conv.rs |
|
8700 |
help.rs |
!
Helpers for the hlsl backend
Important note about `Expression::ImageQuery`/`Expression::ArrayLength` and hlsl backend:
Due to implementation of `GetDimensions` function in hlsl (<https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-to-getdimensions>)
backend can't work with it as an expression.
Instead, it generates a unique wrapped function per `Expression::ImageQuery`, based on texture info and query function.
See `WrappedImageQuery` struct that represents a unique function and will be generated before writing all statements and expressions.
This allowed to works with `Expression::ImageQuery` as expression and write wrapped function.
For example:
```wgsl
let dim_1d = textureDimensions(image_1d);
```
```hlsl
int NagaDimensions1D(Texture1D<float4>)
{
uint4 ret;
image_1d.GetDimensions(ret.x);
return ret.x;
}
int dim_1d = NagaDimensions1D(image_1d);
```
|
97404 |
keywords.rs |
|
20819 |
mod.rs |
|
28521 |
ray.rs |
|
6102 |
storage.rs |
!
Generating accesses to [`ByteAddressBuffer`] contents.
Naga IR globals in the [`Storage`] address space are rendered as
[`ByteAddressBuffer`]s or [`RWByteAddressBuffer`]s in HLSL. These
buffers don't have HLSL types (structs, arrays, etc.); instead, they
are just raw blocks of bytes, with methods to load and store values of
specific types at particular byte offsets. This means that Naga must
translate chains of [`Access`] and [`AccessIndex`] expressions into
HLSL expressions that compute byte offsets into the buffer.
To generate code for a [`Storage`] access:
- Call [`Writer::fill_access_chain`] on the expression referring to
the value. This populates [`Writer::temp_access_chain`] with the
appropriate byte offset calculations, as a vector of [`SubAccess`]
values.
- Call [`Writer::write_storage_address`] to emit an HLSL expression
for a given slice of [`SubAccess`] values.
Naga IR expressions can operate on composite values of any type, but
[`ByteAddressBuffer`] and [`RWByteAddressBuffer`] have only a fixed
set of `Load` and `Store` methods, to access one through four
consecutive 32-bit values. To synthesize a Naga access, you can
initialize [`temp_access_chain`] to refer to the composite, and then
temporarily push and pop additional steps on
[`Writer::temp_access_chain`] to generate accesses to the individual
elements/members.
The [`temp_access_chain`] field is a member of [`Writer`] solely to
allow re-use of the `Vec`'s dynamic allocation. Its value is no longer
needed once HLSL for the access has been generated.
Note about DXC and Load/Store functions:
DXC's HLSL has a generic [`Load` and `Store`] function for [`ByteAddressBuffer`] and
[`RWByteAddressBuffer`]. This is not available in FXC's HLSL, so we use
it only for types that are only available in DXC. Notably 64 and 16 bit types.
FXC's HLSL has functions Load, Load2, Load3, and Load4 and Store, Store2, Store3, Store4.
This loads/stores a vector of length 1, 2, 3, or 4. We use that for 32bit types, bitcasting to the
correct type if necessary.
[`Storage`]: crate::AddressSpace::Storage
[`ByteAddressBuffer`]: https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-object-byteaddressbuffer
[`RWByteAddressBuffer`]: https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-object-rwbyteaddressbuffer
[`Access`]: crate::Expression::Access
[`AccessIndex`]: crate::Expression::AccessIndex
[`Writer::fill_access_chain`]: super::Writer::fill_access_chain
[`Writer::write_storage_address`]: super::Writer::write_storage_address
[`Writer::temp_access_chain`]: super::Writer::temp_access_chain
[`temp_access_chain`]: super::Writer::temp_access_chain
[`Writer`]: super::Writer
[`Load` and `Store`]: https://github.com/microsoft/DirectXShaderCompiler/wiki/ByteAddressBuffer-Load-Store-Additions
|
27904 |
writer.rs |
|
202926 |