Revision control

Copy as Markdown

Other Tools

#[cfg(target_os = "android")]
use crate::linux::android::late_process_mappings;
use crate::linux::{
auxv::AuxvDumpInfo,
errors::{DumperError, InitError, ThreadInfoError},
maps_reader::MappingInfo,
module_reader,
thread_info::ThreadInfo,
Pid,
};
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
use crate::thread_info;
use nix::{
errno::Errno,
sys::{ptrace, signal, wait},
};
use procfs_core::{
process::{MMPermissions, ProcState, Stat},
FromRead, ProcError,
};
use std::{
path,
result::Result,
time::{Duration, Instant},
};
#[derive(Debug, Clone)]
pub struct Thread {
pub tid: Pid,
pub name: Option<String>,
}
#[derive(Debug)]
pub struct PtraceDumper {
pub pid: Pid,
threads_suspended: bool,
pub threads: Vec<Thread>,
pub auxv: AuxvDumpInfo,
pub mappings: Vec<MappingInfo>,
pub page_size: usize,
}
#[cfg(target_pointer_width = "32")]
pub const AT_SYSINFO_EHDR: u32 = 33;
#[cfg(target_pointer_width = "64")]
pub const AT_SYSINFO_EHDR: u64 = 33;
impl Drop for PtraceDumper {
fn drop(&mut self) {
// Always try to resume all threads (e.g. in case of error)
let _ = self.resume_threads();
// Always allow the process to continue.
let _ = self.continue_process();
}
}
#[derive(Debug, thiserror::Error)]
enum StopProcessError {
#[error("Failed to stop the process")]
Stop(#[from] Errno),
#[error("Failed to get the process state")]
State(#[from] ProcError),
#[error("Timeout waiting for process to stop")]
Timeout,
}
#[derive(Debug, thiserror::Error)]
enum ContinueProcessError {
#[error("Failed to continue the process")]
Continue(#[from] Errno),
}
/// PTRACE_DETACH the given pid.
///
/// This handles special errno cases (ESRCH) which we won't consider errors.
fn ptrace_detach(child: Pid) -> Result<(), DumperError> {
let pid = nix::unistd::Pid::from_raw(child);
ptrace::detach(pid, None).or_else(|e| {
// errno is set to ESRCH if the pid no longer exists, but we don't want to error in that
// case.
if e == nix::Error::ESRCH {
Ok(())
} else {
Err(DumperError::PtraceDetachError(child, e))
}
})
}
impl PtraceDumper {
/// Constructs a dumper for extracting information from the specified process id
pub fn new(pid: Pid, stop_timeout: Duration, auxv: AuxvDumpInfo) -> Result<Self, InitError> {
if pid == std::process::id() as _ {
return Err(InitError::CannotPtraceSameProcess);
}
let mut dumper = Self {
pid,
threads_suspended: false,
threads: Vec::new(),
auxv,
mappings: Vec::new(),
page_size: 0,
};
dumper.init(stop_timeout)?;
Ok(dumper)
}
// TODO: late_init for chromeos and android
pub fn init(&mut self, stop_timeout: Duration) -> Result<(), InitError> {
// Stopping the process is best-effort.
if let Err(e) = self.stop_process(stop_timeout) {
log::warn!("failed to stop process {}: {e}", self.pid);
}
if let Err(e) = self.auxv.try_filling_missing_info(self.pid) {
log::warn!("failed trying to fill in missing auxv info: {e}");
}
self.enumerate_threads()?;
self.enumerate_mappings()?;
self.page_size = nix::unistd::sysconf(nix::unistd::SysconfVar::PAGE_SIZE)?
.expect("page size apparently unlimited: doesn't make sense.")
as usize;
Ok(())
}
#[cfg_attr(not(target_os = "android"), allow(clippy::unused_self))]
pub fn late_init(&mut self) -> Result<(), InitError> {
#[cfg(target_os = "android")]
{
late_process_mappings(self.pid, &mut self.mappings)?;
}
Ok(())
}
/// Suspends a thread by attaching to it.
pub fn suspend_thread(child: Pid) -> Result<(), DumperError> {
use DumperError::PtraceAttachError as AttachErr;
let pid = nix::unistd::Pid::from_raw(child);
// This may fail if the thread has just died or debugged.
ptrace::attach(pid).map_err(|e| AttachErr(child, e))?;
loop {
match wait::waitpid(pid, Some(wait::WaitPidFlag::__WALL)) {
Ok(status) => {
let wait::WaitStatus::Stopped(_, status) = status else {
return Err(DumperError::WaitPidError(
child,
nix::errno::Errno::UnknownErrno,
));
};
// Any signal will stop the thread, make sure it is SIGSTOP. Otherwise, this
// signal will be delivered after PTRACE_DETACH, and the thread will enter
// the "T (stopped)" state.
if status == nix::sys::signal::SIGSTOP {
break;
}
// Signals other than SIGSTOP that are received need to be reinjected,
// or they will otherwise get lost.
if let Err(err) = ptrace::cont(pid, status) {
return Err(DumperError::WaitPidError(child, err));
}
}
Err(Errno::EINTR) => continue,
Err(e) => {
ptrace_detach(child)?;
return Err(DumperError::WaitPidError(child, e));
}
}
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
{
// On x86, the stack pointer is NULL or -1, when executing trusted code in
// the seccomp sandbox. Not only does this cause difficulties down the line
// when trying to dump the thread's stack, it also results in the minidumps
// containing information about the trusted threads. This information is
// generally completely meaningless and just pollutes the minidumps.
// We thus test the stack pointer and exclude any threads that are part of
// the seccomp sandbox's trusted code.
let skip_thread;
let regs = thread_info::ThreadInfo::getregs(pid.into());
if let Ok(regs) = regs {
#[cfg(target_arch = "x86_64")]
{
skip_thread = regs.rsp == 0;
}
#[cfg(target_arch = "x86")]
{
skip_thread = regs.esp == 0;
}
} else {
skip_thread = true;
}
if skip_thread {
ptrace_detach(child)?;
return Err(DumperError::DetachSkippedThread(child));
}
}
Ok(())
}
/// Resumes a thread by detaching from it.
pub fn resume_thread(child: Pid) -> Result<(), DumperError> {
ptrace_detach(child)
}
pub fn suspend_threads(&mut self) -> Result<(), DumperError> {
let threads_count = self.threads.len();
// Iterate over all threads and try to suspend them.
// If the thread either disappeared before we could attach to it, or if
// it was part of the seccomp sandbox's trusted code, it is OK to
// silently drop it from the minidump.
self.threads.retain(|x| Self::suspend_thread(x.tid).is_ok());
if self.threads.is_empty() {
Err(DumperError::SuspendNoThreadsLeft(threads_count))
} else {
self.threads_suspended = true;
Ok(())
}
}
pub fn resume_threads(&mut self) -> Result<(), DumperError> {
let mut result = Ok(());
if self.threads_suspended {
for thread in &self.threads {
match Self::resume_thread(thread.tid) {
Ok(_) => {}
x => {
result = x;
}
}
}
}
self.threads_suspended = false;
result
}
/// Send SIGSTOP to the process so that we can get a consistent state.
///
/// This will block waiting for the process to stop until `timeout` has passed.
fn stop_process(&mut self, timeout: Duration) -> Result<(), StopProcessError> {
signal::kill(nix::unistd::Pid::from_raw(self.pid), Some(signal::SIGSTOP))?;
// Something like waitpid for non-child processes would be better, but we have no such
// tool, so we poll the status.
const POLL_INTERVAL: Duration = Duration::from_millis(1);
let proc_file = format!("/proc/{}/stat", self.pid);
let end = Instant::now() + timeout;
loop {
if let Ok(ProcState::Stopped) = Stat::from_file(&proc_file)?.state() {
return Ok(());
}
std::thread::sleep(POLL_INTERVAL);
if Instant::now() > end {
return Err(StopProcessError::Timeout);
}
}
}
/// Send SIGCONT to the process to continue.
///
/// Unlike `stop_process`, this function does not wait for the process to continue.
fn continue_process(&mut self) -> Result<(), ContinueProcessError> {
signal::kill(nix::unistd::Pid::from_raw(self.pid), Some(signal::SIGCONT))?;
Ok(())
}
/// Parse /proc/$pid/task to list all the threads of the process identified by
/// pid.
fn enumerate_threads(&mut self) -> Result<(), InitError> {
let pid = self.pid;
let filename = format!("/proc/{}/task", pid);
let task_path = path::PathBuf::from(&filename);
if task_path.is_dir() {
std::fs::read_dir(task_path)
.map_err(|e| InitError::IOError(filename, e))?
.filter_map(|entry| entry.ok()) // Filter out bad entries
.filter_map(|entry| {
entry
.file_name() // Parse name to Pid, filter out those that are unparsable
.to_str()
.and_then(|name| name.parse::<Pid>().ok())
})
.map(|tid| {
// Read the thread-name (if there is any)
let name = std::fs::read_to_string(format!("/proc/{}/task/{}/comm", pid, tid))
// NOTE: This is a bit wasteful as it does two allocations in order to trim, but leaving it for now
.map(|s| s.trim_end().to_string())
.ok();
(tid, name)
})
.for_each(|(tid, name)| self.threads.push(Thread { tid, name }));
}
Ok(())
}
fn enumerate_mappings(&mut self) -> Result<(), InitError> {
// linux_gate_loc is the beginning of the kernel's mapping of
// linux-gate.so in the process. It doesn't actually show up in the
// maps list as a filename, but it can be found using the AT_SYSINFO_EHDR
// aux vector entry, which gives the information necessary to special
// case its entry when creating the list of mappings.
// information.
let linux_gate_loc = self.auxv.get_linux_gate_address().unwrap_or_default();
// Although the initial executable is usually the first mapping, it's not
// guaranteed (see http://crosbug.com/25355); therefore, try to use the
// actual entry point to find the mapping.
let entry_point_loc = self.auxv.get_entry_address().unwrap_or_default();
let filename = format!("/proc/{}/maps", self.pid);
let errmap = |e| InitError::IOError(filename.clone(), e);
let maps_path = path::PathBuf::from(&filename);
let maps_file = std::fs::File::open(maps_path).map_err(errmap)?;
use procfs_core::FromRead;
self.mappings = procfs_core::process::MemoryMaps::from_read(maps_file)
.ok()
.and_then(|maps| MappingInfo::aggregate(maps, linux_gate_loc).ok())
.unwrap_or_default();
if entry_point_loc != 0 {
let mut swap_idx = None;
for (idx, module) in self.mappings.iter().enumerate() {
// If this module contains the entry-point, and it's not already the first
// one, then we need to make it be first. This is because the minidump
// format assumes the first module is the one that corresponds to the main
// executable (as codified in
// processor/minidump.cc:MinidumpModuleList::GetMainModule()).
if entry_point_loc >= module.start_address.try_into().unwrap()
&& entry_point_loc < (module.start_address + module.size).try_into().unwrap()
{
swap_idx = Some(idx);
break;
}
}
if let Some(idx) = swap_idx {
self.mappings.swap(0, idx);
}
}
Ok(())
}
/// Read thread info from /proc/$pid/status.
/// Fill out the |tgid|, |ppid| and |pid| members of |info|. If unavailable,
/// these members are set to -1. Returns true if all three members are
/// available.
pub fn get_thread_info_by_index(&self, index: usize) -> Result<ThreadInfo, ThreadInfoError> {
if index > self.threads.len() {
return Err(ThreadInfoError::IndexOutOfBounds(index, self.threads.len()));
}
ThreadInfo::create(self.pid, self.threads[index].tid)
}
// Returns a valid stack pointer and the mapping that contains the stack.
// The stack pointer will usually point within this mapping, but it might
// not in case of stack overflows, hence the returned pointer might be
// different from the one that was passed in.
pub fn get_stack_info(&self, int_stack_pointer: usize) -> Result<(usize, usize), DumperError> {
// Round the stack pointer to the nearest page, this will cause us to
// capture data below the stack pointer which might still be relevant.
let mut stack_pointer = int_stack_pointer & !(self.page_size - 1);
let mut mapping = self.find_mapping(stack_pointer);
// The guard page has been 1 MiB in size since kernel 4.12, older
// kernels used a 4 KiB one instead. Note the saturating add, as 32-bit
// processes can have a stack pointer within 1MiB of usize::MAX
let guard_page_max_addr = stack_pointer.saturating_add(1024 * 1024);
// If we found no mapping, or the mapping we found has no permissions
// then we might have hit a guard page, try looking for a mapping in
// addresses past the stack pointer. Stack grows towards lower addresses
// on the platforms we care about so the stack should appear after the
// guard page.
while !Self::may_be_stack(mapping) && (stack_pointer <= guard_page_max_addr) {
stack_pointer += self.page_size;
mapping = self.find_mapping(stack_pointer);
}
mapping
.map(|mapping| {
let valid_stack_pointer = if mapping.contains_address(stack_pointer) {
stack_pointer
} else {
mapping.start_address
};
let stack_len = mapping.size - (valid_stack_pointer - mapping.start_address);
(valid_stack_pointer, stack_len)
})
.ok_or(DumperError::NoStackPointerMapping)
}
fn may_be_stack(mapping: Option<&MappingInfo>) -> bool {
if let Some(mapping) = mapping {
return mapping
.permissions
.intersects(MMPermissions::READ | MMPermissions::WRITE);
}
false
}
pub fn sanitize_stack_copy(
&self,
stack_copy: &mut [u8],
stack_pointer: usize,
sp_offset: usize,
) -> Result<(), DumperError> {
// We optimize the search for containing mappings in three ways:
// 1) We expect that pointers into the stack mapping will be common, so
// we cache that address range.
// 2) The last referenced mapping is a reasonable predictor for the next
// referenced mapping, so we test that first.
// 3) We precompute a bitfield based upon bits 32:32-n of the start and
// stop addresses, and use that to short circuit any values that can
// not be pointers. (n=11)
let defaced;
#[cfg(target_pointer_width = "64")]
{
defaced = 0x0defaced0defacedusize.to_ne_bytes();
}
#[cfg(target_pointer_width = "32")]
{
defaced = 0x0defacedusize.to_ne_bytes();
};
// the bitfield length is 2^test_bits long.
let test_bits = 11;
// byte length of the corresponding array.
let array_size: usize = 1 << (test_bits - 3);
let array_mask = array_size - 1;
// The amount to right shift pointers by. This captures the top bits
// on 32 bit architectures. On 64 bit architectures this would be
// uninformative so we take the same range of bits.
let shift = 32 - 11;
// let MappingInfo* last_hit_mapping = nullptr;
// let MappingInfo* hit_mapping = nullptr;
let stack_mapping = self.find_mapping_no_bias(stack_pointer);
let mut last_hit_mapping: Option<&MappingInfo> = None;
// The magnitude below which integers are considered to be to be
// 'small', and not constitute a PII risk. These are included to
// avoid eliding useful register values.
let small_int_magnitude: isize = 4096;
let mut could_hit_mapping = vec![0; array_size];
// Initialize the bitfield such that if the (pointer >> shift)'th
// bit, modulo the bitfield size, is not set then there does not
// exist a mapping in mappings that would contain that pointer.
for mapping in &self.mappings {
if !mapping.is_executable() {
continue;
}
// For each mapping, work out the (unmodulo'ed) range of bits to
// set.
let mut start = mapping.start_address;
let mut end = start + mapping.size;
start >>= shift;
end >>= shift;
for bit in start..=end {
// Set each bit in the range, applying the modulus.
could_hit_mapping[(bit >> 3) & array_mask] |= 1 << (bit & 7);
}
}
// Zero memory that is below the current stack pointer.
let offset =
(sp_offset + std::mem::size_of::<usize>() - 1) & !(std::mem::size_of::<usize>() - 1);
for x in &mut stack_copy[0..offset] {
*x = 0;
}
let mut chunks = stack_copy[offset..].chunks_exact_mut(std::mem::size_of::<usize>());
// Apply sanitization to each complete pointer-aligned word in the
// stack.
for sp in &mut chunks {
let addr = usize::from_ne_bytes(sp.to_vec().as_slice().try_into()?);
let addr_signed = isize::from_ne_bytes(sp.to_vec().as_slice().try_into()?);
if addr <= small_int_magnitude as usize && addr_signed >= -small_int_magnitude {
continue;
}
if let Some(stack_map) = stack_mapping {
if stack_map.contains_address(addr) {
continue;
}
}
if let Some(last_hit) = last_hit_mapping {
if last_hit.contains_address(addr) {
continue;
}
}
let test = addr >> shift;
if could_hit_mapping[(test >> 3) & array_mask] & (1 << (test & 7)) != 0 {
if let Some(hit_mapping) = self.find_mapping_no_bias(addr) {
if hit_mapping.is_executable() {
last_hit_mapping = Some(hit_mapping);
continue;
}
}
}
sp.copy_from_slice(&defaced);
}
// Zero any partial word at the top of the stack, if alignment is
// such that that is required.
for sp in chunks.into_remainder() {
*sp = 0;
}
Ok(())
}
// Find the mapping which the given memory address falls in.
pub fn find_mapping(&self, address: usize) -> Option<&MappingInfo> {
self.mappings
.iter()
.find(|map| address >= map.start_address && address - map.start_address < map.size)
}
// Find the mapping which the given memory address falls in. Uses the
// unadjusted mapping address range from the kernel, rather than the
// biased range.
pub fn find_mapping_no_bias(&self, address: usize) -> Option<&MappingInfo> {
self.mappings.iter().find(|map| {
address >= map.system_mapping_info.start_address
&& address < map.system_mapping_info.end_address
})
}
pub fn from_process_memory_for_index<T: module_reader::ReadFromModule>(
&mut self,
idx: usize,
) -> Result<T, DumperError> {
assert!(idx < self.mappings.len());
Self::from_process_memory_for_mapping(&self.mappings[idx], self.pid)
}
pub fn from_process_memory_for_mapping<T: module_reader::ReadFromModule>(
mapping: &MappingInfo,
pid: Pid,
) -> Result<T, DumperError> {
Ok(T::read_from_module(
module_reader::ProcessReader::new(pid, mapping.start_address).into(),
)?)
}
}