Path, PathRef, Paths},
qlog,
quic_datagrams::{DatagramTracking, QuicDatagrams},
recovery::{LossRecovery, RecoveryToken, SendProfile, SentPacket},
recv_stream::RecvStreamStats,
rtt::{RttEstimate, GRANULARITY, INITIAL_RTT},
send_stream::SendStream,
stats::{Stats, StatsCell},
stream_id::StreamType,
streams::{SendOrder, Streams},
tparams::{
self, TransportParameter, TransportParameterId, TransportParameters,
TransportParametersHandler,
},
tracking::{AckTracker, PacketNumberSpace, RecvdPackets},
version::{Version, WireVersion},
AppError, CloseReason, Error, Res, StreamId,
};
mod dump;
mod idle;
pub mod params;
mod saved;
mod state;
#[cfg(test)]
pub mod test_internal;
use dump::dump_packet;
use idle::IdleTimeout;
pub use params::ConnectionParameters;
use params::PreferredAddressConfig;
#[cfg(test)]
pub use params::ACK_RATIO_SCALE;
use saved::SavedDatagrams;
use state::StateSignaling;
pub use state::{ClosingFrame, State};
pub use crate::send_stream::{RetransmissionPriority, SendStreamStats, TransmissionPriority};
/// The number of Initial packets that the client will send in response
/// to receiving an undecryptable packet during the early part of the
/// handshake. This is a hack, but a useful one.
const EXTRA_INITIALS: usize = 4;
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum ZeroRttState {
Init,
Sending,
AcceptedClient,
AcceptedServer,
Rejected,
}
#[derive(Clone, Debug, PartialEq, Eq)]
/// Type returned from `process()` and `process_output()`. Users are required to
/// call these repeatedly until `Callback` or `None` is returned.
pub enum Output {
/// Connection requires no action.
None,
/// Connection requires the datagram be sent.
Datagram(Datagram),
/// Connection requires `process_input()` be called when the `Duration`
/// elapses.
Callback(Duration),
}
impl Output {
/// Convert into an `Option<Datagram>`.
#[must_use]
pub fn dgram(self) -> Option<Datagram> {
match self {
Self::Datagram(dg) => Some(dg),
_ => None,
}
}
/// Get a reference to the Datagram, if any.
#[must_use]
pub const fn as_dgram_ref(&self) -> Option<&Datagram> {
match self {
Self::Datagram(dg) => Some(dg),
_ => None,
}
}
/// Ask how long the caller should wait before calling back.
#[must_use]
pub const fn callback(&self) -> Duration {
match self {
Self::Callback(t) => *t,
_ => Duration::new(0, 0),
}
}
#[must_use]
pub fn or_else<F>(self, f: F) -> Self
where
F: FnOnce() -> Self,
{
match self {
x @ (Self::Datagram(_) | Self::Callback(_)) => x,
Self::None => f(),
}
}
}
/// Used by inner functions like `Connection::output`.
enum SendOption {
/// Yes, please send this datagram.
Yes(Datagram),
/// Don't send. If this was blocked on the pacer (the arg is true).
No(bool),
}
impl Default for SendOption {
fn default() -> Self {
Self::No(false)
}
}
/// Used by `Connection::preprocess` to determine what to do
/// with an packet before attempting to remove protection.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum PreprocessResult {
/// End processing and return successfully.
End,
/// Stop processing this datagram and move on to the next.
Next,
/// Continue and process this packet.
Continue,
}
/// `AddressValidationInfo` holds information relevant to either
/// responding to address validation (`NewToken`, `Retry`) or generating
/// tokens for address validation (`Server`).
enum AddressValidationInfo {
None,
// We are a client and have information from `NEW_TOKEN`.
NewToken(Vec<u8>),
// We are a client and have received a `Retry` packet.
Retry {
token: Vec<u8>,
retry_source_cid: ConnectionId,
},
// We are a server and can generate tokens.
Server(Weak<RefCell<AddressValidation>>),
}
impl AddressValidationInfo {
pub fn token(&self) -> &[u8] {
match self {
Self::NewToken(token) | Self::Retry { token, .. } => token,
_ => &[],
}
}
pub fn generate_new_token(&self, peer_address: SocketAddr, now: Instant) -> Option<Vec<u8>> {
match self {
Self::Server(ref w) => w.upgrade().and_then(|validation| {
validation
.borrow()
.generate_new_token(peer_address, now)
.ok()
}),
Self::None => None,
_ => unreachable!("called a server function on a client"),
}
}
}
/// A QUIC Connection
///
/// First, create a new connection using `new_client()` or `new_server()`.
///
/// For the life of the connection, handle activity in the following manner:
/// 1. Perform operations using the `stream_*()` methods.
/// 1. Call `process_input()` when a datagram is received or the timer expires. Obtain information
/// on connection state changes by checking `events()`.
/// 1. Having completed handling current activity, repeatedly call `process_output()` for packets to
/// send, until it returns `Output::Callback` or `Output::None`.
///
/// After the connection is closed (either by calling `close()` or by the
/// remote) continue processing until `state()` returns `Closed`.
pub struct Connection {
role: Role,
version: Version,
state: State,
tps: Rc<RefCell<TransportParametersHandler>>,
/// What we are doing with 0-RTT.
zero_rtt_state: ZeroRttState,
/// All of the network paths that we are aware of.
paths: Paths,
/// This object will generate connection IDs for the connection.
cid_manager: ConnectionIdManager,
address_validation: AddressValidationInfo,
/// The connection IDs that were provided by the peer.
connection_ids: ConnectionIdStore<[u8; 16]>,
/// The source connection ID that this endpoint uses for the handshake.
/// Since we need to communicate this to our peer in tparams, setting this
/// value is part of constructing the struct.
local_initial_source_cid: ConnectionId,
/// The source connection ID from the first packet from the other end.
/// This is checked against the peer's transport parameters.
remote_initial_source_cid: Option<ConnectionId>,
/// The destination connection ID from the first packet from the client.
/// This is checked by the client against the server's transport parameters.
original_destination_cid: Option<ConnectionId>,
/// We sometimes save a datagram against the possibility that keys will later
/// become available. This avoids reporting packets as dropped during the handshake
/// when they are either just reordered or we haven't been able to install keys yet.
/// In particular, this occurs when asynchronous certificate validation happens.
saved_datagrams: SavedDatagrams,
/// Some packets were received, but not tracked.
received_untracked: bool,
/// This is responsible for the `QuicDatagrams`' handling:
quic_datagrams: QuicDatagrams,
pub(crate) crypto: Crypto,
pub(crate) acks: AckTracker,
idle_timeout: IdleTimeout,
streams: Streams,
state_signaling: StateSignaling,
loss_recovery: LossRecovery,
events: ConnectionEvents,
new_token: NewTokenState,
stats: StatsCell,
qlog: NeqoQlog,
/// A session ticket was received without `NEW_TOKEN`,
/// this is when that turns into an event without `NEW_TOKEN`.
release_resumption_token_timer: Option<Instant>,
conn_params: ConnectionParameters,
hrtime: hrtime::Handle,
/// For testing purposes it is sometimes necessary to inject frames that wouldn't
/// otherwise be sent, just to see how a connection handles them. Inserting them
/// into packets proper mean that the frames follow the entire processing path.
#[cfg(test)]
pub test_frame_writer: Option<Box<dyn test_internal::FrameWriter>>,
}
impl Debug for Connection {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{:?} Connection: {:?} {:?}",
self.role,
self.state,
self.paths.primary()
)
}
}
impl Connection {
/// A long default for timer resolution, so that we don't tax the
/// system too hard when we don't need to.
const LOOSE_TIMER_RESOLUTION: Duration = Duration::from_millis(50);
/// Create a new QUIC connection with Client role.
/// # Errors
/// When NSS fails and an agent cannot be created.
pub fn new_client(
server_name: impl Into<String>,
protocols: &[impl AsRef<str>],
cid_generator: Rc<RefCell<dyn ConnectionIdGenerator>>,
local_addr: SocketAddr,
remote_addr: SocketAddr,
conn_params: ConnectionParameters,
now: Instant,
) -> Res<Self> {
let dcid = ConnectionId::generate_initial();
let mut c = Self::new(
Role::Client,
Agent::from(Client::new(server_name.into(), conn_params.is_greasing())?),
cid_generator,
protocols,
conn_params,
)?;
c.crypto.states.init(
c.conn_params.get_versions().compatible(),
Role::Client,
&dcid,
)?;
c.original_destination_cid = Some(dcid);
let path = Path::temporary(
local_addr,
remote_addr,
c.conn_params.get_cc_algorithm(),
c.conn_params.pacing_enabled(),
NeqoQlog::default(),
now,
);
c.setup_handshake_path(&Rc::new(RefCell::new(path)), now);
Ok(c)
}
/// Create a new QUIC connection with Server role.
/// # Errors
/// When NSS fails and an agent cannot be created.
pub fn new_server(
certs: &[impl AsRef<str>],
protocols: &[impl AsRef<str>],
cid_generator: Rc<RefCell<dyn ConnectionIdGenerator>>,
conn_params: ConnectionParameters,
) -> Res<Self> {
Self::new(
Role::Server,
Agent::from(Server::new(certs)?),
cid_generator,
protocols,
conn_params,
)
}
fn new<P: AsRef<str>>(
role: Role,
agent: Agent,
cid_generator: Rc<RefCell<dyn ConnectionIdGenerator>>,
protocols: &[P],
conn_params: ConnectionParameters,
) -> Res<Self> {
// Setup the local connection ID.
let local_initial_source_cid = cid_generator
.borrow_mut()
.generate_cid()
.ok_or(Error::ConnectionIdsExhausted)?;
let mut cid_manager =
ConnectionIdManager::new(cid_generator, local_initial_source_cid.clone());
let mut tps = conn_params.create_transport_parameter(role, &mut cid_manager)?;
tps.local.set_bytes(
tparams::INITIAL_SOURCE_CONNECTION_ID,
local_initial_source_cid.to_vec(),
);
let tphandler = Rc::new(RefCell::new(tps));
let crypto = Crypto::new(
conn_params.get_versions().initial(),
agent,
protocols.iter().map(P::as_ref).map(String::from).collect(),
Rc::clone(&tphandler),
)?;
let stats = StatsCell::default();
let events = ConnectionEvents::default();
let quic_datagrams = QuicDatagrams::new(
conn_params.get_datagram_size(),
conn_params.get_outgoing_datagram_queue(),
conn_params.get_incoming_datagram_queue(),
events.clone(),
);
let c = Self {
role,
version: conn_params.get_versions().initial(),
state: State::Init,
paths: Paths::default(),
cid_manager,
tps: tphandler.clone(),
zero_rtt_state: ZeroRttState::Init,
address_validation: AddressValidationInfo::None,
local_initial_source_cid,
remote_initial_source_cid: None,
original_destination_cid: None,
saved_datagrams: SavedDatagrams::default(),
received_untracked: false,
crypto,
acks: AckTracker::default(),
idle_timeout: IdleTimeout::new(conn_params.get_idle_timeout()),
streams: Streams::new(tphandler, role, events.clone()),
connection_ids: ConnectionIdStore::default(),
state_signaling: StateSignaling::Idle,
loss_recovery: LossRecovery::new(stats.clone(), conn_params.get_fast_pto()),
events,
new_token: NewTokenState::new(role),
stats,
qlog: NeqoQlog::disabled(),
release_resumption_token_timer: None,
conn_params,
hrtime: hrtime::Time::get(Self::LOOSE_TIMER_RESOLUTION),
quic_datagrams,
#[cfg(test)]
test_frame_writer: None,
};
c.stats.borrow_mut().init(format!("{c}"));
Ok(c)
}
/// # Errors
/// When the operation fails.
pub fn server_enable_0rtt(
&mut self,
anti_replay: &AntiReplay,
zero_rtt_checker: impl ZeroRttChecker + 'static,
) -> Res<()> {
self.crypto
.server_enable_0rtt(self.tps.clone(), anti_replay, zero_rtt_checker)
}
/// # Errors
/// When the operation fails.
pub fn server_enable_ech(
&mut self,
config: u8,
public_name: &str,
sk: &PrivateKey,
pk: &PublicKey,
) -> Res<()> {
self.crypto.server_enable_ech(config, public_name, sk, pk)
}
/// Get the active ECH configuration, which is empty if ECH is disabled.
#[must_use]
pub fn ech_config(&self) -> &[u8] {
self.crypto.ech_config()
}
/// # Errors
/// When the operation fails.
pub fn client_enable_ech(&mut self, ech_config_list: impl AsRef<[u8]>) -> Res<()> {
self.crypto.client_enable_ech(ech_config_list)
}
/// Set or clear the qlog for this connection.
pub fn set_qlog(&mut self, qlog: NeqoQlog) {
self.loss_recovery.set_qlog(qlog.clone());
self.paths.set_qlog(qlog.clone());
self.qlog = qlog;
}
/// Get the qlog (if any) for this connection.
pub fn qlog_mut(&mut self) -> &mut NeqoQlog {
&mut self.qlog
}
/// Get the original destination connection id for this connection. This
/// will always be present for `Role::Client` but not if `Role::Server` is in
/// `State::Init`.
#[must_use]
pub const fn odcid(&self) -> Option<&ConnectionId> {
self.original_destination_cid.as_ref()
}
/// Set a local transport parameter, possibly overriding a default value.
/// This only sets transport parameters without dealing with other aspects of
/// setting the value.
///
/// # Errors
/// When the transport parameter is invalid.
/// # Panics
/// This panics if the transport parameter is known to this crate.
pub fn set_local_tparam(&self, tp: TransportParameterId, value: TransportParameter) -> Res<()> {
#[cfg(not(test))]
{
assert!(!tparams::INTERNAL_TRANSPORT_PARAMETERS.contains(&tp));
}
if *self.state() == State::Init {
self.tps.borrow_mut().local.set(tp, value);
Ok(())
} else {
qerror!("Current state: {:?}", self.state());
qerror!("Cannot set local tparam when not in an initial connection state.");
Err(Error::ConnectionState)
}
}
/// `odcid` is their original choice for our CID, which we get from the Retry token.
/// `remote_cid` is the value from the Source Connection ID field of an incoming packet: what
/// the peer wants us to use now. `retry_cid` is what we asked them to use when we sent the
/// Retry.
pub(crate) fn set_retry_cids(
&mut self,
odcid: &ConnectionId,
remote_cid: ConnectionId,
retry_cid: &ConnectionId,
) {
debug_assert_eq!(self.role, Role::Server);
qtrace!(
[self],
"Retry CIDs: odcid={} remote={} retry={}",
odcid,
remote_cid,
retry_cid
);
// We advertise "our" choices in transport parameters.
let local_tps = &mut self.tps.borrow_mut().local;
local_tps.set_bytes(tparams::ORIGINAL_DESTINATION_CONNECTION_ID, odcid.to_vec());
local_tps.set_bytes(tparams::RETRY_SOURCE_CONNECTION_ID, retry_cid.to_vec());
// ...and save their choices for later validation.
self.remote_initial_source_cid = Some(remote_cid);
}
fn retry_sent(&self) -> bool {
self.tps
.borrow()
.local
.get_bytes(tparams::RETRY_SOURCE_CONNECTION_ID)
.is_some()
}
/// Set ALPN preferences. Strings that appear earlier in the list are given
/// higher preference.
/// # Errors
/// When the operation fails, which is usually due to bad inputs or bad connection state.
pub fn set_alpn(&mut self, protocols: &[impl AsRef<str>]) -> Res<()> {
self.crypto.tls.set_alpn(protocols)?;
Ok(())
}
/// Enable a set of ciphers.
/// # Errors
/// When the operation fails, which is usually due to bad inputs or bad connection state.
pub fn set_ciphers(&mut self, ciphers: &[Cipher]) -> Res<()> {
if self.state != State::Init {
qerror!([self], "Cannot enable ciphers in state {:?}", self.state);
return Err(Error::ConnectionState);
}
self.crypto.tls.set_ciphers(ciphers)?;
Ok(())
}
/// Enable a set of key exchange groups.
/// # Errors
/// When the operation fails, which is usually due to bad inputs or bad connection state.
pub fn set_groups(&mut self, groups: &[Group]) -> Res<()> {
if self.state != State::Init {
qerror!([self], "Cannot enable groups in state {:?}", self.state);
return Err(Error::ConnectionState);
}
self.crypto.tls.set_groups(groups)?;
Ok(())
}
/// Set the number of additional key shares to send in the client hello.
/// # Errors
/// When the operation fails, which is usually due to bad inputs or bad connection state.
pub fn send_additional_key_shares(&mut self, count: usize) -> Res<()> {
if self.state != State::Init {
qerror!([self], "Cannot enable groups in state {:?}", self.state);
return Err(Error::ConnectionState);
}
self.crypto.tls.send_additional_key_shares(count)?;
Ok(())
}
fn make_resumption_token(&mut self) -> ResumptionToken {
debug_assert_eq!(self.role, Role::Client);
debug_assert!(self.crypto.has_resumption_token());
// Values less than GRANULARITY are ignored when using the token, so use 0 where needed.
let rtt = self.paths.primary().map_or_else(
// If we don't have a path, we don't have an RTT.
|| Duration::from_millis(0),
|p| {
let rtt = p.borrow().rtt().estimate();
if p.borrow().rtt().is_guesstimate() {
// When we have no actual RTT sample, do not encode a guestimated RTT larger
// than the default initial RTT. (The guess can be very large under lossy
// conditions.)
if rtt < INITIAL_RTT {
rtt
} else {
Duration::from_millis(0)
}
} else {
rtt
}
},
);
self.crypto
.create_resumption_token(
self.new_token.take_token(),
self.tps
.borrow()
.remote
.as_ref()
.expect("should have transport parameters"),
self.version,
u64::try_from(rtt.as_millis()).unwrap_or(0),
)
.unwrap()
}
fn confirmed(&self) -> bool {
self.state == State::Confirmed
}
/// Get the simplest PTO calculation for all those cases where we need
/// a value of this approximate order. Don't use this for loss recovery,
/// only use it where a more precise value is not important.
fn pto(&self) -> Duration {
self.paths.primary().map_or_else(
|| RttEstimate::default().pto(self.confirmed()),
|p| p.borrow().rtt().pto(self.confirmed()),
)
}
fn create_resumption_token(&mut self, now: Instant) {
if self.role == Role::Server || self.state < State::Connected {
return;
}
qtrace!(
[self],
"Maybe create resumption token: {} {}",
self.crypto.has_resumption_token(),
self.new_token.has_token()
);
while self.crypto.has_resumption_token() && self.new_token.has_token() {
let token = self.make_resumption_token();
self.events.client_resumption_token(token);
}
// If we have a resumption ticket check or set a timer.
if self.crypto.has_resumption_token() {
let arm = if let Some(expiration_time) = self.release_resumption_token_timer {
if expiration_time <= now {
let token = self.make_resumption_token();
self.events.client_resumption_token(token);
self.release_resumption_token_timer = None;
// This means that we release one session ticket every 3 PTOs
// if no NEW_TOKEN frame is received.
self.crypto.has_resumption_token()
} else {
false
}
} else {
true
};
if arm {
self.release_resumption_token_timer = Some(now + 3 * self.pto());
}
}
}
/// The correct way to obtain a resumption token is to wait for the
/// `ConnectionEvent::ResumptionToken` event. To emit the event we are waiting for a
/// resumption token and a `NEW_TOKEN` frame to arrive. Some servers don't send `NEW_TOKEN`
/// frames and in this case, we wait for 3xPTO before emitting an event. This is especially a
/// problem for short-lived connections, where the connection is closed before any events are
/// released. This function retrieves the token, without waiting for a `NEW_TOKEN` frame to
/// arrive.
///
/// # Panics
///
/// If this is called on a server.
pub fn take_resumption_token(&mut self, now: Instant) -> Option<ResumptionToken> {
assert_eq!(self.role, Role::Client);
if self.crypto.has_resumption_token() {
let token = self.make_resumption_token();
if self.crypto.has_resumption_token() {
self.release_resumption_token_timer = Some(now + 3 * self.pto());
}
Some(token)
} else {
None
}
}
/// Enable resumption, using a token previously provided.
/// This can only be called once and only on the client.
/// After calling the function, it should be possible to attempt 0-RTT
/// if the token supports that.
/// # Errors
/// When the operation fails, which is usually due to bad inputs or bad connection state.
pub fn enable_resumption(&mut self, now: Instant, token: impl AsRef<[u8]>) -> Res<()> {
if self.state != State::Init {
qerror!([self], "set token in state {:?}", self.state);
return Err(Error::ConnectionState);
}
if self.role == Role::Server {
return Err(Error::ConnectionState);
}
qinfo!(
[self],
"resumption token {}",
hex_snip_middle(token.as_ref())
);
let mut dec = Decoder::from(token.as_ref());
let version = Version::try_from(u32::try_from(
dec.decode_uint(4).ok_or(Error::InvalidResumptionToken)?,
)?)?;
qtrace!([self], " version {:?}", version);
if !self.conn_params.get_versions().all().contains(&version) {
return Err(Error::DisabledVersion);
}
let rtt = Duration::from_millis(dec.decode_varint().ok_or(Error::InvalidResumptionToken)?);
qtrace!([self], " RTT {:?}", rtt);
let tp_slice = dec.decode_vvec().ok_or(Error::InvalidResumptionToken)?;
qtrace!([self], " transport parameters {}", hex(tp_slice));
let mut dec_tp = Decoder::from(tp_slice);
let tp =
TransportParameters::decode(&mut dec_tp).map_err(|_| Error::InvalidResumptionToken)?;
let init_token = dec.decode_vvec().ok_or(Error::InvalidResumptionToken)?;
qtrace!([self], " Initial token {}", hex(init_token));
let tok = dec.decode_remainder();
qtrace!([self], " TLS token {}", hex(tok));
match self.crypto.tls {
Agent::Client(ref mut c) => {
let res = c.enable_resumption(tok);
if let Err(e) = res {
self.absorb_error::<Error>(now, Err(Error::from(e)));
return Ok(());
}
}
Agent::Server(_) => return Err(Error::WrongRole),
}
self.version = version;
self.conn_params.get_versions_mut().set_initial(version);
self.tps.borrow_mut().set_version(version);
self.tps.borrow_mut().remote_0rtt = Some(tp);
if !init_token.is_empty() {
self.address_validation = AddressValidationInfo::NewToken(init_token.to_vec());
}
self.paths
.primary()
.ok_or(Error::InternalError)?
.borrow_mut()
.rtt_mut()
.set_initial(rtt);
self.set_initial_limits();
// Start up TLS, which has the effect of setting up all the necessary
// state for 0-RTT. This only stages the CRYPTO frames.
let res = self.client_start(now);
self.absorb_error(now, res);
Ok(())
}
pub(crate) fn set_validation(&mut self, validation: &Rc<RefCell<AddressValidation>>) {
qtrace!([self], "Enabling NEW_TOKEN");
assert_eq!(self.role, Role::Server);
self.address_validation = AddressValidationInfo::Server(Rc::downgrade(validation));
}
/// Send a TLS session ticket AND a `NEW_TOKEN` frame (if possible).
/// # Errors
/// When the operation fails, which is usually due to bad inputs or bad connection state.
pub fn send_ticket(&mut self, now: Instant, extra: &[u8]) -> Res<()> {
if self.role == Role::Client {
return Err(Error::WrongRole);
}
let tps = &self.tps;
if let Agent::Server(ref mut s) = self.crypto.tls {
let mut enc = Encoder::default();
enc.encode_vvec_with(|enc_inner| {
tps.borrow().local.encode(enc_inner);
});
enc.encode(extra);
let records = s.send_ticket(now, enc.as_ref())?;
qdebug!([self], "send session ticket {}", hex(&enc));
self.crypto.buffer_records(records)?;
} else {
unreachable!();
}
// If we are able, also send a NEW_TOKEN frame.
// This should be recording all remote addresses that are valid,
// but there are just 0 or 1 in the current implementation.
if let Some(path) = self.paths.primary() {
if let Some(token) = self
.address_validation
.generate_new_token(path.borrow().remote_address(), now)
{
self.new_token.send_new_token(token);
}
Ok(())
} else {
Err(Error::NotConnected)
}
}
#[must_use]
pub fn tls_info(&self) -> Option<&SecretAgentInfo> {
self.crypto.tls.info()
}
/// # Errors
/// When there is no information to obtain.
pub fn tls_preinfo(&self) -> Res<SecretAgentPreInfo> {
Ok(self.crypto.tls.preinfo()?)
}
/// Get the peer's certificate chain and other info.
#[must_use]
pub fn peer_certificate(&self) -> Option<CertificateInfo> {
self.crypto.tls.peer_certificate()
}
/// Call by application when the peer cert has been verified.
///
/// This panics if there is no active peer. It's OK to call this
/// when authentication isn't needed, that will likely only cause
/// the connection to fail. However, if no packets have been
/// exchanged, it's not OK.
pub fn authenticated(&mut self, status: AuthenticationStatus, now: Instant) {
qdebug!([self], "Authenticated {:?}", status);
self.crypto.tls.authenticated(status);
let res = self.handshake(now, self.version, PacketNumberSpace::Handshake, None);
self.absorb_error(now, res);
self.process_saved(now);
}
/// Get the role of the connection.
#[must_use]
pub const fn role(&self) -> Role {
self.role
}
/// Get the state of the connection.
#[must_use]
pub const fn state(&self) -> &State {
&self.state
}
/// The QUIC version in use.
#[must_use]
pub const fn version(&self) -> Version {
self.version
}
/// Get the 0-RTT state of the connection.
#[must_use]
pub const fn zero_rtt_state(&self) -> ZeroRttState {
self.zero_rtt_state
}
/// Get a snapshot of collected statistics.
#[must_use]
pub fn stats(&self) -> Stats {
let mut v = self.stats.borrow().clone();
if let Some(p) = self.paths.primary() {
let p = p.borrow();
v.rtt = p.rtt().estimate();
v.rttvar = p.rtt().rttvar();
}
v
}
// This function wraps a call to another function and sets the connection state
// properly if that call fails.
fn capture_error<T>(
&mut self,
path: Option<PathRef>,
now: Instant,
frame_type: FrameType,
res: Res<T>,
) -> Res<T> {
if let Err(v) = &res {
#[cfg(debug_assertions)]
let msg = format!("{v:?}");
#[cfg(not(debug_assertions))]
let msg = "";
let error = CloseReason::Transport(v.clone());
match &self.state {
State::Closing { error: err, .. }
| State::Draining { error: err, .. }
| State::Closed(err) => {
qwarn!([self], "Closing again after error {:?}", err);
}
State::Init => {
// We have not even sent anything just close the connection without sending any
// error. This may happen when client_start fails.
self.set_state(State::Closed(error), now);
}
State::WaitInitial => {
// We don't have any state yet, so don't bother with
// the closing state, just send one CONNECTION_CLOSE.
if let Some(path) = path.or_else(|| self.paths.primary()) {
self.state_signaling
.close(path, error.clone(), frame_type, msg);
}
self.set_state(State::Closed(error), now);
}
_ => {
if let Some(path) = path.or_else(|| self.paths.primary()) {
self.state_signaling
.close(path, error.clone(), frame_type, msg);
if matches!(v, Error::KeysExhausted) {
self.set_state(State::Closed(error), now);
} else {
self.set_state(
State::Closing {
error,
timeout: self.get_closing_period_time(now),
},
now,
);
}
} else {
self.set_state(State::Closed(error), now);
}
}
}
}
res
}
/// For use with `process_input()`. Errors there can be ignored, but this
/// needs to ensure that the state is updated.
fn absorb_error<T>(&mut self, now: Instant, res: Res<T>) -> Option<T> {
self.capture_error(None, now, 0, res).ok()
}
fn process_timer(&mut self, now: Instant) {
match &self.state {
// Only the client runs timers while waiting for Initial packets.
State::WaitInitial => debug_assert_eq!(self.role, Role::Client),
// If Closing or Draining, check if it is time to move to Closed.
State::Closing { error, timeout } | State::Draining { error, timeout } => {
if *timeout <= now {
let st = State::Closed(error.clone());
self.set_state(st, now);
qinfo!("Closing timer expired");
return;
}
}
State::Closed(_) => {
qdebug!("Timer fired while closed");
return;
}
_ => (),
}
let pto = self.pto();
if self.idle_timeout.expired(now, pto) {
qinfo!([self], "idle timeout expired");
self.set_state(
State::Closed(CloseReason::Transport(Error::IdleTimeout)),
now,
);
return;
}
if self.state.closing() {
qtrace!([self], "Closing, not processing other timers");
return;
}
self.streams.cleanup_closed_streams();
let res = self.crypto.states.check_key_update(now);
self.absorb_error(now, res);
if let Some(path) = self.paths.primary() {
let lost = self.loss_recovery.timeout(&path, now);
self.handle_lost_packets(&lost);
qlog::packets_lost(&self.qlog, &lost, now);
}
if self.release_resumption_token_timer.is_some() {
self.create_resumption_token(now);
}
if !self
.paths
.process_timeout(now, pto, &mut self.stats.borrow_mut())
{
qinfo!([self], "last available path failed");
self.absorb_error::<Error>(now, Err(Error::NoAvailablePath));
}
}
/// Whether the given [`ConnectionIdRef`] is a valid local [`ConnectionId`].
#[must_use]
pub fn is_valid_local_cid(&self, cid: ConnectionIdRef) -> bool {
self.cid_manager.is_valid(cid)
}
/// Process new input datagrams on the connection.
pub fn process_input(&mut self, d: Datagram<impl AsRef<[u8]>>, now: Instant) {
self.process_multiple_input(iter::once(d), now);
}
/// Process new input datagrams on the connection.
pub fn process_multiple_input(
&mut self,
dgrams: impl IntoIterator<Item = Datagram<impl AsRef<[u8]>>>,
now: Instant,
) {
let mut dgrams = dgrams.into_iter().peekable();
if dgrams.peek().is_none() {
return;
}
for d in dgrams {
self.input(d, now, now);
}
self.process_saved(now);
self.streams.cleanup_closed_streams();
}
/// Get the time that we next need to be called back, relative to `now`.
fn next_delay(&mut self, now: Instant, paced: bool) -> Duration {
qtrace!([self], "Get callback delay {:?}", now);
// Only one timer matters when closing...
if let State::Closing { timeout, .. } | State::Draining { timeout, .. } = self.state {
self.hrtime.update(Self::LOOSE_TIMER_RESOLUTION);
return timeout.duration_since(now);
}
let mut delays = SmallVec::<[_; 7]>::new();
if let Some(ack_time) = self.acks.ack_time(now) {
qtrace!([self], "Delayed ACK timer {:?}", ack_time);
delays.push(ack_time);
}
if let Some(p) = self.paths.primary() {
let path = p.borrow();
let rtt = path.rtt();
let pto = rtt.pto(self.confirmed());
let idle_time = self.idle_timeout.expiry(now, pto);
qtrace!([self], "Idle timer {:?}", idle_time);
delays.push(idle_time);
if self.streams.need_keep_alive() {
if let Some(keep_alive_time) = self.idle_timeout.next_keep_alive(now, pto) {
qtrace!([self], "Keep alive timer {:?}", keep_alive_time);
delays.push(keep_alive_time);
}
}
if let Some(lr_time) = self.loss_recovery.next_timeout(&path) {
qtrace!([self], "Loss recovery timer {:?}", lr_time);
delays.push(lr_time);
}
if paced {
if let Some(pace_time) = path.sender().next_paced(rtt.estimate()) {
qtrace!([self], "Pacing timer {:?}", pace_time);
delays.push(pace_time);
}
}
if let Some(path_time) = self.paths.next_timeout(pto) {
qtrace!([self], "Path probe timer {:?}", path_time);
delays.push(path_time);
}
}
if let Some(key_update_time) = self.crypto.states.update_time() {
qtrace!([self], "Key update timer {:?}", key_update_time);
delays.push(key_update_time);
}
// `release_resumption_token_timer` is not considered here, because
// it is not important enough to force the application to set a
// timeout for it It is expected that other activities will
// drive it.
let earliest = delays.into_iter().min().unwrap();
// TODO(agrover, mt) - need to analyze and fix #47
// rather than just clamping to zero here.
debug_assert!(earliest > now);
let delay = earliest.saturating_duration_since(now);
qdebug!([self], "delay duration {:?}", delay);
self.hrtime.update(delay / 4);
delay
}
/// Get output packets, as a result of receiving packets, or actions taken
/// by the application.
/// Returns datagrams to send, and how long to wait before calling again
/// even if no incoming packets.
#[must_use = "Output of the process_output function must be handled"]
pub fn process_output(&mut self, now: Instant) -> Output {
qtrace!([self], "process_output {:?} {:?}", self.state, now);
match (&self.state, self.role) {
(State::Init, Role::Client) => {
let res = self.client_start(now);
self.absorb_error(now, res);
}
(State::Init | State::WaitInitial, Role::Server) => {
return Output::None;
}
_ => {
self.process_timer(now);
}
}
match self.output(now) {
SendOption::Yes(dgram) => Output::Datagram(dgram),
SendOption::No(paced) => match self.state {
State::Init | State::Closed(_) => Output::None,
State::Closing { timeout, .. } | State::Draining { timeout, .. } => {
Output::Callback(timeout.duration_since(now))
}
_ => Output::Callback(self.next_delay(now, paced)),
},
}
}
/// A test-only output function that uses the provided writer to
/// pack something extra into the output.
#[cfg(test)]
pub fn test_write_frames<W>(&mut self, writer: W, now: Instant) -> Output
where
W: test_internal::FrameWriter + 'static,
{
self.test_frame_writer = Some(Box::new(writer));
let res = self.process_output(now);
self.test_frame_writer = None;
res
}
/// Process input and generate output.
#[must_use = "Output of the process function must be handled"]
pub fn process(&mut self, dgram: Option<Datagram<impl AsRef<[u8]>>>, now: Instant) -> Output {
if let Some(d) = dgram {
self.input(d, now, now);
self.process_saved(now);
}
#[allow(clippy::let_and_return)]
let output = self.process_output(now);
#[cfg(all(feature = "build-fuzzing-corpus", test))]
if self.test_frame_writer.is_none() {
if let Some(d) = output.clone().dgram() {
neqo_common::write_item_to_fuzzing_corpus("packet", &d);
}
}
output
}
fn handle_retry(&mut self, packet: &PublicPacket, now: Instant) -> Res<()> {
qinfo!([self], "received Retry");
if matches!(self.address_validation, AddressValidationInfo::Retry { .. }) {
self.stats.borrow_mut().pkt_dropped("Extra Retry");
return Ok(());
}
if packet.token().is_empty() {
self.stats.borrow_mut().pkt_dropped("Retry without a token");
return Ok(());
}
if !packet.is_valid_retry(
self.original_destination_cid
.as_ref()
.ok_or(Error::InvalidRetry)?,
) {
self.stats
.borrow_mut()
.pkt_dropped("Retry with bad integrity tag");
return Ok(());
}
// At this point, we should only have the connection ID that we generated.
// Update to the one that the server prefers.
let Some(path) = self.paths.primary() else {
self.stats
.borrow_mut()
.pkt_dropped("Retry without an existing path");
return Ok(());
};
path.borrow_mut().set_remote_cid(packet.scid());
let retry_scid = ConnectionId::from(packet.scid());
qinfo!(
[self],
"Valid Retry received, token={} scid={}",
hex(packet.token()),
retry_scid
);
let lost_packets = self.loss_recovery.retry(&path, now);
self.handle_lost_packets(&lost_packets);
self.crypto.states.init(
self.conn_params.get_versions().compatible(),
self.role,
&retry_scid,
)?;
self.address_validation = AddressValidationInfo::Retry {
token: packet.token().to_vec(),
retry_source_cid: retry_scid,
};
Ok(())
}
fn discard_keys(&mut self, space: PacketNumberSpace, now: Instant) {
if self.crypto.discard(space) {
qdebug!([self], "Drop packet number space {}", space);
if let Some(path) = self.paths.primary() {
self.loss_recovery.discard(&path, space, now);
}
self.acks.drop_space(space);
}
}
fn is_stateless_reset(&self, path: &PathRef, d: &Datagram<impl AsRef<[u8]>>) -> bool {
// If the datagram is too small, don't try.
// If the connection is connected, then the reset token will be invalid.
if d.len() < 16 || !self.state.connected() {
return false;
}
<&[u8; 16]>::try_from(&d.as_ref()[d.len() - 16..])
.is_ok_and(|token| path.borrow().is_stateless_reset(token))
}
fn check_stateless_reset(
&mut self,
path: &PathRef,
d: &Datagram<impl AsRef<[u8]>>,
first: bool,
now: Instant,
) -> Res<()> {
if first && self.is_stateless_reset(path, d) {
// Failing to process a packet in a datagram might
// indicate that there is a stateless reset present.
qdebug!([self], "Stateless reset: {}", hex(&d[d.len() - 16..]));
self.state_signaling.reset();
self.set_state(
State::Draining {
error: CloseReason::Transport(Error::StatelessReset),
timeout: self.get_closing_period_time(now),
},
now,
);
Err(Error::StatelessReset)
} else {
Ok(())
}
}
/// Process any saved datagrams that might be available for processing.
fn process_saved(&mut self, now: Instant) {
while let Some(cspace) = self.saved_datagrams.available() {
qdebug!([self], "process saved for space {:?}", cspace);
debug_assert!(self.crypto.states.rx_hp(self.version, cspace).is_some());
for saved in self.saved_datagrams.take_saved() {
qtrace!([self], "input saved @{:?}: {:?}", saved.t, saved.d);
self.input(saved.d, saved.t, now);
}
}
}
/// In case a datagram arrives that we can only partially process, save any
/// part that we don't have keys for.
#[allow(clippy::needless_pass_by_value)] // To consume an owned datagram below.
fn save_datagram(
&mut self,
cspace: CryptoSpace,
d: Datagram<impl AsRef<[u8]>>,
remaining: usize,
now: Instant,
) {
let d = Datagram::new(
d.source(),
d.destination(),
d.tos(),
d[d.len() - remaining..].to_vec(),
);
self.saved_datagrams.save(cspace, d, now);
self.stats.borrow_mut().saved_datagrams += 1;
}
/// Perform version negotiation.
fn version_negotiation(&mut self, supported: &[WireVersion], now: Instant) -> Res<()> {
debug_assert_eq!(self.role, Role::Client);
if let Some(version) = self.conn_params.get_versions().preferred(supported) {
assert_ne!(self.version, version);
qinfo!([self], "Version negotiation: trying {:?}", version);
let path = self.paths.primary().ok_or(Error::NoAvailablePath)?;
let local_addr = path.borrow().local_address();
let remote_addr = path.borrow().remote_address();
let conn_params = self
.conn_params
.clone()
.versions(version, self.conn_params.get_versions().all().to_vec());
let mut c = Self::new_client(
self.crypto.server_name().ok_or(Error::VersionNegotiation)?,
self.crypto.protocols(),
self.cid_manager.generator(),
local_addr,
remote_addr,
conn_params,
now,
)?;
c.conn_params
.get_versions_mut()
.set_initial(self.conn_params.get_versions().initial());
mem::swap(self, &mut c);
qlog::client_version_information_negotiated(
&self.qlog,
self.conn_params.get_versions().all(),
supported,
version,
now,
);
Ok(())
} else {
qinfo!([self], "Version negotiation: failed with {:?}", supported);
// This error goes straight to closed.
self.set_state(
State::Closed(CloseReason::Transport(Error::VersionNegotiation)),
now,
);
Err(Error::VersionNegotiation)
}
}
/// Perform any processing that we might have to do on packets prior to
/// attempting to remove protection.
#[allow(clippy::too_many_lines)] // Yeah, it's a work in progress.
fn preprocess_packet(
&mut self,
packet: &PublicPacket,
path: &PathRef,
dcid: Option<&ConnectionId>,
now: Instant,
) -> Res<PreprocessResult> {
if dcid.is_some_and(|d| d != &packet.dcid()) {
self.stats
.borrow_mut()
.pkt_dropped("Coalesced packet has different DCID");
return Ok(PreprocessResult::Next);
}
if (packet.packet_type() == PacketType::Initial
|| packet.packet_type() == PacketType::Handshake)
&& self.role == Role::Client
&& !path.borrow().is_primary()
{
// If we have received a packet from a different address than we have sent to
// we should ignore the packet. In such a case a path will be a newly created
// temporary path, not the primary path.
return Ok(PreprocessResult::Next);
}
match (packet.packet_type(), &self.state, &self.role) {
(PacketType::Initial, State::Init, Role::Server) => {
let version = packet.version().ok_or(Error::ProtocolViolation)?;
if !packet.is_valid_initial()
|| !self.conn_params.get_versions().all().contains(&version)
{
self.stats.borrow_mut().pkt_dropped("Invalid Initial");
return Ok(PreprocessResult::Next);
}
qinfo!(
[self],
"Received valid Initial packet with scid {:?} dcid {:?}",
packet.scid(),
packet.dcid()
);
// Record the client's selected CID so that it can be accepted until
// the client starts using a real connection ID.
let dcid = ConnectionId::from(packet.dcid());
self.crypto.states.init_server(version, &dcid)?;
self.original_destination_cid = Some(dcid);
self.set_state(State::WaitInitial, now);
// We need to make sure that we set this transport parameter.
// This has to happen prior to processing the packet so that
// the TLS handshake has all it needs.
if !self.retry_sent() {
self.tps.borrow_mut().local.set_bytes(
tparams::ORIGINAL_DESTINATION_CONNECTION_ID,
packet.dcid().to_vec(),
);
}
}
(PacketType::VersionNegotiation, State::WaitInitial, Role::Client) => {
if let Ok(versions) = packet.supported_versions() {
if versions.is_empty()
|| versions.contains(&self.version().wire_version())
|| versions.contains(&0)
|| &packet.scid() != self.odcid().ok_or(Error::InternalError)?
|| matches!(self.address_validation, AddressValidationInfo::Retry { .. })
{
// Ignore VersionNegotiation packets that contain the current version.
// Or don't have the right connection ID.
// Or are received after a Retry.
self.stats.borrow_mut().pkt_dropped("Invalid VN");
} else {
self.version_negotiation(&versions, now)?;
}
} else {
self.stats.borrow_mut().pkt_dropped("VN with no versions");
};
return Ok(PreprocessResult::End);
}
(PacketType::Retry, State::WaitInitial, Role::Client) => {
self.handle_retry(packet, now)?;
return Ok(PreprocessResult::Next);
}
(PacketType::Handshake | PacketType::Short, State::WaitInitial, Role::Client) => {
// This packet can't be processed now, but it could be a sign
// that Initial packets were lost.
// Resend Initial CRYPTO frames immediately a few times just
// in case. As we don't have an RTT estimate yet, this helps
// when there is a short RTT and losses. Also mark all 0-RTT
// data as lost.
if dcid.is_none()
&& self.cid_manager.is_valid(packet.dcid())
&& self.stats.borrow().saved_datagrams <= EXTRA_INITIALS
{
self.crypto.resend_unacked(PacketNumberSpace::Initial);
self.resend_0rtt(now);
}
}
(PacketType::VersionNegotiation | PacketType::Retry | PacketType::OtherVersion, ..) => {
self.stats
.borrow_mut()
.pkt_dropped(format!("{:?}", packet.packet_type()));
return Ok(PreprocessResult::Next);
}
_ => {}
}
let res = match self.state {
State::Init => {
self.stats
.borrow_mut()
.pkt_dropped("Received while in Init state");
PreprocessResult::Next
}
State::WaitInitial => PreprocessResult::Continue,
State::WaitVersion | State::Handshaking | State::Connected | State::Confirmed => {
if self.cid_manager.is_valid(packet.dcid()) {
if self.role == Role::Server && packet.packet_type() == PacketType::Handshake {
// Server has received a Handshake packet -> discard Initial keys and states
self.discard_keys(PacketNumberSpace::Initial, now);
}
PreprocessResult::Continue
} else {
self.stats
.borrow_mut()
.pkt_dropped(format!("Invalid DCID {:?}", packet.dcid()));
PreprocessResult::Next
}
}
State::Closing { .. } => {
// Don't bother processing the packet. Instead ask to get a
// new close frame.
self.state_signaling.send_close();
PreprocessResult::Next
}
State::Draining { .. } | State::Closed(..) => {
// Do nothing.
self.stats
.borrow_mut()
.pkt_dropped(format!("State {:?}", self.state));
PreprocessResult::Next
}
};
Ok(res)
}
/// After a Initial, Handshake, `ZeroRtt`, or Short packet is successfully processed.
fn postprocess_packet(
&mut self,
path: &PathRef,
d: &Datagram<impl AsRef<[u8]>>,
packet: &PublicPacket,
migrate: bool,
now: Instant,
) {
let space = PacketNumberSpace::from(packet.packet_type());
if let Some(space) = self.acks.get_mut(space) {
let space_ecn_marks = space.ecn_marks();
*space_ecn_marks += d.tos().into();
self.stats.borrow_mut().ecn_rx = *space_ecn_marks;
} else {
qtrace!("Not tracking ECN for dropped packet number space");
}
if self.state == State::WaitInitial {
self.start_handshake(path, packet, now);
}
if self.state.connected() {
self.handle_migration(path, d, migrate, now);
} else if self.role != Role::Client
&& (packet.packet_type() == PacketType::Handshake
|| (packet.dcid().len() >= 8 && packet.dcid() == self.local_initial_source_cid))
{
// We only allow one path during setup, so apply handshake
// path validation to this path.
path.borrow_mut().set_valid(now);
}
}
/// Take a datagram as input. This reports an error if the packet was bad.
/// This takes two times: when the datagram was received, and the current time.
fn input(&mut self, d: Datagram<impl AsRef<[u8]>>, received: Instant, now: Instant) {
// First determine the path.
let path = self.paths.find_path(
d.destination(),
d.source(),
self.conn_params.get_cc_algorithm(),
self.conn_params.pacing_enabled(),
now,
);
path.borrow_mut().add_received(d.len());
let res = self.input_path(&path, d, received);
self.capture_error(Some(path), now, 0, res).ok();
}
fn input_path(
&mut self,
path: &PathRef,
d: Datagram<impl AsRef<[u8]>>,
now: Instant,
) -> Res<()> {
let mut slc = d.as_ref();
let mut dcid = None;
qtrace!([self], "{} input {}", path.borrow(), hex(&d));
let pto = path.borrow().rtt().pto(self.confirmed());
// Handle each packet in the datagram.
while !slc.is_empty() {
self.stats.borrow_mut().packets_rx += 1;
let (packet, remainder) =
match PublicPacket::decode(slc, self.cid_manager.decoder().as_ref()) {
Ok((packet, remainder)) => (packet, remainder),
Err(e) => {
qinfo!([self], "Garbage packet: {}", e);
qtrace!([self], "Garbage packet contents: {}", hex(slc));
self.stats.borrow_mut().pkt_dropped("Garbage packet");
break;
}
};
match self.preprocess_packet(&packet, path, dcid.as_ref(), now)? {
PreprocessResult::Continue => (),
PreprocessResult::Next => break,
PreprocessResult::End => return Ok(()),
}
qtrace!([self], "Received unverified packet {:?}", packet);
match packet.decrypt(&mut self.crypto.states, now + pto) {
Ok(payload) => {
// OK, we have a valid packet.
self.idle_timeout.on_packet_received(now);
dump_packet(
self,
path,
"-> RX",
payload.packet_type(),
payload.pn(),
&payload[..],
d.tos(),
d.len(),
);
#[cfg(feature = "build-fuzzing-corpus")]
if packet.packet_type() == PacketType::Initial {
let target = if self.role == Role::Client {
"server_initial"
} else {
"client_initial"
};
neqo_common::write_item_to_fuzzing_corpus(target, &payload[..]);
}
qlog::packet_received(&self.qlog, &packet, &payload, now);
let space = PacketNumberSpace::from(payload.packet_type());
if let Some(space) = self.acks.get_mut(space) {
if space.is_duplicate(payload.pn()) {
qdebug!("Duplicate packet {}-{}", space, payload.pn());
self.stats.borrow_mut().dups_rx += 1;
} else {
match self.process_packet(path, &payload, now) {
Ok(migrate) => {
self.postprocess_packet(path, &d, &packet, migrate, now);
}
Err(e) => {
self.ensure_error_path(path, &packet, now);
return Err(e);
}
}
}
} else {
qdebug!(
[self],
"Received packet {} for untracked space {}",
space,
payload.pn()
);
return Err(Error::ProtocolViolation);
}
}
Err(e) => {
match e {
Error::KeysPending(cspace) => {
// This packet can't be decrypted because we don't have the keys yet.
// Don't check this packet for a stateless reset, just return.
let remaining = slc.len();
self.save_datagram(cspace, d, remaining, now);
return Ok(());
}
Error::KeysExhausted => {
// Exhausting read keys is fatal.
return Err(e);
}
Error::KeysDiscarded(cspace) => {
// This was a valid-appearing Initial packet: maybe probe with
// a Handshake packet to keep the handshake moving.
self.received_untracked |=
self.role == Role::Client && cspace == CryptoSpace::Initial;
}
_ => (),
}
// Decryption failure, or not having keys is not fatal.
// If the state isn't available, or we can't decrypt the packet, drop
// the rest of the datagram on the floor, but don't generate an error.
self.check_stateless_reset(path, &d, dcid.is_none(), now)?;
self.stats.borrow_mut().pkt_dropped("Decryption failure");
qlog::packet_dropped(&self.qlog, &packet, now);
}
}
slc = remainder;
dcid = Some(ConnectionId::from(packet.dcid()));
}
self.check_stateless_reset(path, &d, dcid.is_none(), now)?;
Ok(())
}
/// Process a packet. Returns true if the packet might initiate migration.
fn process_packet(
&mut self,
path: &PathRef,
packet: &DecryptedPacket,
now: Instant,
) -> Res<bool> {
(!packet.is_empty())
.then_some(())
.ok_or(Error::ProtocolViolation)?;
// TODO(ekr@rtfm.com): Have the server blow away the initial
// crypto state if this fails? Otherwise, we will get a panic
// on the assert for doesn't exist.
// OK, we have a valid packet.
// Get the next packet number we'll send, for ACK verification.
// TODO: Once PR #2118 lands, this can move to `input_frame`. For now, it needs to be here,
// because we can drop packet number spaces as we parse throught the packet, and if an ACK
// frame follows a CRYPTO frame that makes us drop a space, we need to know this
// packet number to verify the ACK against.
let next_pn = self
.crypto
.states
.select_tx(self.version, PacketNumberSpace::from(packet.packet_type()))
.map_or(0, |(_, tx)| tx.next_pn());
let mut ack_eliciting = false;
let mut probing = true;
let mut d = Decoder::from(&packet[..]);
while d.remaining() > 0 {
#[cfg(feature = "build-fuzzing-corpus")]
let pos = d.offset();
let f = Frame::decode(&mut d)?;
#[cfg(feature = "build-fuzzing-corpus")]
neqo_common::write_item_to_fuzzing_corpus("frame", &packet[pos..d.offset()]);
ack_eliciting |= f.ack_eliciting();
probing &= f.path_probing();
let t = f.get_type();
if let Err(e) = self.input_frame(
path,
packet.version(),
packet.packet_type(),
f,
next_pn,
now,
) {
self.capture_error(Some(Rc::clone(path)), now, t, Err(e))?;
}
}
let largest_received = if let Some(space) = self
.acks
.get_mut(PacketNumberSpace::from(packet.packet_type()))
{
space.set_received(now, packet.pn(), ack_eliciting)
} else {
qdebug!(
[self],
"processed a {:?} packet without tracking it",
packet.packet_type(),
);
// This was a valid packet that caused the same packet number to be
// discarded. This happens when the client discards the Initial packet
// number space after receiving the ServerHello. Remember this so
// that we guarantee that we send a Handshake packet.
self.received_untracked = true;
// We don't migrate during the handshake, so return false.
false
};
Ok(largest_received && !probing)
}
/// During connection setup, the first path needs to be setup.
/// This uses the connection IDs that were provided during the handshake
/// to setup that path.
fn setup_handshake_path(&mut self, path: &PathRef, now: Instant) {
self.paths.make_permanent(
path,
Some(self.local_initial_source_cid.clone()),
// Ideally we know what the peer wants us to use for the remote CID.
// But we will use our own guess if necessary.
ConnectionIdEntry::initial_remote(
self.remote_initial_source_cid
.as_ref()
.or(self.original_destination_cid.as_ref())
.unwrap()
.clone(),
),
now,
);
if self.role == Role::Client {
path.borrow_mut().set_valid(now);
}
}
/// If the path isn't permanent, assign it a connection ID to make it so.
fn ensure_permanent(&mut self, path: &PathRef, now: Instant) -> Res<()> {
if self.paths.is_temporary(path) {
// If there isn't a connection ID to use for this path, the packet
// will be processed, but it won't be attributed to a path. That means
// no path probes or PATH_RESPONSE. But it's not fatal.
if let Some(cid) = self.connection_ids.next() {
self.paths.make_permanent(path, None, cid, now);
Ok(())
} else if let Some(primary) = self.paths.primary() {
if primary
.borrow()
.remote_cid()
.map_or(true, |id| id.is_empty())
{
self.paths
.make_permanent(path, None, ConnectionIdEntry::empty_remote(), now);
Ok(())
} else {
qtrace!([self], "Unable to make path permanent: {}", path.borrow());
Err(Error::InvalidMigration)
}
} else {
qtrace!([self], "Unable to make path permanent: {}", path.borrow());
Err(Error::InvalidMigration)
}
} else {
Ok(())
}
}
/// After an error, a permanent path is needed to send the `CONNECTION_CLOSE`.
/// This attempts to ensure that this exists. As the connection is now
/// temporary, there is no reason to do anything special here.
fn ensure_error_path(&mut self, path: &PathRef, packet: &PublicPacket, now: Instant) {
path.borrow_mut().set_valid(now);
if self.paths.is_temporary(path) {
// First try to fill in handshake details.
if packet.packet_type() == PacketType::Initial {
self.remote_initial_source_cid = Some(ConnectionId::from(packet.scid()));
self.setup_handshake_path(path, now);
} else {
// Otherwise try to get a usable connection ID.
mem::drop(self.ensure_permanent(path, now));
}
}
}
fn start_handshake(&mut self, path: &PathRef, packet: &PublicPacket, now: Instant) {
qtrace!([self], "starting handshake");
debug_assert_eq!(packet.packet_type(), PacketType::Initial);
self.remote_initial_source_cid = Some(ConnectionId::from(packet.scid()));
let got_version = if self.role == Role::Server {
self.cid_manager
.add_odcid(self.original_destination_cid.as_ref().unwrap().clone());
// Make a path on which to run the handshake.
self.setup_handshake_path(path, now);
self.zero_rtt_state = if self.crypto.enable_0rtt(self.version, self.role) == Ok(true) {
qdebug!([self], "Accepted 0-RTT");
ZeroRttState::AcceptedServer
} else {
qtrace!([self], "Rejected 0-RTT");
ZeroRttState::Rejected
};
// The server knows the final version if it has remote transport parameters.
self.tps.borrow().remote.is_some()
} else {
qdebug!([self], "Changing to use Server CID={}", packet.scid());
debug_assert!(path.borrow().is_primary());
path.borrow_mut().set_remote_cid(packet.scid());
// The client knows the final version if it processed a CRYPTO frame.
self.stats.borrow().frame_rx.crypto > 0
};
if got_version {
self.set_state(State::Handshaking, now);
} else {
self.set_state(State::WaitVersion, now);
}
}
/// Migrate to the provided path.
/// Either local or remote address (but not both) may be provided as `None` to have
/// the address from the current primary path used.
/// If `force` is true, then migration is immediate.
/// Otherwise, migration occurs after the path is probed successfully.
/// Either way, the path is probed and will be abandoned if the probe fails.
///
/// # Errors
///
/// Fails if this is not a client, not confirmed, the peer disabled connection migration, or
/// there are not enough connection IDs available to use.
pub fn migrate(
&mut self,
local: Option<SocketAddr>,
remote: Option<SocketAddr>,
force: bool,
now: Instant,
) -> Res<()> {
if self.role != Role::Client {
return Err(Error::InvalidMigration);
}
if !matches!(self.state(), State::Confirmed) {
return Err(Error::InvalidMigration);
}
if self
.tps
.borrow()
.remote()
.get_empty(tparams::DISABLE_MIGRATION)
{
return Err(Error::InvalidMigration);
}
// Fill in the blanks, using the current primary path.
if local.is_none() && remote.is_none() {
// Pointless migration is pointless.
return Err(Error::InvalidMigration);
}
let path = self.paths.primary().ok_or(Error::InvalidMigration)?;
let local = local.unwrap_or_else(|| path.borrow().local_address());
let remote = remote.unwrap_or_else(|| path.borrow().remote_address());
if mem::discriminant(&local.ip()) != mem::discriminant(&remote.ip()) {
// Can't mix address families.
return Err(Error::InvalidMigration);
}
if local.port() == 0 || remote.ip().is_unspecified() || remote.port() == 0 {
// All but the local address need to be specified.
return Err(Error::InvalidMigration);
}
if (local.ip().is_loopback() ^ remote.ip().is_loopback()) && !local.ip().is_unspecified() {
// Block attempts to migrate to a path with loopback on only one end, unless the local
// address is unspecified.
return Err(Error::InvalidMigration);
}
let path = self.paths.find_path(
local,
remote,
self.conn_params.get_cc_algorithm(),
self.conn_params.pacing_enabled(),
now,
);
self.ensure_permanent(&path, now)?;
qinfo!(
[self],
"Migrate to {} probe {}",
path.borrow(),
if force { "now" } else { "after" }
);
if self
.paths
.migrate(&path, force, now, &mut self.stats.borrow_mut())
{
self.loss_recovery.migrate();
}
Ok(())
}
fn migrate_to_preferred_address(&mut self, now: Instant) -> Res<()> {
let spa: Option<(tparams::PreferredAddress, ConnectionIdEntry<[u8; 16]>)> = if matches!(
self.conn_params.get_preferred_address(),
PreferredAddressConfig::Disabled
) {
qdebug!([self], "Preferred address is disabled");
None
} else {
self.tps.borrow_mut().remote().get_preferred_address()
};
if let Some((addr, cid)) = spa {
// The connection ID isn't special, so just save it.
self.connection_ids.add_remote(cid)?;
// The preferred address doesn't dictate what the local address is, so this
// has to use the existing address. So only pay attention to a preferred
// address from the same family as is currently in use. More thought will
// be needed to work out how to get addresses from a different family.
let prev = self
.paths
.primary()
.ok_or(Error::NoAvailablePath)?
.borrow()
.remote_address();
let remote = match prev.ip() {
IpAddr::V4(_) => addr.ipv4().map(SocketAddr::V4),
IpAddr::V6(_) => addr.ipv6().map(SocketAddr::V6),
};
if let Some(remote) = remote {
// Ignore preferred address that move to loopback from non-loopback.
// `migrate` doesn't enforce this rule.
if !prev.ip().is_loopback() && remote.ip().is_loopback() {
qwarn!([self], "Ignoring a move to a loopback address: {}", remote);
return Ok(());
}
if self.migrate(None, Some(remote), false, now).is_err() {
qwarn!([self], "Ignoring bad preferred address: {}", remote);
}
} else {
qwarn!([self], "Unable to migrate to a different address family");
}
} else {
qdebug!([self], "No preferred address to migrate to");
}
Ok(())
}
fn handle_migration(
&mut self,
path: &PathRef,
d: &Datagram<impl AsRef<[u8]>>,
migrate: bool,
now: Instant,
) {
if !migrate {
return;
}
if self.role == Role::Client {
return;
}
if self.ensure_permanent(path, now).is_ok() {
self.paths
.handle_migration(path, d.source(), now, &mut self.stats.borrow_mut());
} else {
qinfo!(
[self],
"{} Peer migrated, but no connection ID available",
path.borrow()
);
}
}
fn output(&mut self, now: Instant) -> SendOption {
qtrace!([self], "output {:?}", now);
let res = match &self.state {
State::Init
| State::WaitInitial
| State::WaitVersion
| State::Handshaking
| State::Connected
| State::Confirmed => self.paths.select_path().map_or_else(
|| Ok(SendOption::default()),
|path| {
let res = self.output_path(&path, now, None);
self.capture_error(Some(path), now, 0, res)
},
),
State::Closing { .. } | State::Draining { .. } | State::Closed(_) => {
self.state_signaling.close_frame().map_or_else(
|| Ok(SendOption::default()),
|details| {
let path = Rc::clone(details.path());
// In some error cases, we will not be able to make a new, permanent path.
// For example, if we run out of connection IDs and the error results from
// a packet on a new path, we avoid sending (and the privacy risk) rather
// than reuse a connection ID.
let res = if path.borrow().is_temporary() {
qerror!([self], "Attempting to close with a temporary path");
Err(Error::InternalError)
} else {
self.output_path(&path, now, Some(&details))
};
self.capture_error(Some(path), now, 0, res)
},
)
}
};
res.unwrap_or_default()
}
fn build_packet_header(
path: &Path,
cspace: CryptoSpace,
encoder: Encoder,
tx: &CryptoDxState,
address_validation: &AddressValidationInfo,
version: Version,
grease_quic_bit: bool,
) -> (PacketType, PacketBuilder) {
let pt = PacketType::from(cspace);
let mut builder = if pt == PacketType::Short {
qdebug!("Building Short dcid {:?}", path.remote_cid());
PacketBuilder::short(encoder, tx.key_phase(), path.remote_cid())
} else {
qdebug!(
"Building {:?} dcid {:?} scid {:?}",
pt,
path.remote_cid(),
path.local_cid(),
);
PacketBuilder::long(encoder, pt, version, path.remote_cid(), path.local_cid())
};
if builder.remaining() > 0 {
builder.scramble(grease_quic_bit);
if pt == PacketType::Initial {
builder.initial_token(address_validation.token());
}
}
(pt, builder)
}
#[must_use]
fn add_packet_number(
builder: &mut PacketBuilder,
tx: &CryptoDxState,
largest_acknowledged: Option<PacketNumber>,
) -> PacketNumber {
// Get the packet number and work out how long it is.
let pn = tx.next_pn();
let unacked_range = largest_acknowledged.map_or_else(|| pn + 1, |la| (pn - la) << 1);
// Count how many bytes in this range are non-zero.
let pn_len = mem::size_of::<PacketNumber>()
- usize::try_from(unacked_range.leading_zeros() / 8).unwrap();
assert!(
pn_len > 0,
"pn_len can't be zero as unacked_range should be > 0, pn {pn}, largest_acknowledged {largest_acknowledged:?}, tx {tx}"
);
// TODO(mt) also use `4*path CWND/path MTU` to set a minimum length.
builder.pn(pn, pn_len);
pn
}
fn can_grease_quic_bit(&self) -> bool {
let tph = self.tps.borrow();
if let Some(r) = &tph.remote {
r.get_empty(tparams::GREASE_QUIC_BIT)
} else if let Some(r) = &tph.remote_0rtt {
r.get_empty(tparams::GREASE_QUIC_BIT)
} else {
false
}
}
/// Write the frames that are exchanged in the application data space.
/// The order of calls here determines the relative priority of frames.
fn write_appdata_frames(
&mut self,
builder: &mut PacketBuilder,
tokens: &mut Vec<RecoveryToken>,
) {
let stats = &mut self.stats.borrow_mut();
let frame_stats = &mut stats.frame_tx;
if self.role == Role::Server {
if let Some(t) = self.state_signaling.write_done(builder) {
tokens.push(t);
frame_stats.handshake_done += 1;
}
}
for prio in [
TransmissionPriority::Critical,
TransmissionPriority::Important,
] {
self.streams
.write_frames(prio, builder, tokens, frame_stats);
if builder.is_full() {
return;
}
}
// NEW_CONNECTION_ID, RETIRE_CONNECTION_ID, and ACK_FREQUENCY.
self.cid_manager.write_frames(builder, tokens, frame_stats);
if builder.is_full() {
return;
}
self.paths.write_frames(builder, tokens, frame_stats);
if builder.is_full() {
return;
}
for prio in [TransmissionPriority::High, TransmissionPriority::Normal] {
self.streams
.write_frames(prio, builder, tokens, &mut stats.frame_tx);
if builder.is_full() {
return;
}
}
// Datagrams are best-effort and unreliable. Let streams starve them for now.
self.quic_datagrams.write_frames(builder, tokens, stats);
if builder.is_full() {
return;
}
// CRYPTO here only includes NewSessionTicket, plus NEW_TOKEN.
// Both of these are only used for resumption and so can be relatively low priority.
let frame_stats = &mut stats.frame_tx;
self.crypto.write_frame(
PacketNumberSpace::ApplicationData,
builder,
tokens,
frame_stats,
);
if builder.is_full() {
return;
}
self.new_token.write_frames(builder, tokens, frame_stats);
if builder.is_full() {
return;
}
self.streams
.write_frames(TransmissionPriority::Low, builder, tokens, frame_stats);
#[cfg(test)]
if let Some(w) = &mut self.test_frame_writer {
w.write_frames(builder);
}
}
// Maybe send a probe. Return true if the packet was ack-eliciting.
fn maybe_probe(
&mut self,
path: &PathRef,
force_probe: bool,
builder: &mut PacketBuilder,
ack_end: usize,
tokens: &mut Vec<RecoveryToken>,
now: Instant,
) -> bool {
let untracked = self.received_untracked && !self.state.connected();
self.received_untracked = false;
// Anything written after an ACK already elicits acknowledgment.
// If we need to probe and nothing has been written, send a PING.
if builder.len() > ack_end {
return true;
}
let probe = if untracked && builder.packet_empty() || force_probe {
// If we received an untracked packet and we aren't probing already
// or the PTO timer fired: probe.
true
} else {
let pto = path.borrow().rtt().pto(self.confirmed());
if !builder.packet_empty() {
// The packet only contains an ACK. Check whether we want to
// force an ACK with a PING so we can stop tracking packets.
self.loss_recovery.should_probe(pto, now)
} else if self.streams.need_keep_alive() {
// We need to keep the connection alive, including sending
// a PING again.
self.idle_timeout.send_keep_alive(now, pto, tokens)
} else {
false
}
};
if probe {
// Nothing ack-eliciting and we need to probe; send PING.
debug_assert_ne!(builder.remaining(), 0);
builder.encode_varint(crate::frame::FRAME_TYPE_PING);
let stats = &mut self.stats.borrow_mut().frame_tx;
stats.ping += 1;
}
probe
}
/// Write frames to the provided builder. Returns a list of tokens used for
/// tracking loss or acknowledgment, whether any frame was ACK eliciting, and
/// whether the packet was padded.
fn write_frames(
&mut self,
path: &PathRef,
space: PacketNumberSpace,
profile: &SendProfile,
builder: &mut PacketBuilder,
coalesced: bool, // Whether this packet is coalesced behind another one.
now: Instant,
) -> (Vec<RecoveryToken>, bool, bool) {
let mut tokens = Vec::new();
let primary = path.borrow().is_primary();
let mut ack_eliciting = false;
if primary {
let stats = &mut self.stats.borrow_mut().frame_tx;
self.acks.write_frame(
space,
now,
path.borrow().rtt().estimate(),
builder,
&mut tokens,
stats,
);
}
let ack_end = builder.len();
// Avoid sending path validation probes until the handshake completes,
// but send them even when we don't have space.
let full_mtu = profile.limit() == path.borrow().plpmtu();
if space == PacketNumberSpace::ApplicationData && self.state.connected() {
// Path validation probes should only be padded if the full MTU is available.
// The probing code needs to know so it can track that.
if path.borrow_mut().write_frames(
builder,
&mut self.stats.borrow_mut().frame_tx,
full_mtu,
now,
) {
builder.enable_padding(true);
}
}
if profile.ack_only(space) {
// If we are CC limited we can only send acks!
return (tokens, false, false);
}
if primary {
if space == PacketNumberSpace::ApplicationData {
if self.state.connected()
&& path.borrow().pmtud().needs_probe()
&& !coalesced // Only send PMTUD probes using non-coalesced packets.
&& full_mtu
{
path.borrow_mut()
.pmtud_mut()
.send_probe(builder, &mut self.stats.borrow_mut());
ack_eliciting = true;
}
self.write_appdata_frames(builder, &mut tokens);
} else {
let stats = &mut self.stats.borrow_mut().frame_tx;
self.crypto.write_frame(space, builder, &mut tokens, stats);
}
}
// Maybe send a probe now, either to probe for losses or to keep the connection live.
let force_probe = profile.should_probe(space);
ack_eliciting |= self.maybe_probe(path, force_probe, builder, ack_end, &mut tokens, now);
// If this is not the primary path, this should be ack-eliciting.
debug_assert!(primary || ack_eliciting);
// Add padding. Only pad 1-RTT packets so that we don't prevent coalescing.
// And avoid padding packets that otherwise only contain ACK because adding PADDING
// causes those packets to consume congestion window, which is not tracked (yet).
// And avoid padding if we don't have a full MTU available.
let stats = &mut self.stats.borrow_mut().frame_tx;
let padded = if ack_eliciting && full_mtu && builder.pad() {
stats.padding += 1;
true
} else {
false
};
(tokens, ack_eliciting, padded)
}
fn write_closing_frames(
&mut self,
close: &ClosingFrame,
builder: &mut PacketBuilder,
space: PacketNumberSpace,
now: Instant,
path: &PathRef,
tokens: &mut Vec<RecoveryToken>,
) {
if builder.remaining() > ClosingFrame::MIN_LENGTH + RecvdPackets::USEFUL_ACK_LEN {
// Include an ACK frame with the CONNECTION_CLOSE.
let limit = builder.limit();
builder.set_limit(limit - ClosingFrame::MIN_LENGTH);
self.acks.immediate_ack(space, now);
self.acks.write_frame(
space,
now,
path.borrow().rtt().estimate(),
builder,
tokens,
&mut self.stats.borrow_mut().frame_tx,
);
builder.set_limit(limit);
}
// CloseReason::Application is only allowed at 1RTT.
let sanitized = if space == PacketNumberSpace::ApplicationData {
None
} else {
close.sanitize()
};
sanitized.as_ref().unwrap_or(close).write_frame(builder);
self.stats.borrow_mut().frame_tx.connection_close += 1;
}
/// Build a datagram, possibly from multiple packets (for different PN
/// spaces) and each containing 1+ frames.
#[allow(clippy::too_many_lines)] // Yeah, that's just the way it is.
fn output_path(
&mut self,
path: &PathRef,
now: Instant,
closing_frame: Option<&ClosingFrame>,
) -> Res<SendOption> {
let mut initial_sent = None;
let mut needs_padding = false;
let grease_quic_bit = self.can_grease_quic_bit();
let version = self.version();
// Determine how we are sending packets (PTO, etc..).
let profile = self.loss_recovery.send_profile(&path.borrow(), now);
qdebug!([self], "output_path send_profile {:?}", profile);
// Frames for different epochs must go in different packets, but then these
// packets can go in a single datagram
let mut encoder = Encoder::with_capacity(profile.limit());
for space in PacketNumberSpace::iter() {
// Ensure we have tx crypto state for this epoch, or skip it.
let Some((cspace, tx)) = self.crypto.states.select_tx_mut(self.version, *space) else {
continue;
};
let header_start = encoder.len();
let (pt, mut builder) = Self::build_packet_header(
&path.borrow(),
cspace,
encoder,
tx,
&self.address_validation,
version,
grease_quic_bit,
);
let pn = Self::add_packet_number(
&mut builder,
tx,
self.loss_recovery.largest_acknowledged_pn(*space),
);
// The builder will set the limit to 0 if there isn't enough space for the header.
if builder.is_full() {
encoder = builder.abort();
break;
}
// Configure the limits and padding for this packet.
let aead_expansion = tx.expansion();
needs_padding |= builder.set_initial_limit(
&profile,
aead_expansion,
self.paths
.primary()
.ok_or(Error::InternalError)?
.borrow()
.pmtud(),
);
builder.enable_padding(needs_padding);
if builder.is_full() {
encoder = builder.abort();
break;
}
// Add frames to the packet.
let payload_start = builder.len();
let (mut tokens, mut ack_eliciting, mut padded) = (Vec::new(), false, false);
if let Some(close) = closing_frame {
self.write_closing_frames(close, &mut builder, *space, now, path, &mut tokens);
} else {
(tokens, ack_eliciting, padded) =
self.write_frames(path, *space, &profile, &mut builder, header_start != 0, now);
}
if builder.packet_empty() {
// Nothing to include in this packet.
encoder = builder.abort();
continue;
}
dump_packet(
self,
path,
"TX ->",
pt,
pn,
&builder.as_ref()[payload_start..],
path.borrow().tos(),
builder.len() + aead_expansion,
);
qlog::packet_sent(
&self.qlog,
pt,
pn,
builder.len() - header_start + aead_expansion,
&builder.as_ref()[payload_start..],
now,
);
self.stats.borrow_mut().packets_tx += 1;
let tx = self
.crypto
.states
.tx_mut(self.version, cspace)
.ok_or(Error::InternalError)?;
encoder = builder.build(tx)?;
self.crypto.states.auto_update()?;
if ack_eliciting {
self.idle_timeout.on_packet_sent(now);
}
let sent = SentPacket::new(
pt,
pn,
path.borrow().tos().into(),
now,
ack_eliciting,
tokens,
encoder.len() - header_start,
);
if padded {
needs_padding = false;
self.loss_recovery.on_packet_sent(path, sent, now);
} else if pt == PacketType::Initial && (self.role == Role::Client || ack_eliciting) {
// Packets containing Initial packets might need padding, and we want to
// track that padding along with the Initial packet. So defer tracking.
initial_sent = Some(sent);
needs_padding = true;
} else {
if pt == PacketType::Handshake && self.role == Role::Client {
needs_padding = false;
}
self.loss_recovery.on_packet_sent(path, sent, now);
}
if *space == PacketNumberSpace::Handshake
&& self.role == Role::Server
&& self.state == State::Confirmed
{
// We could discard handshake keys in set_state,
// but wait until after sending an ACK.
self.discard_keys(PacketNumberSpace::Handshake, now);
}
}
if encoder.is_empty() {
qdebug!("TX blocked, profile={:?}", profile);
Ok(SendOption::No(profile.paced()))
} else {
// Perform additional padding for Initial packets as necessary.
let mut packets: Vec<u8> = encoder.into();
if let Some(mut initial) = initial_sent.take() {
if needs_padding {
qdebug!(
[self],
"pad Initial from {} to PLPMTU {}",
packets.len(),
profile.limit()
);
initial.track_padding(profile.limit() - packets.len());
// These zeros aren't padding frames, they are an invalid all-zero coalesced
// packet, which is why we don't increase `frame_tx.padding` count here.
packets.resize(profile.limit(), 0);
}
self.loss_recovery.on_packet_sent(path, initial, now);
}
path.borrow_mut().add_sent(packets.len());
Ok(SendOption::Yes(
path.borrow_mut()
.datagram(packets, &mut self.stats.borrow_mut()),
))
}
}
/// # Errors
/// When connection state is not valid.
pub fn initiate_key_update(&mut self) -> Res<()> {
if self.state == State::Confirmed {
let la = self
.loss_recovery
.largest_acknowledged_pn(PacketNumberSpace::ApplicationData);
qinfo!([self], "Initiating key update");
self.crypto.states.initiate_key_update(la)
} else {
Err(Error::KeyUpdateBlocked)
}
}
#[cfg(test)]
#[must_use]
pub fn get_epochs(&self) -> (Option<usize>, Option<usize>) {
self.crypto.states.get_epochs()
}
fn client_start(&mut self, now: Instant) -> Res<()> {
qdebug!([self], "client_start");
debug_assert_eq!(self.role, Role::Client);
if let Some(path) = self.paths.primary() {
qlog::client_connection_started(&self.qlog, &path, now);
}
qlog::client_version_information_initiated(
&self.qlog,
self.conn_params.get_versions(),
now,
);
self.handshake(now, self.version, PacketNumberSpace::Initial, None)?;
self.set_state(State::WaitInitial, now);
self.zero_rtt_state = if self.crypto.enable_0rtt(self.version, self.role)? {
qdebug!([self], "Enabled 0-RTT");
ZeroRttState::Sending
} else {
ZeroRttState::Init
};
Ok(())
}
fn get_closing_period_time(&self, now: Instant) -> Instant {
// Spec says close time should be at least PTO times 3.
now + (self.pto() * 3)
}
/// Close the connection.
pub fn close(&mut self, now: Instant, app_error: AppError, msg: impl AsRef<str>) {
let error = CloseReason::Application(app_error);
let timeout = self.get_closing_period_time(now);
if let Some(path) = self.paths.primary() {
self.state_signaling.close(path, error.clone(), 0, msg);
self.set_state(State::Closing { error, timeout }, now);
} else {
self.set_state(State::Closed(error), now);
}
}
fn set_initial_limits(&mut self) {
self.streams.set_initial_limits();
let peer_timeout = self
.tps
.borrow()
.remote()
.get_integer(tparams::IDLE_TIMEOUT);
if peer_timeout > 0 {
self.idle_timeout
.set_peer_timeout(Duration::from_millis(peer_timeout));
}
self.quic_datagrams.set_remote_datagram_size(
self.tps
.borrow()
.remote()
.get_integer(tparams::MAX_DATAGRAM_FRAME_SIZE),
);
}
#[must_use]
pub fn is_stream_id_allowed(&self, stream_id: StreamId) -> bool {
self.streams.is_stream_id_allowed(stream_id)
}
/// Process the final set of transport parameters.
fn process_tps(&mut self, now: Instant) -> Res<()> {
self.validate_cids()?;
self.validate_versions()?;
{
let tps = self.tps.borrow();
let remote = tps.remote.as_ref().ok_or(Error::TransportParameterError)?;
// If the peer provided a preferred address, then we have to be a client
// and they have to be using a non-empty connection ID.
if remote.get_preferred_address().is_some()
&& (self.role == Role::Server
|| self
.remote_initial_source_cid
.as_ref()
.ok_or(Error::UnknownConnectionId)?
.is_empty())
{
return Err(Error::TransportParameterError);
}
let reset_token = remote
.get_bytes(tparams::STATELESS_RESET_TOKEN)
.map_or_else(ConnectionIdEntry::random_srt, |token| {
<[u8; 16]>::try_from(token).unwrap()
});
let path = self.paths.primary().ok_or(Error::NoAvailablePath)?;
path.borrow_mut().set_reset_token(reset_token);
let max_ad = Duration::from_millis(remote.get_integer(tparams::MAX_ACK_DELAY));
let min_ad = if remote.has_value(tparams::MIN_ACK_DELAY) {
let min_ad = Duration::from_micros(remote.get_integer(tparams::MIN_ACK_DELAY));
if min_ad > max_ad {
return Err(Error::TransportParameterError);
}
Some(min_ad)
} else {
None
};
path.borrow_mut()
.set_ack_delay(max_ad, min_ad, self.conn_params.get_ack_ratio());
let max_active_cids = remote.get_integer(tparams::ACTIVE_CONNECTION_ID_LIMIT);
self.cid_manager.set_limit(max_active_cids);
}
self.set_initial_limits();
qlog::connection_tparams_set(&self.qlog, &self.tps.borrow(), now);
Ok(())
}
fn validate_cids(&self) -> Res<()> {
let tph = self.tps.borrow();
let remote_tps = tph.remote.as_ref().ok_or(Error::TransportParameterError)?;
let tp = remote_tps.get_bytes(tparams::INITIAL_SOURCE_CONNECTION_ID);
if self
.remote_initial_source_cid
.as_ref()
.map(ConnectionId::as_cid_ref)
!= tp.map(ConnectionIdRef::from)
{
qwarn!(
[self],
"ISCID test failed: self cid {:?} != tp cid {:?}",
self.remote_initial_source_cid,
tp.map(hex),
);
return Err(Error::ProtocolViolation);
}
if self.role == Role::Client {
let tp = remote_tps.get_bytes(tparams::ORIGINAL_DESTINATION_CONNECTION_ID);
if self
.original_destination_cid
.as_ref()
.map(ConnectionId::as_cid_ref)
!= tp.map(ConnectionIdRef::from)
{
qwarn!(
[self],
"ODCID test failed: self cid {:?} != tp cid {:?}",
self.original_destination_cid,
tp.map(hex),
);
return Err(Error::ProtocolViolation);
}
let tp = remote_tps.get_bytes(tparams::RETRY_SOURCE_CONNECTION_ID);
let expected = if let AddressValidationInfo::Retry {
retry_source_cid, ..
} = &self.address_validation
{
Some(retry_source_cid.as_cid_ref())
} else {
None
};
if expected != tp.map(ConnectionIdRef::from) {
qwarn!(
[self],
"RSCID test failed. self cid {:?} != tp cid {:?}",
expected,
tp.map(hex),
);
return Err(Error::ProtocolViolation);
}
}
Ok(())
}
/// Validate the `version_negotiation` transport parameter from the peer.
fn validate_versions(&self) -> Res<()> {
let tph = self.tps.borrow();
let remote_tps = tph.remote.as_ref().ok_or(Error::TransportParameterError)?;
// `current` and `other` are the value from the peer's transport parameters.
// We're checking that these match our expectations.
if let Some((current, other)) = remote_tps.get_versions() {
qtrace!(
[self],
"validate_versions: current={:x} chosen={:x} other={:x?}",
self.version.wire_version(),
current,
other,
);
if self.role == Role::Server {
// 1. A server acts on transport parameters, with validation
// of `current` happening in the transport parameter handler.
// All we need to do is confirm that the transport parameter
// was provided.
Ok(())
} else if self.version().wire_version() != current {
qinfo!([self], "validate_versions: current version mismatch");
Err(Error::VersionNegotiation)
} else if self
.conn_params
.get_versions()
.initial()
.is_compatible(self.version)
{
// 2. The current version is compatible with what we attempted.
// That's a compatible upgrade and that's OK.
Ok(())
} else {
// 3. The initial version we attempted isn't compatible. Check that
// the one we would have chosen is compatible with this one.
let mut all_versions = other.to_owned();
all_versions.push(current);
if self
.conn_params
.get_versions()
.preferred(&all_versions)
.ok_or(Error::VersionNegotiation)?
.is_compatible(self.version)
{
Ok(())
} else {
qinfo!([self], "validate_versions: failed");
Err(Error::VersionNegotiation)
}
}
} else if self.version != Version::Version1 && !self.version.is_draft() {
qinfo!([self], "validate_versions: missing extension");
Err(Error::VersionNegotiation)
} else {
Ok(())
}
}
fn confirm_version(&mut self, v: Version) {
if self.version != v {
qdebug!([self], "Compatible upgrade {:?} ==> {:?}", self.version, v);
}
self.crypto.confirm_version(v);
self.version = v;
}
fn compatible_upgrade(&mut self, packet_version: Version) -> Res<()> {
if !matches!(self.state, State::WaitInitial | State::WaitVersion) {
return Ok(());
}
if self.role == Role::Client {
self.confirm_version(packet_version);
} else if self.tps.borrow().remote.is_some() {
let version = self.tps.borrow().version();
let dcid = self
.original_destination_cid
.as_ref()
.ok_or(Error::ProtocolViolation)?;
self.crypto.states.init_server(version, dcid)?;
self.confirm_version(version);
}
Ok(())
}
fn handshake(
&mut self,
now: Instant,
packet_version: Version,
space: PacketNumberSpace,
data: Option<&[u8]>,
) -> Res<()> {
qtrace!([self], "Handshake space={} data={:0x?}", space, data);
let was_authentication_pending =
*self.crypto.tls.state() == HandshakeState::AuthenticationPending;
let try_update = data.is_some();
match self.crypto.handshake(now, space, data)? {
HandshakeState::Authenticated(_) | HandshakeState::InProgress => (),
HandshakeState::AuthenticationPending => {
if !was_authentication_pending {
self.events.authentication_needed();
}
}
HandshakeState::EchFallbackAuthenticationPending(public_name) => self
.events
.ech_fallback_authentication_needed(public_name.clone()),
HandshakeState::Complete(_) => {
if !self.state.connected() {
self.set_connected(now)?;
}
}
_ => {
qerror!("Crypto state should not be new or failed after successful handshake");
return Err(Error::CryptoError(neqo_crypto::Error::InternalError));
}
}
// There is a chance that this could be called less often, but getting the
// conditions right is a little tricky, so call whenever CRYPTO data is used.
if try_update {
self.compatible_upgrade(packet_version)?;
// We have transport parameters, it's go time.
if self.tps.borrow().remote.is_some() {
self.set_initial_limits();
}
if self.crypto.install_keys(self.role)? {
if self.role == Role::Client {
// We won't acknowledge Initial packets as a result of this, but the
// server can rely on implicit acknowledgment.
self.discard_keys(PacketNumberSpace::Initial, now);
}
self.saved_datagrams.make_available(CryptoSpace::Handshake);
}
}
Ok(())
}
fn set_confirmed(&mut self, now: Instant) -> Res<()> {
self.set_state(State::Confirmed, now);
if self.conn_params.pmtud_enabled() {
self.paths
.primary()
.ok_or(Error::InternalError)?
.borrow_mut()
.pmtud_mut()
.start();
}
Ok(())
}
#[allow(clippy::too_many_lines)] // Yep, but it's a nice big match, which is basically lots of little functions.
fn input_frame(
&mut self,
path: &PathRef,
packet_version: Version,
packet_type: PacketType,
frame: Frame,
next_pn: PacketNumber,
now: Instant,
) -> Res<()> {
if !frame.is_allowed(packet_type) {
qinfo!("frame not allowed: {:?} {:?}", frame, packet_type);
return Err(Error::ProtocolViolation);
}
let space = PacketNumberSpace::from(packet_type);
if frame.is_stream() {
return self
.streams
.input_frame(&frame, &mut self.stats.borrow_mut().frame_rx);
}
match frame {
Frame::Padding(length) => {
self.stats.borrow_mut().frame_rx.padding += usize::from(length);
}
Frame::Ping => {
// If we get a PING and there are outstanding CRYPTO frames,
// prepare to resend them.
self.stats.borrow_mut().frame_rx.ping += 1;
self.crypto.resend_unacked(space);
// Send an ACK immediately if we might not otherwise do so.
self.acks.immediate_ack(space, now);
}
Frame::Ack {
largest_acknowledged,
ack_delay,
first_ack_range,
ack_ranges,
ecn_count,
} => {
// Ensure that the largest acknowledged packet number was actually sent.
// (If we ever start using non-contiguous packet numbers, we need to check all the
// packet numbers in the ACKed ranges.)
if largest_acknowledged >= next_pn {
qwarn!("Largest ACKed {} was never sent", largest_acknowledged);
return Err(Error::AckedUnsentPacket);
}
let ranges =
Frame::decode_ack_frame(largest_acknowledged, first_ack_range, &ack_ranges)?;
self.handle_ack(space, ranges, ecn_count, ack_delay, now);
}
Frame::Crypto { offset, data } => {
qtrace!(
[self],
"Crypto frame on space={} offset={}, data={:0x?}",
space,
offset,
&data
);
self.stats.borrow_mut().frame_rx.crypto += 1;
self.crypto.streams.inbound_frame(space, offset, data)?;
if self.crypto.streams.data_ready(space) {
let mut buf = Vec::new();
let read = self.crypto.streams.read_to_end(space, &mut buf);
qdebug!("Read {:?} bytes", read);
self.handshake(now, packet_version, space, Some(&buf))?;
self.create_resumption_token(now);
} else {
// If we get a useless CRYPTO frame send outstanding CRYPTO frames and 0-RTT
// data again.
self.crypto.resend_unacked(space);
if space == PacketNumberSpace::Initial {
self.crypto.resend_unacked(PacketNumberSpace::Handshake);
self.resend_0rtt(now);
}
}
}
Frame::NewToken { token } => {
self.stats.borrow_mut().frame_rx.new_token += 1;
self.new_token.save_token(token.to_vec());
self.create_resumption_token(now);
}
Frame::NewConnectionId {
sequence_number,
connection_id,
stateless_reset_token,
retire_prior,
} => {
self.stats.borrow_mut().frame_rx.new_connection_id += 1;
self.connection_ids.add_remote(ConnectionIdEntry::new(
sequence_number,
ConnectionId::from(connection_id),
stateless_reset_token.to_owned(),
))?;
self.paths
.retire_cids(retire_prior, &mut self.connection_ids);
if self.connection_ids.len() >= LOCAL_ACTIVE_CID_LIMIT {
qinfo!([self], "received too many connection IDs");
return Err(Error::ConnectionIdLimitExceeded);
}
}
Frame::RetireConnectionId { sequence_number } => {
self.stats.borrow_mut().frame_rx.retire_connection_id += 1;
self.cid_manager.retire(sequence_number);
}
Frame::PathChallenge { data } => {
self.stats.borrow_mut().frame_rx.path_challenge += 1;
// If we were challenged, try to make the path permanent.
// Report an error if we don't have enough connection IDs.
self.ensure_permanent(path, now)?;
path.borrow_mut().challenged(data);
}
Frame::PathResponse { data } => {
self.stats.borrow_mut().frame_rx.path_response += 1;
if self
.paths
.path_response(data, now, &mut self.stats.borrow_mut())
{
// This PATH_RESPONSE enabled migration; tell loss recovery.
self.loss_recovery.migrate();
}
}
Frame::ConnectionClose {
error_code,
frame_type,
reason_phrase,
} => {
self.stats.borrow_mut().frame_rx.connection_close += 1;
qinfo!(
[self],
"ConnectionClose received. Error code: {:?} frame type {:x} reason {}",
error_code,
frame_type,
reason_phrase
);
let (detail, frame_type) = if let CloseError::Application(_) = error_code {
// Use a transport error here because we want to send
// NO_ERROR in this case.
(
Error::PeerApplicationError(error_code.code()),
FRAME_TYPE_CONNECTION_CLOSE_APPLICATION,
)
} else {
(
Error::PeerError(error_code.code()),
FRAME_TYPE_CONNECTION_CLOSE_TRANSPORT,
)
};
let error = CloseReason::Transport(detail);
self.state_signaling
.drain(Rc::clone(path), error.clone(), frame_type, "");
self.set_state(
State::Draining {
error,
timeout: self.get_closing_period_time(now),
},
now,
);
}
Frame::HandshakeDone => {
self.stats.borrow_mut().frame_rx.handshake_done += 1;
if self.role == Role::Server || !self.state.connected() {
return Err(Error::ProtocolViolation);
}
self.set_confirmed(now)?;
self.discard_keys(PacketNumberSpace::Handshake, now);
self.migrate_to_preferred_address(now)?;
}
Frame::AckFrequency {
seqno,
tolerance,
delay,
ignore_order,
} => {
self.stats.borrow_mut().frame_rx.ack_frequency += 1;
let delay = Duration::from_micros(delay);
if delay < GRANULARITY {
return Err(Error::ProtocolViolation);
}
self.acks
.ack_freq(seqno, tolerance - 1, delay, ignore_order);
}
Frame::Datagram { data, .. } => {
self.stats.borrow_mut().frame_rx.datagram += 1;
self.quic_datagrams
.handle_datagram(data, &mut self.stats.borrow_mut())?;
}
_ => unreachable!("All other frames are for streams"),
};
Ok(())
}
/// Given a set of `SentPacket` instances, ensure that the source of the packet
/// is told that they are lost. This gives the frame generation code a chance
/// to retransmit the frame as needed.
fn handle_lost_packets(&mut self, lost_packets: &[SentPacket]) {
for lost in lost_packets {
for token in lost.tokens() {
qdebug!([self], "Lost: {:?}", token);
match token {
RecoveryToken::Ack(ack_token) => {
// If we lost an ACK frame during the handshake, send another one.
if ack_token.space() != PacketNumberSpace::ApplicationData {
self.acks.immediate_ack(ack_token.space(), lost.time_sent());
}
}
RecoveryToken::Crypto(ct) => self.crypto.lost(ct),
RecoveryToken::HandshakeDone => self.state_signaling.handshake_done(),
RecoveryToken::NewToken(seqno) => self.new_token.lost(*seqno),
RecoveryToken::NewConnectionId(ncid) => self.cid_manager.lost(ncid),
RecoveryToken::RetireConnectionId(seqno) => self.paths.lost_retire_cid(*seqno),
RecoveryToken::AckFrequency(rate) => self.paths.lost_ack_frequency(rate),
RecoveryToken::KeepAlive => self.idle_timeout.lost_keep_alive(),
RecoveryToken::Stream(stream_token) => self.streams.lost(stream_token),
RecoveryToken::Datagram(dgram_tracker) => {
self.events
.datagram_outcome(dgram_tracker, OutgoingDatagramOutcome::Lost);
self.stats.borrow_mut().datagram_tx.lost += 1;
}
}
}
}
}
fn decode_ack_delay(&self, v: u64) -> Duration {
// If we have remote transport parameters, use them.
// Otherwise, ack delay should be zero (because it's the handshake).
self.tps.borrow().remote.as_ref().map_or_else(
|| Duration::new(0, 0),
|r| {
let exponent = u32::try_from(r.get_integer(tparams::ACK_DELAY_EXPONENT)).unwrap();
Duration::from_micros(v.checked_shl(exponent).unwrap_or(u64::MAX))
},
)
}
fn handle_ack<R>(
&mut self,
space: PacketNumberSpace,
ack_ranges: R,
ack_ecn: Option<EcnCount>,
ack_delay: u64,
now: Instant,
) where
R: IntoIterator<Item = RangeInclusive<PacketNumber>> + Debug,
R::IntoIter: ExactSizeIterator,
{
qdebug!([self], "Rx ACK space={}, ranges={:?}", space, ack_ranges);
let Some(path) = self.paths.primary() else {
return;
};
let (acked_packets, lost_packets) = self.loss_recovery.on_ack_received(
&path,
space,
ack_ranges,
ack_ecn,
self.decode_ack_delay(ack_delay),
now,
);
let largest_acknowledged = acked_packets.first().map(SentPacket::pn);
for acked in acked_packets {
for token in acked.tokens() {
match token {
RecoveryToken::Stream(stream_token) => self.streams.acked(stream_token),
RecoveryToken::Ack(at) => self.acks.acked(at),
RecoveryToken::Crypto(ct) => self.crypto.acked(ct),
RecoveryToken::NewToken(seqno) => self.new_token.acked(*seqno),
RecoveryToken::NewConnectionId(entry) => self.cid_manager.acked(entry),
RecoveryToken::RetireConnectionId(seqno) => self.paths.acked_retire_cid(*seqno),
RecoveryToken::AckFrequency(rate) => self.paths.acked_ack_frequency(rate),
RecoveryToken::KeepAlive => self.idle_timeout.ack_keep_alive(),
RecoveryToken::Datagram(dgram_tracker) => self
.events
.datagram_outcome(dgram_tracker, OutgoingDatagramOutcome::Acked),
// We only worry when these are lost
RecoveryToken::HandshakeDone => (),
}
}
}
self.handle_lost_packets(&lost_packets);
qlog::packets_lost(&self.qlog, &lost_packets, now);
let stats = &mut self.stats.borrow_mut().frame_rx;
stats.ack += 1;
if let Some(largest_acknowledged) = largest_acknowledged {
stats.largest_acknowledged = max(stats.largest_acknowledged, largest_acknowledged);
}
}
/// Tell 0-RTT packets that they were "lost".
fn resend_0rtt(&mut self, now: Instant) {
if let Some(path) = self.paths.primary() {
let dropped = self.loss_recovery.drop_0rtt(&path, now);
self.handle_lost_packets(&dropped);
}
}
/// When the server rejects 0-RTT we need to drop a bunch of stuff.
fn client_0rtt_rejected(&mut self, now: Instant) {
if !matches!(self.zero_rtt_state, ZeroRttState::Sending) {
return;
}
qdebug!([self], "0-RTT rejected");
self.resend_0rtt(now);
self.streams.zero_rtt_rejected();
self.crypto.states.discard_0rtt_keys();
self.events.client_0rtt_rejected();
}
fn set_connected(&mut self, now: Instant) -> Res<()> {
qdebug!([self], "TLS connection complete");
if self.crypto.tls.info().map(SecretAgentInfo::alpn).is_none() {
qwarn!([self], "No ALPN. Closing connection.");
// 120 = no_application_protocol
return Err(Error::CryptoAlert(120));
}
if self.role == Role::Server {
// Remove the randomized client CID from the list of acceptable CIDs.
self.cid_manager.remove_odcid();
// Mark the path as validated, if it isn't already.
let path = self.paths.primary().ok_or(Error::NoAvailablePath)?;
path.borrow_mut().set_valid(now);
// Generate a qlog event that the server connection started.
qlog::server_connection_started(&self.qlog, &path, now);
} else {
self.zero_rtt_state = if self
.crypto
.tls
.info()
.ok_or(Error::InternalError)?
.early_data_accepted()
{
ZeroRttState::AcceptedClient
} else {
self.client_0rtt_rejected(now);
ZeroRttState::Rejected
};
}
// Setting application keys has to occur after 0-RTT rejection.
let pto = self.pto();
self.crypto
.install_application_keys(self.version, now + pto)?;
self.process_tps(now)?;
self.set_state(State::Connected, now);
self.create_resumption_token(now);
self.saved_datagrams
.make_available(CryptoSpace::ApplicationData);
self.stats.borrow_mut().resumed = self
.crypto
.tls
.info()
.ok_or(Error::InternalError)?
.resumed();
if self.role == Role::Server {
self.state_signaling.handshake_done();
self.set_confirmed(now)?;
}
qinfo!([self], "Connection established");
Ok(())
}
fn set_state(&mut self, state: State, now: Instant) {
if state > self.state {
qdebug!([self], "State change from {:?} -> {:?}", self.state, state);
self.state = state.clone();
if self.state.closed() {
self.streams.clear_streams();
}
self.events.connection_state_change(state);
qlog::connection_state_updated(&self.qlog, &self.state, now);
} else if mem::discriminant(&state) != mem::discriminant(&self.state) {
// Only tolerate a regression in state if the new state is closing
// and the connection is already closed.
debug_assert!(matches!(
state,
State::Closing { .. } | State::Draining { .. }
));
debug_assert!(self.state.closed());
}
}
/// Create a stream.
/// Returns new stream id
///
/// # Errors
///
/// `ConnectionState` if the connecton stat does not allow to create streams.
/// `StreamLimitError` if we are limiied by server's stream concurence.
pub fn stream_create(&mut self, st: StreamType) -> Res<StreamId> {
// Can't make streams while closing, otherwise rely on the stream limits.
match self.state {
State::Closing { .. } | State::Draining { .. } | State::Closed { .. } => {
return Err(Error::ConnectionState);
}
State::WaitInitial | State::Handshaking => {
if self.role == Role::Client && self.zero_rtt_state != ZeroRttState::Sending {
return Err(Error::ConnectionState);
}
}
// In all other states, trust that the stream limits are correct.
_ => (),
}
self.streams.stream_create(st)
}
/// Set the priority of a stream.
///
/// # Errors
///
/// `InvalidStreamId` the stream does not exist.
pub fn stream_priority(
&mut self,
stream_id: StreamId,
transmission: TransmissionPriority,
retransmission: RetransmissionPriority,
) -> Res<()> {
self.streams
.get_send_stream_mut(stream_id)?
.set_priority(transmission, retransmission);
Ok(())
}
/// Set the `SendOrder` of a stream. Re-enqueues to keep the ordering correct
///
/// # Errors
/// When the stream does not exist.
pub fn stream_sendorder(
&mut self,
stream_id: StreamId,
sendorder: Option<SendOrder>,
) -> Res<()> {
self.streams.set_sendorder(stream_id, sendorder)
}
/// Set the Fairness of a stream
///
/// # Errors
/// When the stream does not exist.
pub fn stream_fairness(&mut self, stream_id: StreamId, fairness: bool) -> Res<()> {
self.streams.set_fairness(stream_id, fairness)
}
/// # Errors
/// When the stream does not exist.
pub fn send_stream_stats(&self, stream_id: StreamId) -> Res<SendStreamStats> {
self.streams
.get_send_stream(stream_id)
.map(SendStream::stats)
}
/// # Errors
/// When the stream does not exist.
pub fn recv_stream_stats(&mut self, stream_id: StreamId) -> Res<RecvStreamStats> {
let stream = self.streams.get_recv_stream_mut(stream_id)?;
Ok(stream.stats())
}
/// Send data on a stream.
/// Returns how many bytes were successfully sent. Could be less
/// than total, based on receiver credit space available, etc.
///
/// # Errors
///
/// `InvalidStreamId` the stream does not exist,
/// `InvalidInput` if length of `data` is zero,
/// `FinalSizeError` if the stream has already been closed.
pub fn stream_send(&mut self, stream_id: StreamId, data: &[u8]) -> Res<usize> {
self.streams.get_send_stream_mut(stream_id)?.send(data)
}
/// Send all data or nothing on a stream. May cause `DATA_BLOCKED` or
/// `STREAM_DATA_BLOCKED` frames to be sent.
/// Returns true if data was successfully sent, otherwise false.
///
/// # Errors
///
/// `InvalidStreamId` the stream does not exist,
/// `InvalidInput` if length of `data` is zero,
/// `FinalSizeError` if the stream has already been closed.
pub fn stream_send_atomic(&mut self, stream_id: StreamId, data: &[u8]) -> Res<bool> {
let val = self
.streams
.get_send_stream_mut(stream_id)?
.send_atomic(data);
if let Ok(val) = val {
debug_assert!(
val == 0 || val == data.len(),
"Unexpected value {} when trying to send {} bytes atomically",
val,
data.len()
);
}
val.map(|v| v == data.len())
}
/// Bytes that `stream_send()` is guaranteed to accept for sending.
/// i.e. that will not be blocked by flow credits or send buffer max
/// capacity.
/// # Errors
/// When the stream ID is invalid.
pub fn stream_avail_send_space(&self, stream_id: StreamId) -> Res<usize> {
Ok(self.streams.get_send_stream(stream_id)?.avail())
}
/// Set low watermark for [`ConnectionEvent::SendStreamWritable`] event.
///
/// Stream emits a [`crate::ConnectionEvent::SendStreamWritable`] event
/// when:
/// - the available sendable bytes increased to or above the watermark
/// - and was previously below the watermark.
///
/// Default value is `1`. In other words
/// [`crate::ConnectionEvent::SendStreamWritable`] is emitted whenever the
/// available sendable bytes was previously at `0` and now increased to `1`
/// or more.
///
/// Use this when your protocol needs at least `watermark` amount of available
/// sendable bytes to make progress.
///
/// # Errors
/// When the stream ID is invalid.
pub fn stream_set_writable_event_low_watermark(
&mut self,
stream_id: StreamId,
watermark: NonZeroUsize,
) -> Res<()> {
self.streams
.get_send_stream_mut(stream_id)?
.set_writable_event_low_watermark(watermark);
Ok(())
}
/// Close the stream. Enqueued data will be sent.
/// # Errors
/// When the stream ID is invalid.
pub fn stream_close_send(&mut self, stream_id: StreamId) -> Res<()> {
self.streams.get_send_stream_mut(stream_id)?.close();
Ok(())
}
/// Abandon transmission of in-flight and future stream data.
/// # Errors
/// When the stream ID is invalid.
pub fn stream_reset_send(&mut self, stream_id: StreamId, err: AppError) -> Res<()> {
self.streams.get_send_stream_mut(stream_id)?.reset(err);
Ok(())
}
/// Read buffered data from stream. bool says whether read bytes includes
/// the final data on stream.
///
/// # Errors
///
/// `InvalidStreamId` if the stream does not exist.
/// `NoMoreData` if data and fin bit were previously read by the application.
pub fn stream_recv(&mut self, stream_id: StreamId, data: &mut [u8]) -> Res<(usize, bool)> {
let stream = self.streams.get_recv_stream_mut(stream_id)?;
let rb = stream.read(data)?;
Ok(rb)
}
/// Application is no longer interested in this stream.
/// # Errors
/// When the stream ID is invalid.
pub fn stream_stop_sending(&mut self, stream_id: StreamId, err: AppError) -> Res<()> {
let stream = self.streams.get_recv_stream_mut(stream_id)?;
stream.stop_sending(err);
Ok(())
}
/// Increases `max_stream_data` for a `stream_id`.
///
/// # Errors
///
/// Returns `InvalidStreamId` if a stream does not exist or the receiving
/// side is closed.
pub fn set_stream_max_data(&mut self, stream_id: StreamId, max_data: u64) -> Res<()> {
let stream = self.streams.get_recv_stream_mut(stream_id)?;
stream.set_stream_max_data(max_data);
Ok(())
}
/// Mark a receive stream as being important enough to keep the connection alive
/// (if `keep` is `true`) or no longer important (if `keep` is `false`). If any
/// stream is marked this way, PING frames will be used to keep the connection
/// alive, even when there is no activity.
///
/// # Errors
///
/// Returns `InvalidStreamId` if a stream does not exist or the receiving
/// side is closed.
pub fn stream_keep_alive(&mut self, stream_id: StreamId, keep: bool) -> Res<()> {
self.streams.keep_alive(stream_id, keep)
}
#[must_use]
pub const fn remote_datagram_size(&self) -> u64 {
self.quic_datagrams.remote_datagram_size()
}
/// Returns the current max size of a datagram that can fit into a packet.
/// The value will change over time depending on the encoded size of the
/// packet number, ack frames, etc.
///
/// # Errors
/// The function returns `NotAvailable` if datagrams are not enabled.
/// # Panics
/// Basically never, because that unwrap won't fail.
pub fn max_datagram_size(&self) -> Res<u64> {
let max_dgram_size = self.quic_datagrams.remote_datagram_size();
if max_dgram_size == 0 {
return Err(Error::NotAvailable);
}
let version = self.version();
let Some((cspace, tx)) = self
.crypto
.states
.select_tx(self.version, PacketNumberSpace::ApplicationData)
else {
return Err(Error::NotAvailable);
};
let path = self.paths.primary().ok_or(Error::NotAvailable)?;
let mtu = path.borrow().plpmtu();
let encoder = Encoder::default();
let (_, mut builder) = Self::build_packet_header(
&path.borrow(),
cspace,
encoder,
tx,
&self.address_validation,
version,
false,
);
_ = Self::add_packet_number(
&mut builder,
tx,
self.loss_recovery
.largest_acknowledged_pn(PacketNumberSpace::ApplicationData),
);
let data_len_possible =
u64::try_from(mtu.saturating_sub(tx.expansion() + builder.len() + 1))?;
Ok(min(data_len_possible, max_dgram_size))
}
/// Queue a datagram for sending.
///
/// # Errors
///
/// The function returns `TooMuchData` if the supply buffer is bigger than
/// the allowed remote datagram size. The funcion does not check if the
/// datagram can fit into a packet (i.e. MTU limit). This is checked during
/// creation of an actual packet and the datagram will be dropped if it does
/// not fit into the packet. The app is encourage to use `max_datagram_size`
/// to check the estimated max datagram size and to use smaller datagrams.
/// `max_datagram_size` is just a current estimate and will change over
/// time depending on the encoded size of the packet number, ack frames, etc.
pub fn send_datagram(&mut self, buf: Vec<u8>, id: impl Into<DatagramTracking>) -> Res<()> {
self.quic_datagrams
.add_datagram(buf, id.into(), &mut self.stats.borrow_mut())
}
/// Return the PLMTU of the primary path.
///
/// # Panics
///
/// The function panics if there is no primary path. (Should be fine for test usage.)
#[cfg(test)]
#[must_use]
pub fn plpmtu(&self) -> usize {
self.paths.primary().unwrap().borrow().plpmtu()
}
}
impl EventProvider for Connection {
type Event = ConnectionEvent;
/// Return true if there are outstanding events.
fn has_events(&self) -> bool {
self.events.has_events()
}
/// Get events that indicate state changes on the connection. This method
/// correctly handles cases where handling one event can obsolete
/// previously-queued events, or cause new events to be generated.
fn next_event(&mut self) -> Option<Self::Event> {
self.events.next_event()
}
}
impl ::std::fmt::Display for Connection {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
write!(f, "{:?} ", self.role)?;
if let Some(cid) = self.odcid() {
std::fmt::Display::fmt(&cid, f)
} else {
write!(f, "...")
}
}
}
#[cfg(test)]
mod tests;