Revision control

Copy as Markdown

Other Tools

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
use std::fmt::Debug;
use super::{Predictor, predict::WeightedPredictorState};
use crate::{
bit_reader::BitReader,
entropy_coding::decode::Histograms,
entropy_coding::decode::SymbolReader,
error::{Error, Result},
frame::modular::predict::PredictionData,
image::Image,
util::{NewWithCapacity, tracing_wrappers::*},
};
#[derive(Debug, Clone, Copy)]
pub enum TreeNode {
Split {
property: u8,
val: i32,
left: u32,
right: u32,
},
Leaf {
predictor: Predictor,
offset: i32,
multiplier: u32,
id: u32,
},
}
/// Flattened tree node for optimized traversal (matches C++ FlatDecisionNode).
/// Stores parent + info about both children to evaluate 3 nodes per iteration.
// TODO(hjanuschka): investigate performance of using a Rust enum here, and whether
// separating internal nodes and leaves into two arrays could save a branch.
#[derive(Debug, Clone, Copy)]
pub(super) struct FlatTreeNode {
property0: i32, // Property to test, -1 if leaf
splitval0_or_predictor: i32, // Split value, or predictor if leaf
splitvals_or_multiplier: [i32; 2], // Child splitvals, or multiplier if leaf
child_id: u32, // Index to first grandchild, or context if leaf
properties_or_offset: [i16; 2], // Child properties, or offset if leaf
}
impl FlatTreeNode {
#[inline]
fn leaf(predictor: Predictor, offset: i32, multiplier: u32, context: u32) -> Self {
Self {
property0: -1,
splitval0_or_predictor: predictor as i32,
splitvals_or_multiplier: [multiplier as i32, 0],
child_id: context,
properties_or_offset: [offset as i16, 0],
}
}
}
pub struct Tree {
pub nodes: Vec<TreeNode>,
pub histograms: Histograms,
}
impl Debug for Tree {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Tree[{:?}]", self.nodes)
}
}
#[derive(Debug)]
pub struct PredictionResult {
pub guess: i64,
pub multiplier: u32,
pub context: u32,
}
pub const NUM_NONREF_PROPERTIES: usize = 16;
pub const PROPERTIES_PER_PREVCHAN: usize = 4;
const SPLIT_VAL_CONTEXT: usize = 0;
const PROPERTY_CONTEXT: usize = 1;
const PREDICTOR_CONTEXT: usize = 2;
const OFFSET_CONTEXT: usize = 3;
const MULTIPLIER_LOG_CONTEXT: usize = 4;
const MULTIPLIER_BITS_CONTEXT: usize = 5;
const NUM_TREE_CONTEXTS: usize = 6;
// Note: `property_buffer` is passed as input because this implementation relies on having the
// previous values available for computing the local gradient property.
// Also, the first two properties (the static properties) should be already set by the caller.
// All other properties should be 0 on the first call in a row.
/// Computes properties for tree traversal. Shared between flat and non-flat prediction.
/// Returns the weighted predictor prediction value.
#[inline]
fn compute_properties(
prediction_data: PredictionData,
xsize: usize,
wp_state: Option<&mut WeightedPredictorState>,
x: usize,
y: usize,
references: &Image<i32>,
property_buffer: &mut [i32],
) -> i64 {
let PredictionData {
left,
top,
toptop,
topleft,
topright,
leftleft,
toprightright: _,
} = prediction_data;
// Position
property_buffer[2] = y as i32;
property_buffer[3] = x as i32;
// Neighbours
property_buffer[4] = top.wrapping_abs();
property_buffer[5] = left.wrapping_abs();
property_buffer[6] = top;
property_buffer[7] = left;
// Local gradient
property_buffer[8] = left.wrapping_sub(property_buffer[9]);
property_buffer[9] = left.wrapping_add(top).wrapping_sub(topleft);
// FFV1 context properties
property_buffer[10] = left.wrapping_sub(topleft);
property_buffer[11] = topleft.wrapping_sub(top);
property_buffer[12] = top.wrapping_sub(topright);
property_buffer[13] = top.wrapping_sub(toptop);
property_buffer[14] = left.wrapping_sub(leftleft);
// Weighted predictor property.
let (wp_pred, wp_prop) = wp_state
.map(|wp_state| wp_state.predict_and_property((x, y), xsize, &prediction_data))
.unwrap_or((0, 0));
property_buffer[15] = wp_prop;
// Reference properties.
let num_refs = references.size().0;
if num_refs != 0 {
let ref_properties = &mut property_buffer[NUM_NONREF_PROPERTIES..];
ref_properties[..num_refs].copy_from_slice(&references.row(x)[..num_refs]);
}
wp_pred
}
/// Prediction using standard tree traversal.
/// Used for small channels where building a flat tree isn't worth it.
#[inline]
#[instrument(level = "trace", ret)]
#[allow(clippy::too_many_arguments)]
pub(super) fn predict(
tree: &[TreeNode],
prediction_data: PredictionData,
xsize: usize,
wp_state: Option<&mut WeightedPredictorState>,
x: usize,
y: usize,
references: &Image<i32>,
property_buffer: &mut [i32],
) -> PredictionResult {
let wp_pred = compute_properties(
prediction_data,
xsize,
wp_state,
x,
y,
references,
property_buffer,
);
trace!(?property_buffer, "new properties");
let mut tree_node = 0;
while let TreeNode::Split {
property,
val,
left,
right,
} = tree[tree_node]
{
if property_buffer[property as usize] > val {
trace!(
"left at node {tree_node} [{} > {val}]",
property_buffer[property as usize]
);
tree_node = left as usize;
} else {
trace!(
"right at node {tree_node} [{} <= {val}]",
property_buffer[property as usize]
);
tree_node = right as usize;
}
}
trace!(leaf = ?tree[tree_node]);
let TreeNode::Leaf {
predictor,
offset,
multiplier,
id,
} = tree[tree_node]
else {
unreachable!();
};
let pred = predictor.predict_one(prediction_data, wp_pred);
PredictionResult {
guess: pred + offset as i64,
multiplier,
context: id,
}
}
/// Optimized prediction using flat tree (matches C++ context_predict.h:351-371).
#[inline]
#[allow(clippy::too_many_arguments)]
pub(super) fn predict_flat(
flat_tree: &[FlatTreeNode],
prediction_data: PredictionData,
xsize: usize,
wp_state: Option<&mut WeightedPredictorState>,
x: usize,
y: usize,
references: &Image<i32>,
property_buffer: &mut [i32],
) -> PredictionResult {
let wp_pred = compute_properties(
prediction_data,
xsize,
wp_state,
x,
y,
references,
property_buffer,
);
// Flat tree traversal
let mut pos = 0;
loop {
let node = &flat_tree[pos];
if node.property0 < 0 {
// Leaf node
let predictor = Predictor::try_from(node.splitval0_or_predictor as u32).unwrap();
let offset = node.properties_or_offset[0] as i32;
let multiplier = node.splitvals_or_multiplier[0] as u32;
let context = node.child_id;
let pred = predictor.predict_one(prediction_data, wp_pred);
return PredictionResult {
guess: pred + offset as i64,
multiplier,
context,
};
}
// Split node: C++ logic from context_predict.h:361-365
let p0 = property_buffer[node.property0 as usize] <= node.splitval0_or_predictor;
let off0 = if property_buffer[node.properties_or_offset[0] as usize]
<= node.splitvals_or_multiplier[0]
{
1
} else {
0
};
let off1 = if property_buffer[node.properties_or_offset[1] as usize]
<= node.splitvals_or_multiplier[1]
{
3
} else {
2
};
pos = (node.child_id + if p0 { off1 } else { off0 }) as usize;
}
}
impl Tree {
#[instrument(level = "debug", skip(br), err)]
pub fn read(br: &mut BitReader, size_limit: usize) -> Result<Tree> {
assert!(size_limit <= u32::MAX as usize);
trace!(pos = br.total_bits_read());
let tree_histograms = Histograms::decode(NUM_TREE_CONTEXTS, br, true)?;
let mut tree_reader = SymbolReader::new(&tree_histograms, br, None)?;
// TODO(veluca): consider early-exiting for trees known to be infinite.
let mut tree: Vec<TreeNode> = vec![];
let mut to_decode = 1;
let mut leaf_id = 0;
let mut max_property = 0;
while to_decode > 0 {
if tree.len() > size_limit {
return Err(Error::TreeTooLarge(tree.len(), size_limit));
}
if tree.len() >= tree.capacity() {
tree.try_reserve(tree.len() * 2 + 1)?;
}
to_decode -= 1;
let property = tree_reader.read_unsigned(&tree_histograms, br, PROPERTY_CONTEXT);
trace!(property);
if let Some(property) = property.checked_sub(1) {
// inner node.
if property > 255 {
return Err(Error::InvalidProperty(property));
}
max_property = max_property.max(property);
let splitval = tree_reader.read_signed(&tree_histograms, br, SPLIT_VAL_CONTEXT);
let left_child = (tree.len() + to_decode + 1) as u32;
let node = TreeNode::Split {
property: property as u8,
val: splitval,
left: left_child,
right: left_child + 1,
};
trace!("split node {:?}", node);
to_decode += 2;
tree.push(node);
} else {
let predictor = Predictor::try_from(tree_reader.read_unsigned(
&tree_histograms,
br,
PREDICTOR_CONTEXT,
))?;
let offset = tree_reader.read_signed(&tree_histograms, br, OFFSET_CONTEXT);
let mul_log =
tree_reader.read_unsigned(&tree_histograms, br, MULTIPLIER_LOG_CONTEXT);
if mul_log >= 31 {
return Err(Error::TreeMultiplierTooLarge(mul_log, 31));
}
let mul_bits =
tree_reader.read_unsigned(&tree_histograms, br, MULTIPLIER_BITS_CONTEXT);
let multiplier = (mul_bits as u64 + 1) << mul_log;
if multiplier > (u32::MAX as u64) {
return Err(Error::TreeMultiplierBitsTooLarge(mul_bits, mul_log));
}
let node = TreeNode::Leaf {
predictor,
offset,
id: leaf_id,
multiplier: multiplier as u32,
};
leaf_id += 1;
trace!("leaf node {:?}", node);
tree.push(node);
}
}
tree_reader.check_final_state(&tree_histograms, br)?;
let num_properties = max_property as usize + 1;
let mut property_ranges = Vec::new_with_capacity(num_properties * tree.len())?;
property_ranges.resize(num_properties * tree.len(), (i32::MIN, i32::MAX));
let mut height = Vec::new_with_capacity(tree.len())?;
height.resize(tree.len(), 0);
for i in 0..tree.len() {
const HEIGHT_LIMIT: usize = 2048;
if height[i] > HEIGHT_LIMIT {
return Err(Error::TreeTooLarge(height[i], HEIGHT_LIMIT));
}
if let TreeNode::Split {
property,
val,
left,
right,
} = tree[i]
{
height[left as usize] = height[i] + 1;
height[right as usize] = height[i] + 1;
for p in 0..num_properties {
if p == property as usize {
let (l, u) = property_ranges[i * num_properties + p];
if l > val || u <= val {
return Err(Error::TreeSplitOnEmptyRange(p as u8, val, l, u));
}
trace!(
"splitting at node {i} on property {p}, range [{l}, {u}] at position {val}"
);
property_ranges[left as usize * num_properties + p] = (val + 1, u);
property_ranges[right as usize * num_properties + p] = (l, val);
} else {
property_ranges[left as usize * num_properties + p] =
property_ranges[i * num_properties + p];
property_ranges[right as usize * num_properties + p] =
property_ranges[i * num_properties + p];
}
}
} else {
#[cfg(feature = "tracing")]
{
for p in 0..num_properties {
let (l, u) = property_ranges[i * num_properties + p];
trace!("final range at node {i} property {p}: [{l}, {u}]");
}
}
}
}
let histograms = Histograms::decode(tree.len().div_ceil(2), br, true)?;
Ok(Tree {
nodes: tree,
histograms,
})
}
/// Build flat tree using BFS traversal (matches C++ encoding.cc:81-144).
/// Each flat node stores parent + both children info to reduce branches.
pub(super) fn build_flat_tree(nodes: &[TreeNode]) -> Result<Vec<FlatTreeNode>> {
use std::collections::VecDeque;
if nodes.is_empty() {
return Ok(vec![]);
}
let mut flat_nodes = Vec::new_with_capacity(nodes.len())?;
let mut queue: VecDeque<usize> = VecDeque::new();
queue.push_back(0); // Start with root
while let Some(cur_idx) = queue.pop_front() {
match &nodes[cur_idx] {
TreeNode::Leaf {
predictor,
offset,
multiplier,
id,
} => {
flat_nodes.push(FlatTreeNode::leaf(*predictor, *offset, *multiplier, *id));
}
TreeNode::Split {
property,
val,
left,
right,
} => {
// childID points to first of 4 grandchildren in output
let child_id = (flat_nodes.len() + queue.len() + 1) as u32;
let mut flat = FlatTreeNode {
property0: *property as i32,
splitval0_or_predictor: *val,
splitvals_or_multiplier: [0, 0],
child_id,
properties_or_offset: [0, 0],
};
// Process left (i=0) and right (i=1) children
for (i, &child_idx) in [*left as usize, *right as usize].iter().enumerate() {
match &nodes[child_idx] {
TreeNode::Leaf { .. } => {
// Child is leaf: set property=0 and enqueue leaf twice
flat.properties_or_offset[i] = 0;
flat.splitvals_or_multiplier[i] = 0;
queue.push_back(child_idx);
queue.push_back(child_idx);
}
TreeNode::Split {
property: cp,
val: cv,
left: cl,
right: cr,
} => {
// Child is split: store property/splitval and enqueue grandchildren
flat.properties_or_offset[i] = *cp as i16;
flat.splitvals_or_multiplier[i] = *cv;
queue.push_back(*cl as usize);
queue.push_back(*cr as usize);
}
}
}
flat_nodes.push(flat);
}
}
}
Ok(flat_nodes)
}
pub fn max_property_count(&self) -> usize {
self.nodes
.iter()
.map(|x| match x {
TreeNode::Leaf { .. } => 0,
TreeNode::Split { property, .. } => *property,
})
.max()
.unwrap_or_default() as usize
+ 1
}
pub fn num_prev_channels(&self) -> usize {
self.max_property_count()
.saturating_sub(NUM_NONREF_PROPERTIES)
.div_ceil(PROPERTIES_PER_PREVCHAN)
}
}