Revision control

Copy as Markdown

Other Tools

use core::{
alloc::Layout,
borrow::Borrow,
cmp::Ordering,
fmt,
hash::{BuildHasher, Hash, Hasher},
iter::FromIterator,
marker::PhantomData,
mem::{self, MaybeUninit},
ops::{Index, IndexMut},
ptr::{self, NonNull},
};
use alloc::boxed::Box;
use hashbrown::hash_map::DefaultHashBuilder;
use hashbrown::hash_table::{self, HashTable};
pub enum TryReserveError {
CapacityOverflow,
AllocError { layout: Layout },
}
/// A version of `HashMap` that has a user controllable order for its entries.
///
/// It achieves this by keeping its entries in an internal linked list and using a `HashMap` to
/// point at nodes in this linked list.
///
/// The order of entries defaults to "insertion order", but the user can also modify the order of
/// existing entries by manually moving them to the front or back.
///
/// There are two kinds of methods that modify the order of the internal list:
///
/// * Methods that have names like `to_front` and `to_back` will unsurprisingly move an existing
/// entry to the front or back
/// * Methods that have the word `insert` will insert a new entry ot the back of the list, and if
/// that method might replace an entry, that method will *also move that existing entry to the
/// back*.
pub struct LinkedHashMap<K, V, S = DefaultHashBuilder> {
table: HashTable<NonNull<Node<K, V>>>,
// We always need to keep our custom hash builder outside of the HashTable, because it doesn't
// know how to do any hashing itself.
hash_builder: S,
// Circular linked list of nodes. If `values` is non-null, it will point to a "guard node"
// which will never have an initialized key or value, `values.prev` will contain the last key /
// value in the list, `values.next` will contain the first key / value in the list.
values: Option<NonNull<Node<K, V>>>,
// *Singly* linked list of free nodes. The `prev` pointers in the free list should be assumed
// invalid.
free: Option<NonNull<Node<K, V>>>,
}
impl<K, V> LinkedHashMap<K, V> {
#[inline]
pub fn new() -> Self {
Self {
hash_builder: DefaultHashBuilder::default(),
table: HashTable::new(),
values: None,
free: None,
}
}
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
Self {
hash_builder: DefaultHashBuilder::default(),
table: HashTable::with_capacity(capacity),
values: None,
free: None,
}
}
}
impl<K, V, S> LinkedHashMap<K, V, S> {
#[inline]
pub fn with_hasher(hash_builder: S) -> Self {
Self {
hash_builder,
table: HashTable::new(),
values: None,
free: None,
}
}
#[inline]
pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
Self {
hash_builder,
table: HashTable::with_capacity(capacity),
values: None,
free: None,
}
}
#[inline]
pub fn len(&self) -> usize {
self.table.len()
}
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
#[inline]
pub fn clear(&mut self) {
self.table.clear();
if let Some(mut values) = self.values {
unsafe {
drop_value_nodes(values);
values.as_mut().links.value = ValueLinks {
prev: values,
next: values,
};
}
}
}
#[inline]
pub fn iter(&self) -> Iter<K, V> {
let (head, tail) = if let Some(values) = self.values {
unsafe {
let ValueLinks { next, prev } = values.as_ref().links.value;
(next.as_ptr(), prev.as_ptr())
}
} else {
(ptr::null_mut(), ptr::null_mut())
};
Iter {
head,
tail,
remaining: self.len(),
marker: PhantomData,
}
}
#[inline]
pub fn iter_mut(&mut self) -> IterMut<K, V> {
let (head, tail) = if let Some(values) = self.values {
unsafe {
let ValueLinks { next, prev } = values.as_ref().links.value;
(Some(next), Some(prev))
}
} else {
(None, None)
};
IterMut {
head,
tail,
remaining: self.len(),
marker: PhantomData,
}
}
#[inline]
pub fn drain(&mut self) -> Drain<'_, K, V> {
unsafe {
let (head, tail) = if let Some(mut values) = self.values {
let ValueLinks { next, prev } = values.as_ref().links.value;
values.as_mut().links.value = ValueLinks {
next: values,
prev: values,
};
(Some(next), Some(prev))
} else {
(None, None)
};
let len = self.len();
self.table.clear();
Drain {
free: (&mut self.free).into(),
head,
tail,
remaining: len,
marker: PhantomData,
}
}
}
#[inline]
pub fn keys(&self) -> Keys<K, V> {
Keys { inner: self.iter() }
}
#[inline]
pub fn values(&self) -> Values<K, V> {
Values { inner: self.iter() }
}
#[inline]
pub fn values_mut(&mut self) -> ValuesMut<K, V> {
ValuesMut {
inner: self.iter_mut(),
}
}
#[inline]
pub fn front(&self) -> Option<(&K, &V)> {
if self.is_empty() {
return None;
}
unsafe {
let front = (*self.values.as_ptr()).links.value.next.as_ptr();
let (key, value) = (*front).entry_ref();
Some((key, value))
}
}
#[inline]
pub fn back(&self) -> Option<(&K, &V)> {
if self.is_empty() {
return None;
}
unsafe {
let back = &*(*self.values.as_ptr()).links.value.prev.as_ptr();
let (key, value) = (*back).entry_ref();
Some((key, value))
}
}
#[inline]
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&K, &mut V) -> bool,
{
let free = self.free;
let mut drop_filtered_values = DropFilteredValues {
free: &mut self.free,
cur_free: free,
};
self.table.retain(|&mut node| unsafe {
let (k, v) = (*node.as_ptr()).entry_mut();
if f(k, v) {
true
} else {
drop_filtered_values.drop_later(node);
false
}
});
}
#[inline]
pub fn hasher(&self) -> &S {
&self.hash_builder
}
#[inline]
pub fn capacity(&self) -> usize {
self.table.capacity()
}
}
impl<K, V, S> LinkedHashMap<K, V, S>
where
K: Eq + Hash,
S: BuildHasher,
{
#[inline]
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S> {
match self.raw_entry_mut().from_key(&key) {
RawEntryMut::Occupied(occupied) => Entry::Occupied(OccupiedEntry {
key,
raw_entry: occupied,
}),
RawEntryMut::Vacant(vacant) => Entry::Vacant(VacantEntry {
key,
raw_entry: vacant,
}),
}
}
#[inline]
pub fn get<Q>(&self, k: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.raw_entry().from_key(k).map(|(_, v)| v)
}
#[inline]
pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.raw_entry().from_key(k)
}
#[inline]
pub fn contains_key<Q>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.get(k).is_some()
}
#[inline]
pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
match self.raw_entry_mut().from_key(k) {
RawEntryMut::Occupied(occupied) => Some(occupied.into_mut()),
RawEntryMut::Vacant(_) => None,
}
}
/// Inserts the given key / value pair at the *back* of the internal linked list.
///
/// Returns the previously set value, if one existed prior to this call. After this call,
/// calling `LinkedHashMap::back` will return a reference to this key / value pair.
#[inline]
pub fn insert(&mut self, k: K, v: V) -> Option<V> {
match self.raw_entry_mut().from_key(&k) {
RawEntryMut::Occupied(mut occupied) => {
occupied.to_back();
Some(occupied.replace_value(v))
}
RawEntryMut::Vacant(vacant) => {
vacant.insert(k, v);
None
}
}
}
/// If the given key is not in this map, inserts the key / value pair at the *back* of the
/// internal linked list and returns `None`, otherwise, replaces the existing value with the
/// given value *without* moving the entry in the internal linked list and returns the previous
/// value.
#[inline]
pub fn replace(&mut self, k: K, v: V) -> Option<V> {
match self.raw_entry_mut().from_key(&k) {
RawEntryMut::Occupied(mut occupied) => Some(occupied.replace_value(v)),
RawEntryMut::Vacant(vacant) => {
vacant.insert(k, v);
None
}
}
}
#[inline]
pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
match self.raw_entry_mut().from_key(k) {
RawEntryMut::Occupied(occupied) => Some(occupied.remove()),
RawEntryMut::Vacant(_) => None,
}
}
#[inline]
pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
match self.raw_entry_mut().from_key(k) {
RawEntryMut::Occupied(occupied) => Some(occupied.remove_entry()),
RawEntryMut::Vacant(_) => None,
}
}
#[inline]
pub fn pop_front(&mut self) -> Option<(K, V)> {
if self.is_empty() {
return None;
}
unsafe {
let front = (*self.values.as_ptr()).links.value.next;
let hash = hash_node(&self.hash_builder, front);
match self
.raw_entry_mut()
.from_hash(hash, |k| k.eq(front.as_ref().key_ref()))
{
RawEntryMut::Occupied(occupied) => Some(occupied.remove_entry()),
RawEntryMut::Vacant(_) => None,
}
}
}
#[inline]
pub fn pop_back(&mut self) -> Option<(K, V)> {
if self.is_empty() {
return None;
}
unsafe {
let back = (*self.values.as_ptr()).links.value.prev;
let hash = hash_node(&self.hash_builder, back);
match self
.raw_entry_mut()
.from_hash(hash, |k| k.eq(back.as_ref().key_ref()))
{
RawEntryMut::Occupied(occupied) => Some(occupied.remove_entry()),
RawEntryMut::Vacant(_) => None,
}
}
}
/// If an entry with this key exists, move it to the front of the list and return a reference to
/// the value.
#[inline]
pub fn to_front<Q>(&mut self, k: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
match self.raw_entry_mut().from_key(k) {
RawEntryMut::Occupied(mut occupied) => {
occupied.to_front();
Some(occupied.into_mut())
}
RawEntryMut::Vacant(_) => None,
}
}
/// If an entry with this key exists, move it to the back of the list and return a reference to
/// the value.
#[inline]
pub fn to_back<Q>(&mut self, k: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
match self.raw_entry_mut().from_key(k) {
RawEntryMut::Occupied(mut occupied) => {
occupied.to_back();
Some(occupied.into_mut())
}
RawEntryMut::Vacant(_) => None,
}
}
#[inline]
pub fn reserve(&mut self, additional: usize) {
let hash_builder = &self.hash_builder;
self.table
.reserve(additional, move |&n| unsafe { hash_node(hash_builder, n) });
}
#[inline]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
let hash_builder = &self.hash_builder;
self.table
.try_reserve(additional, move |&n| unsafe { hash_node(hash_builder, n) })
.map_err(|e| match e {
hashbrown::TryReserveError::CapacityOverflow => TryReserveError::CapacityOverflow,
hashbrown::TryReserveError::AllocError { layout } => {
TryReserveError::AllocError { layout }
}
})
}
#[inline]
pub fn shrink_to_fit(&mut self) {
let hash_builder = &self.hash_builder;
unsafe {
self.table
.shrink_to_fit(move |&n| hash_node(hash_builder, n));
drop_free_nodes(self.free.take());
}
}
pub fn retain_with_order<F>(&mut self, mut f: F)
where
F: FnMut(&K, &mut V) -> bool,
{
let free = self.free;
let mut drop_filtered_values = DropFilteredValues {
free: &mut self.free,
cur_free: free,
};
if let Some(values) = self.values {
unsafe {
let mut cur = values.as_ref().links.value.next;
while cur != values {
let next = cur.as_ref().links.value.next;
let filter = {
let (k, v) = (*cur.as_ptr()).entry_mut();
!f(k, v)
};
if filter {
let k = (*cur.as_ptr()).key_ref();
let hash = hash_key(&self.hash_builder, k);
self.table
.find_entry(hash, |o| (*o).as_ref().key_ref().eq(k))
.unwrap()
.remove();
drop_filtered_values.drop_later(cur);
}
cur = next;
}
}
}
}
// Returns the `CursorMut` over the _guard_ node.
fn cursor_mut(&mut self) -> CursorMut<K, V, S> {
unsafe { ensure_guard_node(&mut self.values) };
CursorMut {
cur: self.values.as_ptr(),
hash_builder: &self.hash_builder,
free: &mut self.free,
values: &mut self.values,
table: &mut self.table,
}
}
/// Returns the `CursorMut` over the front node.
///
/// Note: The `CursorMut` is pointing to the _guard_ node in an empty `LinkedHashMap` and
/// will always return `None` as its current element, regardless of any move in any
/// direction.
pub fn cursor_front_mut(&mut self) -> CursorMut<K, V, S> {
let mut c = self.cursor_mut();
c.move_next();
c
}
/// Returns the `CursorMut` over the back node.
///
/// Note: The `CursorMut` is pointing to the _guard_ node in an empty `LinkedHashMap` and
/// will always return `None` as its current element, regardless of any move in any
/// direction.
pub fn cursor_back_mut(&mut self) -> CursorMut<K, V, S> {
let mut c = self.cursor_mut();
c.move_prev();
c
}
}
impl<K, V, S> LinkedHashMap<K, V, S>
where
S: BuildHasher,
{
#[inline]
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S> {
RawEntryBuilder { map: self }
}
#[inline]
pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S> {
RawEntryBuilderMut { map: self }
}
}
impl<K, V, S> Default for LinkedHashMap<K, V, S>
where
S: Default,
{
#[inline]
fn default() -> Self {
Self::with_hasher(S::default())
}
}
impl<K: Hash + Eq, V, S: BuildHasher + Default> FromIterator<(K, V)> for LinkedHashMap<K, V, S> {
#[inline]
fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self {
let iter = iter.into_iter();
let mut map = Self::with_capacity_and_hasher(iter.size_hint().0, S::default());
map.extend(iter);
map
}
}
impl<K, V, S> fmt::Debug for LinkedHashMap<K, V, S>
where
K: fmt::Debug,
V: fmt::Debug,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_map().entries(self).finish()
}
}
impl<K: Hash + Eq, V: PartialEq, S: BuildHasher> PartialEq for LinkedHashMap<K, V, S> {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.len() == other.len() && self.iter().eq(other)
}
}
impl<K: Hash + Eq, V: Eq, S: BuildHasher> Eq for LinkedHashMap<K, V, S> {}
impl<K: Hash + Eq + PartialOrd, V: PartialOrd, S: BuildHasher> PartialOrd
for LinkedHashMap<K, V, S>
{
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other)
}
#[inline]
fn lt(&self, other: &Self) -> bool {
self.iter().lt(other)
}
#[inline]
fn le(&self, other: &Self) -> bool {
self.iter().le(other)
}
#[inline]
fn ge(&self, other: &Self) -> bool {
self.iter().ge(other)
}
#[inline]
fn gt(&self, other: &Self) -> bool {
self.iter().gt(other)
}
}
impl<K: Hash + Eq + Ord, V: Ord, S: BuildHasher> Ord for LinkedHashMap<K, V, S> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other)
}
}
impl<K: Hash + Eq, V: Hash, S: BuildHasher> Hash for LinkedHashMap<K, V, S> {
#[inline]
fn hash<H: Hasher>(&self, h: &mut H) {
for e in self.iter() {
e.hash(h);
}
}
}
impl<K, V, S> Drop for LinkedHashMap<K, V, S> {
#[inline]
fn drop(&mut self) {
unsafe {
if let Some(values) = self.values {
drop_value_nodes(values);
let _ = Box::from_raw(values.as_ptr());
}
drop_free_nodes(self.free);
}
}
}
unsafe impl<K: Send, V: Send, S: Send> Send for LinkedHashMap<K, V, S> {}
unsafe impl<K: Sync, V: Sync, S: Sync> Sync for LinkedHashMap<K, V, S> {}
impl<'a, K, V, S, Q> Index<&'a Q> for LinkedHashMap<K, V, S>
where
K: Hash + Eq + Borrow<Q>,
S: BuildHasher,
Q: Eq + Hash + ?Sized,
{
type Output = V;
#[inline]
fn index(&self, index: &'a Q) -> &V {
self.get(index).expect("no entry found for key")
}
}
impl<'a, K, V, S, Q> IndexMut<&'a Q> for LinkedHashMap<K, V, S>
where
K: Hash + Eq + Borrow<Q>,
S: BuildHasher,
Q: Eq + Hash + ?Sized,
{
#[inline]
fn index_mut(&mut self, index: &'a Q) -> &mut V {
self.get_mut(index).expect("no entry found for key")
}
}
impl<K: Hash + Eq + Clone, V: Clone, S: BuildHasher + Clone> Clone for LinkedHashMap<K, V, S> {
#[inline]
fn clone(&self) -> Self {
let mut map = Self::with_hasher(self.hash_builder.clone());
map.extend(self.iter().map(|(k, v)| (k.clone(), v.clone())));
map
}
}
impl<K: Hash + Eq, V, S: BuildHasher> Extend<(K, V)> for LinkedHashMap<K, V, S> {
#[inline]
fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I) {
for (k, v) in iter {
self.insert(k, v);
}
}
}
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for LinkedHashMap<K, V, S>
where
K: 'a + Hash + Eq + Copy,
V: 'a + Copy,
S: BuildHasher,
{
#[inline]
fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) {
for (&k, &v) in iter {
self.insert(k, v);
}
}
}
pub enum Entry<'a, K, V, S> {
Occupied(OccupiedEntry<'a, K, V, S>),
Vacant(VacantEntry<'a, K, V, S>),
}
impl<K: fmt::Debug, V: fmt::Debug, S> fmt::Debug for Entry<'_, K, V, S> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Entry::Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(),
Entry::Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(),
}
}
}
impl<'a, K, V, S> Entry<'a, K, V, S> {
/// If this entry is vacant, inserts a new entry with the given value and returns a reference to
/// it.
///
/// If this entry is occupied, this method *moves the occupied entry to the back of the internal
/// linked list* and returns a reference to the existing value.
#[inline]
pub fn or_insert(self, default: V) -> &'a mut V
where
K: Hash,
S: BuildHasher,
{
match self {
Entry::Occupied(mut entry) => {
entry.to_back();
entry.into_mut()
}
Entry::Vacant(entry) => entry.insert(default),
}
}
/// Similar to `Entry::or_insert`, but accepts a function to construct a new value if this entry
/// is vacant.
#[inline]
pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V
where
K: Hash,
S: BuildHasher,
{
match self {
Entry::Occupied(mut entry) => {
entry.to_back();
entry.into_mut()
}
Entry::Vacant(entry) => entry.insert(default()),
}
}
#[inline]
pub fn key(&self) -> &K {
match *self {
Entry::Occupied(ref entry) => entry.key(),
Entry::Vacant(ref entry) => entry.key(),
}
}
#[inline]
pub fn and_modify<F>(self, f: F) -> Self
where
F: FnOnce(&mut V),
{
match self {
Entry::Occupied(mut entry) => {
f(entry.get_mut());
Entry::Occupied(entry)
}
Entry::Vacant(entry) => Entry::Vacant(entry),
}
}
}
pub struct OccupiedEntry<'a, K, V, S> {
key: K,
raw_entry: RawOccupiedEntryMut<'a, K, V, S>,
}
impl<K: fmt::Debug, V: fmt::Debug, S> fmt::Debug for OccupiedEntry<'_, K, V, S> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("OccupiedEntry")
.field("key", self.key())
.field("value", self.get())
.finish()
}
}
impl<'a, K, V, S> OccupiedEntry<'a, K, V, S> {
#[inline]
pub fn key(&self) -> &K {
self.raw_entry.key()
}
#[inline]
pub fn remove_entry(self) -> (K, V) {
self.raw_entry.remove_entry()
}
#[inline]
pub fn get(&self) -> &V {
self.raw_entry.get()
}
#[inline]
pub fn get_mut(&mut self) -> &mut V {
self.raw_entry.get_mut()
}
#[inline]
pub fn into_mut(self) -> &'a mut V {
self.raw_entry.into_mut()
}
#[inline]
pub fn to_back(&mut self) {
self.raw_entry.to_back()
}
#[inline]
pub fn to_front(&mut self) {
self.raw_entry.to_front()
}
/// Replaces this entry's value with the provided value.
///
/// Similarly to `LinkedHashMap::insert`, this moves the existing entry to the back of the
/// internal linked list.
#[inline]
pub fn insert(&mut self, value: V) -> V {
self.raw_entry.to_back();
self.raw_entry.replace_value(value)
}
#[inline]
pub fn remove(self) -> V {
self.raw_entry.remove()
}
/// Similar to `OccupiedEntry::replace_entry`, but *does* move the entry to the back of the
/// internal linked list.
#[inline]
pub fn insert_entry(mut self, value: V) -> (K, V) {
self.raw_entry.to_back();
self.replace_entry(value)
}
/// Returns a `CursorMut` over the current entry.
#[inline]
pub fn cursor_mut(self) -> CursorMut<'a, K, V, S>
where
K: Eq + Hash,
S: BuildHasher,
{
self.raw_entry.cursor_mut()
}
/// Replaces the entry's key with the key provided to `LinkedHashMap::entry`, and replaces the
/// entry's value with the given `value` parameter.
///
/// Does *not* move the entry to the back of the internal linked list.
pub fn replace_entry(mut self, value: V) -> (K, V) {
let old_key = mem::replace(self.raw_entry.key_mut(), self.key);
let old_value = mem::replace(self.raw_entry.get_mut(), value);
(old_key, old_value)
}
/// Replaces this entry's key with the key provided to `LinkedHashMap::entry`.
///
/// Does *not* move the entry to the back of the internal linked list.
#[inline]
pub fn replace_key(mut self) -> K {
mem::replace(self.raw_entry.key_mut(), self.key)
}
}
pub struct VacantEntry<'a, K, V, S> {
key: K,
raw_entry: RawVacantEntryMut<'a, K, V, S>,
}
impl<K: fmt::Debug, V, S> fmt::Debug for VacantEntry<'_, K, V, S> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("VacantEntry").field(self.key()).finish()
}
}
impl<'a, K, V, S> VacantEntry<'a, K, V, S> {
#[inline]
pub fn key(&self) -> &K {
&self.key
}
#[inline]
pub fn into_key(self) -> K {
self.key
}
/// Insert's the key for this vacant entry paired with the given value as a new entry at the
/// *back* of the internal linked list.
#[inline]
pub fn insert(self, value: V) -> &'a mut V
where
K: Hash,
S: BuildHasher,
{
self.raw_entry.insert(self.key, value).1
}
}
pub struct RawEntryBuilder<'a, K, V, S> {
map: &'a LinkedHashMap<K, V, S>,
}
impl<'a, K, V, S> RawEntryBuilder<'a, K, V, S>
where
S: BuildHasher,
{
#[inline]
pub fn from_key<Q>(self, k: &Q) -> Option<(&'a K, &'a V)>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
let hash = hash_key(&self.map.hash_builder, k);
self.from_key_hashed_nocheck(hash, k)
}
#[inline]
pub fn from_key_hashed_nocheck<Q>(self, hash: u64, k: &Q) -> Option<(&'a K, &'a V)>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.from_hash(hash, move |o| k.eq(o.borrow()))
}
#[inline]
pub fn from_hash(
self,
hash: u64,
mut is_match: impl FnMut(&K) -> bool,
) -> Option<(&'a K, &'a V)> {
unsafe {
let node = self
.map
.table
.find(hash, move |k| is_match((*k).as_ref().key_ref()))?;
let (key, value) = (*node.as_ptr()).entry_ref();
Some((key, value))
}
}
}
unsafe impl<'a, K, V, S> Send for RawEntryBuilder<'a, K, V, S>
where
K: Send,
V: Send,
S: Send,
{
}
unsafe impl<'a, K, V, S> Sync for RawEntryBuilder<'a, K, V, S>
where
K: Sync,
V: Sync,
S: Sync,
{
}
pub struct RawEntryBuilderMut<'a, K, V, S> {
map: &'a mut LinkedHashMap<K, V, S>,
}
impl<'a, K, V, S> RawEntryBuilderMut<'a, K, V, S>
where
S: BuildHasher,
{
#[inline]
pub fn from_key<Q>(self, k: &Q) -> RawEntryMut<'a, K, V, S>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
let hash = hash_key(&self.map.hash_builder, k);
self.from_key_hashed_nocheck(hash, k)
}
#[inline]
pub fn from_key_hashed_nocheck<Q>(self, hash: u64, k: &Q) -> RawEntryMut<'a, K, V, S>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.from_hash(hash, move |o| k.eq(o.borrow()))
}
#[inline]
pub fn from_hash(
self,
hash: u64,
mut is_match: impl FnMut(&K) -> bool,
) -> RawEntryMut<'a, K, V, S> {
let entry = self
.map
.table
.find_entry(hash, move |k| is_match(unsafe { (*k).as_ref().key_ref() }));
match entry {
Ok(occupied) => RawEntryMut::Occupied(RawOccupiedEntryMut {
hash_builder: &self.map.hash_builder,
free: &mut self.map.free,
values: &mut self.map.values,
entry: occupied,
}),
Err(absent) => RawEntryMut::Vacant(RawVacantEntryMut {
hash_builder: &self.map.hash_builder,
values: &mut self.map.values,
free: &mut self.map.free,
entry: absent,
}),
}
}
}
unsafe impl<'a, K, V, S> Send for RawEntryBuilderMut<'a, K, V, S>
where
K: Send,
V: Send,
S: Send,
{
}
unsafe impl<'a, K, V, S> Sync for RawEntryBuilderMut<'a, K, V, S>
where
K: Sync,
V: Sync,
S: Sync,
{
}
pub enum RawEntryMut<'a, K, V, S> {
Occupied(RawOccupiedEntryMut<'a, K, V, S>),
Vacant(RawVacantEntryMut<'a, K, V, S>),
}
impl<'a, K, V, S> RawEntryMut<'a, K, V, S> {
/// Similarly to `Entry::or_insert`, if this entry is occupied, it will move the existing entry
/// to the back of the internal linked list.
#[inline]
pub fn or_insert(self, default_key: K, default_val: V) -> (&'a mut K, &'a mut V)
where
K: Hash,
S: BuildHasher,
{
match self {
RawEntryMut::Occupied(mut entry) => {
entry.to_back();
entry.into_key_value()
}
RawEntryMut::Vacant(entry) => entry.insert(default_key, default_val),
}
}
/// Similarly to `Entry::or_insert_with`, if this entry is occupied, it will move the existing
/// entry to the back of the internal linked list.
#[inline]
pub fn or_insert_with<F>(self, default: F) -> (&'a mut K, &'a mut V)
where
F: FnOnce() -> (K, V),
K: Hash,
S: BuildHasher,
{
match self {
RawEntryMut::Occupied(mut entry) => {
entry.to_back();
entry.into_key_value()
}
RawEntryMut::Vacant(entry) => {
let (k, v) = default();
entry.insert(k, v)
}
}
}
#[inline]
pub fn and_modify<F>(self, f: F) -> Self
where
F: FnOnce(&mut K, &mut V),
{
match self {
RawEntryMut::Occupied(mut entry) => {
{
let (k, v) = entry.get_key_value_mut();
f(k, v);
}
RawEntryMut::Occupied(entry)
}
RawEntryMut::Vacant(entry) => RawEntryMut::Vacant(entry),
}
}
}
pub struct RawOccupiedEntryMut<'a, K, V, S> {
hash_builder: &'a S,
free: &'a mut Option<NonNull<Node<K, V>>>,
values: &'a mut Option<NonNull<Node<K, V>>>,
entry: hash_table::OccupiedEntry<'a, NonNull<Node<K, V>>>,
}
impl<'a, K, V, S> RawOccupiedEntryMut<'a, K, V, S> {
#[inline]
pub fn key(&self) -> &K {
self.get_key_value().0
}
#[inline]
pub fn key_mut(&mut self) -> &mut K {
self.get_key_value_mut().0
}
#[inline]
pub fn into_key(self) -> &'a mut K {
self.into_key_value().0
}
#[inline]
pub fn get(&self) -> &V {
self.get_key_value().1
}
#[inline]
pub fn get_mut(&mut self) -> &mut V {
self.get_key_value_mut().1
}
#[inline]
pub fn into_mut(self) -> &'a mut V {
self.into_key_value().1
}
#[inline]
pub fn get_key_value(&self) -> (&K, &V) {
unsafe {
let node = *self.entry.get();
let (key, value) = (*node.as_ptr()).entry_ref();
(key, value)
}
}
#[inline]
pub fn get_key_value_mut(&mut self) -> (&mut K, &mut V) {
unsafe {
let node = *self.entry.get_mut();
let (key, value) = (*node.as_ptr()).entry_mut();
(key, value)
}
}
#[inline]
pub fn into_key_value(self) -> (&'a mut K, &'a mut V) {
unsafe {
let node = *self.entry.into_mut();
let (key, value) = (*node.as_ptr()).entry_mut();
(key, value)
}
}
#[inline]
pub fn to_back(&mut self) {
unsafe {
let node = *self.entry.get_mut();
detach_node(node);
attach_before(node, NonNull::new_unchecked(self.values.as_ptr()));
}
}
#[inline]
pub fn to_front(&mut self) {
unsafe {
let node = *self.entry.get_mut();
detach_node(node);
attach_before(node, (*self.values.as_ptr()).links.value.next);
}
}
#[inline]
pub fn replace_value(&mut self, value: V) -> V {
unsafe {
let mut node = *self.entry.get_mut();
mem::replace(&mut node.as_mut().entry_mut().1, value)
}
}
#[inline]
pub fn replace_key(&mut self, key: K) -> K {
unsafe {
let mut node = *self.entry.get_mut();
mem::replace(&mut node.as_mut().entry_mut().0, key)
}
}
#[inline]
pub fn remove(self) -> V {
self.remove_entry().1
}
#[inline]
pub fn remove_entry(self) -> (K, V) {
let node = self.entry.remove().0;
unsafe { remove_node(self.free, node) }
}
/// Returns a `CursorMut` over the current entry.
#[inline]
pub fn cursor_mut(self) -> CursorMut<'a, K, V, S>
where
K: Eq + Hash,
S: BuildHasher,
{
CursorMut {
cur: self.entry.get().as_ptr(),
hash_builder: self.hash_builder,
free: self.free,
values: self.values,
table: self.entry.into_table(),
}
}
}
pub struct RawVacantEntryMut<'a, K, V, S> {
hash_builder: &'a S,
values: &'a mut Option<NonNull<Node<K, V>>>,
free: &'a mut Option<NonNull<Node<K, V>>>,
entry: hash_table::AbsentEntry<'a, NonNull<Node<K, V>>>,
}
impl<'a, K, V, S> RawVacantEntryMut<'a, K, V, S> {
#[inline]
pub fn insert(self, key: K, value: V) -> (&'a mut K, &'a mut V)
where
K: Hash,
S: BuildHasher,
{
let hash = hash_key(self.hash_builder, &key);
self.insert_hashed_nocheck(hash, key, value)
}
#[inline]
pub fn insert_hashed_nocheck(self, hash: u64, key: K, value: V) -> (&'a mut K, &'a mut V)
where
K: Hash,
S: BuildHasher,
{
let hash_builder = self.hash_builder;
self.insert_with_hasher(hash, key, value, |k| hash_key(hash_builder, k))
}
#[inline]
pub fn insert_with_hasher(
self,
hash: u64,
key: K,
value: V,
hasher: impl Fn(&K) -> u64,
) -> (&'a mut K, &'a mut V)
where
S: BuildHasher,
{
unsafe {
ensure_guard_node(self.values);
let mut new_node = allocate_node(self.free);
new_node.as_mut().put_entry((key, value));
attach_before(new_node, NonNull::new_unchecked(self.values.as_ptr()));
let node = self
.entry
.into_table()
.insert_unique(hash, new_node, move |k| hasher((*k).as_ref().key_ref()))
.into_mut();
let (key, value) = (*node.as_ptr()).entry_mut();
(key, value)
}
}
}
impl<K, V, S> fmt::Debug for RawEntryBuilderMut<'_, K, V, S> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawEntryBuilder").finish()
}
}
impl<K: fmt::Debug, V: fmt::Debug, S> fmt::Debug for RawEntryMut<'_, K, V, S> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
RawEntryMut::Vacant(ref v) => f.debug_tuple("RawEntry").field(v).finish(),
RawEntryMut::Occupied(ref o) => f.debug_tuple("RawEntry").field(o).finish(),
}
}
}
impl<K: fmt::Debug, V: fmt::Debug, S> fmt::Debug for RawOccupiedEntryMut<'_, K, V, S> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawOccupiedEntryMut")
.field("key", self.key())
.field("value", self.get())
.finish()
}
}
impl<K, V, S> fmt::Debug for RawVacantEntryMut<'_, K, V, S> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawVacantEntryMut").finish()
}
}
impl<K, V, S> fmt::Debug for RawEntryBuilder<'_, K, V, S> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawEntryBuilder").finish()
}
}
unsafe impl<'a, K, V, S> Send for RawOccupiedEntryMut<'a, K, V, S>
where
K: Send,
V: Send,
S: Send,
{
}
unsafe impl<'a, K, V, S> Sync for RawOccupiedEntryMut<'a, K, V, S>
where
K: Sync,
V: Sync,
S: Sync,
{
}
unsafe impl<'a, K, V, S> Send for RawVacantEntryMut<'a, K, V, S>
where
K: Send,
V: Send,
S: Send,
{
}
unsafe impl<'a, K, V, S> Sync for RawVacantEntryMut<'a, K, V, S>
where
K: Sync,
V: Sync,
S: Sync,
{
}
pub struct Iter<'a, K, V> {
head: *const Node<K, V>,
tail: *const Node<K, V>,
remaining: usize,
marker: PhantomData<(&'a K, &'a V)>,
}
pub struct IterMut<'a, K, V> {
head: Option<NonNull<Node<K, V>>>,
tail: Option<NonNull<Node<K, V>>>,
remaining: usize,
marker: PhantomData<(&'a K, &'a mut V)>,
}
pub struct IntoIter<K, V> {
head: Option<NonNull<Node<K, V>>>,
tail: Option<NonNull<Node<K, V>>>,
remaining: usize,
marker: PhantomData<(K, V)>,
}
pub struct Drain<'a, K, V> {
free: NonNull<Option<NonNull<Node<K, V>>>>,
head: Option<NonNull<Node<K, V>>>,
tail: Option<NonNull<Node<K, V>>>,
remaining: usize,
// We want `Drain` to be covariant
marker: PhantomData<(K, V, &'a LinkedHashMap<K, V>)>,
}
impl<K, V> IterMut<'_, K, V> {
#[inline]
pub(crate) fn iter(&self) -> Iter<'_, K, V> {
Iter {
head: self.head.as_ptr(),
tail: self.tail.as_ptr(),
remaining: self.remaining,
marker: PhantomData,
}
}
}
impl<K, V> IntoIter<K, V> {
#[inline]
pub(crate) fn iter(&self) -> Iter<'_, K, V> {
Iter {
head: self.head.as_ptr(),
tail: self.tail.as_ptr(),
remaining: self.remaining,
marker: PhantomData,
}
}
}
impl<K, V> Drain<'_, K, V> {
#[inline]
pub(crate) fn iter(&self) -> Iter<'_, K, V> {
Iter {
head: self.head.as_ptr(),
tail: self.tail.as_ptr(),
remaining: self.remaining,
marker: PhantomData,
}
}
}
unsafe impl<'a, K, V> Send for Iter<'a, K, V>
where
K: Send,
V: Send,
{
}
unsafe impl<'a, K, V> Send for IterMut<'a, K, V>
where
K: Send,
V: Send,
{
}
unsafe impl<K, V> Send for IntoIter<K, V>
where
K: Send,
V: Send,
{
}
unsafe impl<'a, K, V> Send for Drain<'a, K, V>
where
K: Send,
V: Send,
{
}
unsafe impl<'a, K, V> Sync for Iter<'a, K, V>
where
K: Sync,
V: Sync,
{
}
unsafe impl<'a, K, V> Sync for IterMut<'a, K, V>
where
K: Sync,
V: Sync,
{
}
unsafe impl<K, V> Sync for IntoIter<K, V>
where
K: Sync,
V: Sync,
{
}
unsafe impl<'a, K, V> Sync for Drain<'a, K, V>
where
K: Sync,
V: Sync,
{
}
impl<'a, K, V> Clone for Iter<'a, K, V> {
#[inline]
fn clone(&self) -> Self {
Iter { ..*self }
}
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<K, V> fmt::Debug for IterMut<'_, K, V>
where
K: fmt::Debug,
V: fmt::Debug,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
impl<K, V> fmt::Debug for IntoIter<K, V>
where
K: fmt::Debug,
V: fmt::Debug,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
impl<K, V> fmt::Debug for Drain<'_, K, V>
where
K: fmt::Debug,
V: fmt::Debug,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
impl<'a, K, V> Iterator for Iter<'a, K, V> {
type Item = (&'a K, &'a V);
#[inline]
fn next(&mut self) -> Option<(&'a K, &'a V)> {
if self.remaining == 0 {
None
} else {
self.remaining -= 1;
unsafe {
let (key, value) = (*self.head).entry_ref();
self.head = (*self.head).links.value.next.as_ptr();
Some((key, value))
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<'a, K, V> Iterator for IterMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
#[inline]
fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
if self.remaining == 0 {
None
} else {
self.remaining -= 1;
unsafe {
let head = self.head.as_ptr();
let (key, value) = (*head).entry_mut();
self.head = Some((*head).links.value.next);
Some((key, value))
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<K, V> Iterator for IntoIter<K, V> {
type Item = (K, V);
#[inline]
fn next(&mut self) -> Option<(K, V)> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
unsafe {
let head = self.head.as_ptr();
self.head = Some((*head).links.value.next);
let mut e = Box::from_raw(head);
Some(e.take_entry())
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<'a, K, V> Iterator for Drain<'a, K, V> {
type Item = (K, V);
#[inline]
fn next(&mut self) -> Option<(K, V)> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
unsafe {
let mut head = NonNull::new_unchecked(self.head.as_ptr());
self.head = Some(head.as_ref().links.value.next);
let entry = head.as_mut().take_entry();
push_free(self.free.as_mut(), head);
Some(entry)
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<'a, K, V> DoubleEndedIterator for Iter<'a, K, V> {
#[inline]
fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
if self.remaining == 0 {
None
} else {
self.remaining -= 1;
unsafe {
let tail = self.tail;
self.tail = (*tail).links.value.prev.as_ptr();
let (key, value) = (*tail).entry_ref();
Some((key, value))
}
}
}
}
impl<'a, K, V> DoubleEndedIterator for IterMut<'a, K, V> {
#[inline]
fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
if self.remaining == 0 {
None
} else {
self.remaining -= 1;
unsafe {
let tail = self.tail.as_ptr();
self.tail = Some((*tail).links.value.prev);
let (key, value) = (*tail).entry_mut();
Some((key, value))
}
}
}
}
impl<K, V> DoubleEndedIterator for IntoIter<K, V> {
#[inline]
fn next_back(&mut self) -> Option<(K, V)> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
unsafe {
let mut e = *Box::from_raw(self.tail.as_ptr());
self.tail = Some(e.links.value.prev);
Some(e.take_entry())
}
}
}
impl<'a, K, V> DoubleEndedIterator for Drain<'a, K, V> {
#[inline]
fn next_back(&mut self) -> Option<(K, V)> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
unsafe {
let mut tail = NonNull::new_unchecked(self.tail.as_ptr());
self.tail = Some(tail.as_ref().links.value.prev);
let entry = tail.as_mut().take_entry();
push_free(&mut *self.free.as_ptr(), tail);
Some(entry)
}
}
}
impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {}
impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {}
impl<K, V> ExactSizeIterator for IntoIter<K, V> {}
impl<K, V> Drop for IntoIter<K, V> {
#[inline]
fn drop(&mut self) {
for _ in 0..self.remaining {
unsafe {
let tail = self.tail.as_ptr();
self.tail = Some((*tail).links.value.prev);
(*tail).take_entry();
let _ = Box::from_raw(tail);
}
}
}
}
impl<'a, K, V> Drop for Drain<'a, K, V> {
#[inline]
fn drop(&mut self) {
for _ in 0..self.remaining {
unsafe {
let mut tail = NonNull::new_unchecked(self.tail.as_ptr());
self.tail = Some(tail.as_ref().links.value.prev);
tail.as_mut().take_entry();
push_free(&mut *self.free.as_ptr(), tail);
}
}
}
}
/// The `CursorMut` struct and its implementation provide the basic mutable Cursor API for Linked
/// lists as proposed in
/// several exceptions:
///
/// - It behaves similarly to Rust's Iterators, returning `None` when the end of the list is
/// reached. A _guard_ node is positioned between the head and tail of the linked list to
/// facilitate this. If the cursor is over this guard node, `None` is returned, signaling the end
/// or start of the list. From this position, the cursor can move in either direction as the
/// linked list is circular, with the guard node connecting the two ends.
/// - The current implementation does not include an `index` method, as it does not track the index
/// of its elements. It provides access to each map entry as a tuple of `(&K, &mut V)`.
///
pub struct CursorMut<'a, K, V, S> {
cur: *mut Node<K, V>,
hash_builder: &'a S,
free: &'a mut Option<NonNull<Node<K, V>>>,
values: &'a mut Option<NonNull<Node<K, V>>>,
table: &'a mut hashbrown::HashTable<NonNull<Node<K, V>>>,
}
impl<'a, K, V, S> CursorMut<'a, K, V, S> {
/// Returns an `Option` of the current element in the list, provided it is not the
/// _guard_ node, and `None` overwise.
#[inline]
pub fn current(&mut self) -> Option<(&K, &mut V)> {
unsafe {
let at = NonNull::new_unchecked(self.cur);
self.peek(at)
}
}
/// Retrieves the next element in the list (moving towards the end).
#[inline]
pub fn peek_next(&mut self) -> Option<(&K, &mut V)> {
unsafe {
let at = (*self.cur).links.value.next;
self.peek(at)
}
}
/// Retrieves the previous element in the list (moving towards the front).
#[inline]
pub fn peek_prev(&mut self) -> Option<(&K, &mut V)> {
unsafe {
let at = (*self.cur).links.value.prev;
self.peek(at)
}
}
// Retrieves the element without advancing current position to it.
#[inline]
fn peek(&mut self, at: NonNull<Node<K, V>>) -> Option<(&K, &mut V)> {
if let Some(values) = self.values {
unsafe {
let node = at.as_ptr();
if node == values.as_ptr() {
None
} else {
let entry = (*node).entry_mut();
Some((&entry.0, &mut entry.1))
}
}
} else {
None
}
}
/// Updates the pointer to the current element to the next element in the
/// list (that is, moving towards the end).
#[inline]
pub fn move_next(&mut self) {
let at = unsafe { (*self.cur).links.value.next };
self.muv(at);
}
/// Updates the pointer to the current element to the previous element in the
/// list (that is, moving towards the front).
#[inline]
pub fn move_prev(&mut self) {
let at = unsafe { (*self.cur).links.value.prev };
self.muv(at);
}
// Updates the pointer to the current element to the one returned by the at closure function.
#[inline]
fn muv(&mut self, at: NonNull<Node<K, V>>) {
self.cur = at.as_ptr();
}
/// Inserts the provided key and value before the current element. It checks if an entry
/// with the given key exists and, if so, replaces its value with the provided `key`
/// parameter. The key is not updated; this matters for types that can be `==` without
/// being identical.
///
/// If the entry doesn't exist, it creates a new one. If a value has been updated, the
/// function returns the *old* value wrapped with `Some` and `None` otherwise.
#[inline]
pub fn insert_before(&mut self, key: K, value: V) -> Option<V>
where
K: Eq + Hash,
S: BuildHasher,
{
let before = unsafe { NonNull::new_unchecked(self.cur) };
self.insert(key, value, before)
}
/// Inserts the provided key and value after the current element. It checks if an entry
/// with the given key exists and, if so, replaces its value with the provided `key`
/// parameter. The key is not updated; this matters for types that can be `==` without
/// being identical.
///
/// If the entry doesn't exist, it creates a new one. If a value has been updated, the
/// function returns the *old* value wrapped with `Some` and `None` otherwise.
#[inline]
pub fn insert_after(&mut self, key: K, value: V) -> Option<V>
where
K: Eq + Hash,
S: BuildHasher,
{
let before = unsafe { (*self.cur).links.value.next };
self.insert(key, value, before)
}
// Inserts an element immediately before the given `before` node.
#[inline]
fn insert(&mut self, key: K, value: V, before: NonNull<Node<K, V>>) -> Option<V>
where
K: Eq + Hash,
S: BuildHasher,
{
unsafe {
let hash = hash_key(self.hash_builder, &key);
let i_entry = self
.table
.find_entry(hash, |o| (*o).as_ref().key_ref().eq(&key));
match i_entry {
Ok(occupied) => {
let mut node = *occupied.into_mut();
let pv = mem::replace(&mut node.as_mut().entry_mut().1, value);
if node != before {
detach_node(node);
attach_before(node, before);
}
Some(pv)
}
Err(_) => {
let mut new_node = allocate_node(self.free);
new_node.as_mut().put_entry((key, value));
attach_before(new_node, before);
let hash_builder = self.hash_builder;
self.table.insert_unique(hash, new_node, move |k| {
hash_key(hash_builder, (*k).as_ref().key_ref())
});
None
}
}
}
}
}
pub struct Keys<'a, K, V> {
inner: Iter<'a, K, V>,
}
impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<'a, K, V> Clone for Keys<'a, K, V> {
#[inline]
fn clone(&self) -> Keys<'a, K, V> {
Keys {
inner: self.inner.clone(),
}
}
}
impl<'a, K, V> Iterator for Keys<'a, K, V> {
type Item = &'a K;
#[inline]
fn next(&mut self) -> Option<&'a K> {
self.inner.next().map(|e| e.0)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> {
#[inline]
fn next_back(&mut self) -> Option<&'a K> {
self.inner.next_back().map(|e| e.0)
}
}
impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
pub struct Values<'a, K, V> {
inner: Iter<'a, K, V>,
}
impl<K, V> Clone for Values<'_, K, V> {
#[inline]
fn clone(&self) -> Self {
Values {
inner: self.inner.clone(),
}
}
}
impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<'a, K, V> Iterator for Values<'a, K, V> {
type Item = &'a V;
#[inline]
fn next(&mut self) -> Option<&'a V> {
self.inner.next().map(|e| e.1)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> {
#[inline]
fn next_back(&mut self) -> Option<&'a V> {
self.inner.next_back().map(|e| e.1)
}
}
impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
pub struct ValuesMut<'a, K, V> {
inner: IterMut<'a, K, V>,
}
impl<K, V> fmt::Debug for ValuesMut<'_, K, V>
where
K: fmt::Debug,
V: fmt::Debug,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.inner.iter()).finish()
}
}
impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
type Item = &'a mut V;
#[inline]
fn next(&mut self) -> Option<&'a mut V> {
self.inner.next().map(|e| e.1)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> DoubleEndedIterator for ValuesMut<'a, K, V> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut V> {
self.inner.next_back().map(|e| e.1)
}
}
impl<'a, K, V> ExactSizeIterator for ValuesMut<'a, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a, K, V, S> IntoIterator for &'a LinkedHashMap<K, V, S> {
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
#[inline]
fn into_iter(self) -> Iter<'a, K, V> {
self.iter()
}
}
impl<'a, K, V, S> IntoIterator for &'a mut LinkedHashMap<K, V, S> {
type Item = (&'a K, &'a mut V);
type IntoIter = IterMut<'a, K, V>;
#[inline]
fn into_iter(self) -> IterMut<'a, K, V> {
self.iter_mut()
}
}
impl<K, V, S> IntoIterator for LinkedHashMap<K, V, S> {
type Item = (K, V);
type IntoIter = IntoIter<K, V>;
#[inline]
fn into_iter(mut self) -> IntoIter<K, V> {
unsafe {
let (head, tail) = if let Some(values) = self.values {
let ValueLinks {
next: head,
prev: tail,
} = values.as_ref().links.value;
let _ = Box::from_raw(self.values.as_ptr());
self.values = None;
(Some(head), Some(tail))
} else {
(None, None)
};
let len = self.len();
drop_free_nodes(self.free.take());
self.table.clear();
IntoIter {
head,
tail,
remaining: len,
marker: PhantomData,
}
}
}
}
struct ValueLinks<K, V> {
next: NonNull<Node<K, V>>,
prev: NonNull<Node<K, V>>,
}
impl<K, V> Clone for ValueLinks<K, V> {
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<K, V> Copy for ValueLinks<K, V> {}
struct FreeLink<K, V> {
next: Option<NonNull<Node<K, V>>>,
}
impl<K, V> Clone for FreeLink<K, V> {
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<K, V> Copy for FreeLink<K, V> {}
union Links<K, V> {
value: ValueLinks<K, V>,
free: FreeLink<K, V>,
}
struct Node<K, V> {
entry: MaybeUninit<(K, V)>,
links: Links<K, V>,
}
impl<K, V> Node<K, V> {
#[inline]
unsafe fn put_entry(&mut self, entry: (K, V)) {
self.entry.as_mut_ptr().write(entry)
}
#[inline]
unsafe fn entry_ref(&self) -> &(K, V) {
&*self.entry.as_ptr()
}
#[inline]
unsafe fn key_ref(&self) -> &K {
&(*self.entry.as_ptr()).0
}
#[inline]
unsafe fn entry_mut(&mut self) -> &mut (K, V) {
&mut *self.entry.as_mut_ptr()
}
#[inline]
unsafe fn take_entry(&mut self) -> (K, V) {
self.entry.as_ptr().read()
}
}
trait OptNonNullExt<T> {
fn as_ptr(self) -> *mut T;
}
impl<T> OptNonNullExt<T> for Option<NonNull<T>> {
#[inline]
fn as_ptr(self) -> *mut T {
match self {
Some(ptr) => ptr.as_ptr(),
None => ptr::null_mut(),
}
}
}
// Allocate a circular list guard node if not present.
#[inline]
unsafe fn ensure_guard_node<K, V>(head: &mut Option<NonNull<Node<K, V>>>) {
if head.is_none() {
let mut p = NonNull::new_unchecked(Box::into_raw(Box::new(Node {
entry: MaybeUninit::uninit(),
links: Links {
value: ValueLinks {
next: NonNull::dangling(),
prev: NonNull::dangling(),
},
},
})));
p.as_mut().links.value = ValueLinks { next: p, prev: p };
*head = Some(p);
}
}
// Attach the `to_attach` node to the existing circular list *before* `node`.
#[inline]
unsafe fn attach_before<K, V>(mut to_attach: NonNull<Node<K, V>>, mut node: NonNull<Node<K, V>>) {
to_attach.as_mut().links.value = ValueLinks {
prev: node.as_ref().links.value.prev,
next: node,
};
node.as_mut().links.value.prev = to_attach;
(*to_attach.as_mut().links.value.prev.as_ptr())
.links
.value
.next = to_attach;
}
#[inline]
unsafe fn detach_node<K, V>(mut node: NonNull<Node<K, V>>) {
node.as_mut().links.value.prev.as_mut().links.value.next = node.as_ref().links.value.next;
node.as_mut().links.value.next.as_mut().links.value.prev = node.as_ref().links.value.prev;
}
#[inline]
unsafe fn push_free<K, V>(
free_list: &mut Option<NonNull<Node<K, V>>>,
mut node: NonNull<Node<K, V>>,
) {
node.as_mut().links.free.next = *free_list;
*free_list = Some(node);
}
#[inline]
unsafe fn pop_free<K, V>(
free_list: &mut Option<NonNull<Node<K, V>>>,
) -> Option<NonNull<Node<K, V>>> {
if let Some(free) = *free_list {
*free_list = free.as_ref().links.free.next;
Some(free)
} else {
None
}
}
#[inline]
unsafe fn allocate_node<K, V>(free_list: &mut Option<NonNull<Node<K, V>>>) -> NonNull<Node<K, V>> {
if let Some(mut free) = pop_free(free_list) {
free.as_mut().links.value = ValueLinks {
next: NonNull::dangling(),
prev: NonNull::dangling(),
};
free
} else {
NonNull::new_unchecked(Box::into_raw(Box::new(Node {
entry: MaybeUninit::uninit(),
links: Links {
value: ValueLinks {
next: NonNull::dangling(),
prev: NonNull::dangling(),
},
},
})))
}
}
// Given node is assumed to be the guard node and is *not* dropped.
#[inline]
unsafe fn drop_value_nodes<K, V>(guard: NonNull<Node<K, V>>) {
let mut cur = guard.as_ref().links.value.prev;
while cur != guard {
let prev = cur.as_ref().links.value.prev;
cur.as_mut().take_entry();
let _ = Box::from_raw(cur.as_ptr());
cur = prev;
}
}
// Drops all linked free nodes starting with the given node. Free nodes are only non-circular
// singly linked, and should have uninitialized keys / values.
#[inline]
unsafe fn drop_free_nodes<K, V>(mut free: Option<NonNull<Node<K, V>>>) {
while let Some(some_free) = free {
let next_free = some_free.as_ref().links.free.next;
let _ = Box::from_raw(some_free.as_ptr());
free = next_free;
}
}
#[inline]
unsafe fn remove_node<K, V>(
free_list: &mut Option<NonNull<Node<K, V>>>,
mut node: NonNull<Node<K, V>>,
) -> (K, V) {
detach_node(node);
push_free(free_list, node);
node.as_mut().take_entry()
}
#[inline]
unsafe fn hash_node<S, K, V>(s: &S, node: NonNull<Node<K, V>>) -> u64
where
S: BuildHasher,
K: Hash,
{
hash_key(s, node.as_ref().key_ref())
}
#[inline]
fn hash_key<S, Q>(s: &S, k: &Q) -> u64
where
S: BuildHasher,
Q: Hash + ?Sized,
{
let mut hasher = s.build_hasher();
k.hash(&mut hasher);
hasher.finish()
}
// We do not drop the key and value when a value is filtered from the map during the call to
// `retain`. We need to be very careful not to have a live `HashMap` entry pointing to
// either a dangling `Node` or a `Node` with dropped keys / values. Since the key and value
// types may panic on drop, they may short-circuit the entry in the map actually being
// removed. Instead, we push the removed nodes onto the free list eagerly, then try and
// drop the keys and values for any newly freed nodes *after* `HashMap::retain` has
// completely finished.
struct DropFilteredValues<'a, K, V> {
free: &'a mut Option<NonNull<Node<K, V>>>,
cur_free: Option<NonNull<Node<K, V>>>,
}
impl<'a, K, V> DropFilteredValues<'a, K, V> {
#[inline]
fn drop_later(&mut self, node: NonNull<Node<K, V>>) {
unsafe {
detach_node(node);
push_free(&mut self.cur_free, node);
}
}
}
impl<'a, K, V> Drop for DropFilteredValues<'a, K, V> {
fn drop(&mut self) {
unsafe {
let end_free = self.cur_free;
while self.cur_free != *self.free {
let cur_free = self.cur_free.as_ptr();
(*cur_free).take_entry();
self.cur_free = (*cur_free).links.free.next;
}
*self.free = end_free;
}
}
}