Revision control
Copy as Markdown
Other Tools
#![cfg(feature = "rayon")]
#[macro_use]
extern crate lazy_static;
use hashbrown::{HashMap, HashSet};
use rayon::iter::{
IntoParallelIterator, IntoParallelRefIterator, IntoParallelRefMutIterator, ParallelExtend,
ParallelIterator,
};
macro_rules! assert_eq3 {
($e1:expr, $e2:expr, $e3:expr) => {{
assert_eq!($e1, $e2);
assert_eq!($e1, $e3);
assert_eq!($e2, $e3);
}};
}
lazy_static! {
static ref MAP_EMPTY: HashMap<char, u32> = HashMap::new();
static ref MAP: HashMap<char, u32> = {
let mut m = HashMap::new();
m.insert('b', 20);
m.insert('a', 10);
m.insert('c', 30);
m.insert('e', 50);
m.insert('f', 60);
m.insert('d', 40);
m
};
}
#[test]
fn map_seq_par_equivalence_iter_empty() {
let vec_seq = MAP_EMPTY.iter().collect::<Vec<_>>();
let vec_par = MAP_EMPTY.par_iter().collect::<Vec<_>>();
assert_eq3!(vec_seq, vec_par, []);
}
#[test]
fn map_seq_par_equivalence_iter() {
let mut vec_seq = MAP.iter().collect::<Vec<_>>();
let mut vec_par = MAP.par_iter().collect::<Vec<_>>();
assert_eq!(vec_seq, vec_par);
// Do not depend on the exact order of values
let expected_sorted = [
(&'a', &10),
(&'b', &20),
(&'c', &30),
(&'d', &40),
(&'e', &50),
(&'f', &60),
];
vec_seq.sort_unstable();
vec_par.sort_unstable();
assert_eq3!(vec_seq, vec_par, expected_sorted);
}
#[test]
fn map_seq_par_equivalence_keys_empty() {
let vec_seq = MAP_EMPTY.keys().collect::<Vec<&char>>();
let vec_par = MAP_EMPTY.par_keys().collect::<Vec<&char>>();
let expected: [&char; 0] = [];
assert_eq3!(vec_seq, vec_par, expected);
}
#[test]
fn map_seq_par_equivalence_keys() {
let mut vec_seq = MAP.keys().collect::<Vec<_>>();
let mut vec_par = MAP.par_keys().collect::<Vec<_>>();
assert_eq!(vec_seq, vec_par);
// Do not depend on the exact order of values
let expected_sorted = [&'a', &'b', &'c', &'d', &'e', &'f'];
vec_seq.sort_unstable();
vec_par.sort_unstable();
assert_eq3!(vec_seq, vec_par, expected_sorted);
}
#[test]
fn map_seq_par_equivalence_values_empty() {
let vec_seq = MAP_EMPTY.values().collect::<Vec<_>>();
let vec_par = MAP_EMPTY.par_values().collect::<Vec<_>>();
let expected: [&u32; 0] = [];
assert_eq3!(vec_seq, vec_par, expected);
}
#[test]
fn map_seq_par_equivalence_values() {
let mut vec_seq = MAP.values().collect::<Vec<_>>();
let mut vec_par = MAP.par_values().collect::<Vec<_>>();
assert_eq!(vec_seq, vec_par);
// Do not depend on the exact order of values
let expected_sorted = [&10, &20, &30, &40, &50, &60];
vec_seq.sort_unstable();
vec_par.sort_unstable();
assert_eq3!(vec_seq, vec_par, expected_sorted);
}
#[test]
fn map_seq_par_equivalence_iter_mut_empty() {
let mut map1 = MAP_EMPTY.clone();
let mut map2 = MAP_EMPTY.clone();
let vec_seq = map1.iter_mut().collect::<Vec<_>>();
let vec_par = map2.par_iter_mut().collect::<Vec<_>>();
assert_eq3!(vec_seq, vec_par, []);
}
#[test]
fn map_seq_par_equivalence_iter_mut() {
let mut map1 = MAP.clone();
let mut map2 = MAP.clone();
let mut vec_seq = map1.iter_mut().collect::<Vec<_>>();
let mut vec_par = map2.par_iter_mut().collect::<Vec<_>>();
assert_eq!(vec_seq, vec_par);
// Do not depend on the exact order of values
let expected_sorted = [
(&'a', &mut 10),
(&'b', &mut 20),
(&'c', &mut 30),
(&'d', &mut 40),
(&'e', &mut 50),
(&'f', &mut 60),
];
vec_seq.sort_unstable();
vec_par.sort_unstable();
assert_eq3!(vec_seq, vec_par, expected_sorted);
}
#[test]
fn map_seq_par_equivalence_values_mut_empty() {
let mut map1 = MAP_EMPTY.clone();
let mut map2 = MAP_EMPTY.clone();
let vec_seq = map1.values_mut().collect::<Vec<_>>();
let vec_par = map2.par_values_mut().collect::<Vec<_>>();
let expected: [&u32; 0] = [];
assert_eq3!(vec_seq, vec_par, expected);
}
#[test]
fn map_seq_par_equivalence_values_mut() {
let mut map1 = MAP.clone();
let mut map2 = MAP.clone();
let mut vec_seq = map1.values_mut().collect::<Vec<_>>();
let mut vec_par = map2.par_values_mut().collect::<Vec<_>>();
assert_eq!(vec_seq, vec_par);
// Do not depend on the exact order of values
let expected_sorted = [&mut 10, &mut 20, &mut 30, &mut 40, &mut 50, &mut 60];
vec_seq.sort_unstable();
vec_par.sort_unstable();
assert_eq3!(vec_seq, vec_par, expected_sorted);
}
#[test]
fn map_seq_par_equivalence_into_iter_empty() {
let vec_seq = MAP_EMPTY.clone().into_iter().collect::<Vec<_>>();
let vec_par = MAP_EMPTY.clone().into_par_iter().collect::<Vec<_>>();
assert_eq3!(vec_seq, vec_par, []);
}
#[test]
fn map_seq_par_equivalence_into_iter() {
let mut vec_seq = MAP.clone().into_iter().collect::<Vec<_>>();
let mut vec_par = MAP.clone().into_par_iter().collect::<Vec<_>>();
assert_eq!(vec_seq, vec_par);
// Do not depend on the exact order of values
let expected_sorted = [
('a', 10),
('b', 20),
('c', 30),
('d', 40),
('e', 50),
('f', 60),
];
vec_seq.sort_unstable();
vec_par.sort_unstable();
assert_eq3!(vec_seq, vec_par, expected_sorted);
}
lazy_static! {
static ref MAP_VEC_EMPTY: Vec<(char, u32)> = vec![];
static ref MAP_VEC: Vec<(char, u32)> = vec![
('b', 20),
('a', 10),
('c', 30),
('e', 50),
('f', 60),
('d', 40),
];
}
#[test]
fn map_seq_par_equivalence_collect_empty() {
let map_expected = MAP_EMPTY.clone();
let map_seq = MAP_VEC_EMPTY.clone().into_iter().collect::<HashMap<_, _>>();
let map_par = MAP_VEC_EMPTY
.clone()
.into_par_iter()
.collect::<HashMap<_, _>>();
assert_eq!(map_seq, map_par);
assert_eq!(map_seq, map_expected);
assert_eq!(map_par, map_expected);
}
#[test]
fn map_seq_par_equivalence_collect() {
let map_expected = MAP.clone();
let map_seq = MAP_VEC.clone().into_iter().collect::<HashMap<_, _>>();
let map_par = MAP_VEC.clone().into_par_iter().collect::<HashMap<_, _>>();
assert_eq!(map_seq, map_par);
assert_eq!(map_seq, map_expected);
assert_eq!(map_par, map_expected);
}
lazy_static! {
static ref MAP_EXISTING_EMPTY: HashMap<char, u32> = HashMap::new();
static ref MAP_EXISTING: HashMap<char, u32> = {
let mut m = HashMap::new();
m.insert('b', 20);
m.insert('a', 10);
m
};
static ref MAP_EXTENSION_EMPTY: Vec<(char, u32)> = vec![];
static ref MAP_EXTENSION: Vec<(char, u32)> = vec![('c', 30), ('e', 50), ('f', 60), ('d', 40),];
}
#[test]
fn map_seq_par_equivalence_existing_empty_extend_empty() {
let expected = HashMap::new();
let mut map_seq = MAP_EXISTING_EMPTY.clone();
let mut map_par = MAP_EXISTING_EMPTY.clone();
map_seq.extend(MAP_EXTENSION_EMPTY.iter().copied());
map_par.par_extend(MAP_EXTENSION_EMPTY.par_iter().copied());
assert_eq3!(map_seq, map_par, expected);
}
#[test]
fn map_seq_par_equivalence_existing_empty_extend() {
let expected = MAP_EXTENSION.iter().copied().collect::<HashMap<_, _>>();
let mut map_seq = MAP_EXISTING_EMPTY.clone();
let mut map_par = MAP_EXISTING_EMPTY.clone();
map_seq.extend(MAP_EXTENSION.iter().copied());
map_par.par_extend(MAP_EXTENSION.par_iter().copied());
assert_eq3!(map_seq, map_par, expected);
}
#[test]
fn map_seq_par_equivalence_existing_extend_empty() {
let expected = MAP_EXISTING.clone();
let mut map_seq = MAP_EXISTING.clone();
let mut map_par = MAP_EXISTING.clone();
map_seq.extend(MAP_EXTENSION_EMPTY.iter().copied());
map_par.par_extend(MAP_EXTENSION_EMPTY.par_iter().copied());
assert_eq3!(map_seq, map_par, expected);
}
#[test]
fn map_seq_par_equivalence_existing_extend() {
let expected = MAP.clone();
let mut map_seq = MAP_EXISTING.clone();
let mut map_par = MAP_EXISTING.clone();
map_seq.extend(MAP_EXTENSION.iter().copied());
map_par.par_extend(MAP_EXTENSION.par_iter().copied());
assert_eq3!(map_seq, map_par, expected);
}
lazy_static! {
static ref SET_EMPTY: HashSet<char> = HashSet::new();
static ref SET: HashSet<char> = {
let mut s = HashSet::new();
s.insert('b');
s.insert('a');
s.insert('c');
s.insert('e');
s.insert('f');
s.insert('d');
s
};
}
#[test]
fn set_seq_par_equivalence_iter_empty() {
let vec_seq = SET_EMPTY.iter().collect::<Vec<_>>();
let vec_par = SET_EMPTY.par_iter().collect::<Vec<_>>();
let expected: [&char; 0] = [];
assert_eq3!(vec_seq, vec_par, expected);
}
#[test]
fn set_seq_par_equivalence_iter() {
let mut vec_seq = SET.iter().collect::<Vec<_>>();
let mut vec_par = SET.par_iter().collect::<Vec<_>>();
assert_eq!(vec_seq, vec_par);
// Do not depend on the exact order of values
let expected_sorted = [&'a', &'b', &'c', &'d', &'e', &'f'];
vec_seq.sort_unstable();
vec_par.sort_unstable();
assert_eq3!(vec_seq, vec_par, expected_sorted);
}
#[test]
fn set_seq_par_equivalence_into_iter_empty() {
let vec_seq = SET_EMPTY.clone().into_iter().collect::<Vec<_>>();
let vec_par = SET_EMPTY.clone().into_par_iter().collect::<Vec<_>>();
// Work around type inference failure introduced by rend dev-dependency.
let empty: [char; 0] = [];
assert_eq3!(vec_seq, vec_par, empty);
}
#[test]
fn set_seq_par_equivalence_into_iter() {
let mut vec_seq = SET.clone().into_iter().collect::<Vec<_>>();
let mut vec_par = SET.clone().into_par_iter().collect::<Vec<_>>();
assert_eq!(vec_seq, vec_par);
// Do not depend on the exact order of values
let expected_sorted = ['a', 'b', 'c', 'd', 'e', 'f'];
vec_seq.sort_unstable();
vec_par.sort_unstable();
assert_eq3!(vec_seq, vec_par, expected_sorted);
}
lazy_static! {
static ref SET_VEC_EMPTY: Vec<char> = vec![];
static ref SET_VEC: Vec<char> = vec!['b', 'a', 'c', 'e', 'f', 'd',];
}
#[test]
fn set_seq_par_equivalence_collect_empty() {
let set_expected = SET_EMPTY.clone();
let set_seq = SET_VEC_EMPTY.clone().into_iter().collect::<HashSet<_>>();
let set_par = SET_VEC_EMPTY
.clone()
.into_par_iter()
.collect::<HashSet<_>>();
assert_eq!(set_seq, set_par);
assert_eq!(set_seq, set_expected);
assert_eq!(set_par, set_expected);
}
#[test]
fn set_seq_par_equivalence_collect() {
let set_expected = SET.clone();
let set_seq = SET_VEC.clone().into_iter().collect::<HashSet<_>>();
let set_par = SET_VEC.clone().into_par_iter().collect::<HashSet<_>>();
assert_eq!(set_seq, set_par);
assert_eq!(set_seq, set_expected);
assert_eq!(set_par, set_expected);
}
lazy_static! {
static ref SET_EXISTING_EMPTY: HashSet<char> = HashSet::new();
static ref SET_EXISTING: HashSet<char> = {
let mut s = HashSet::new();
s.insert('b');
s.insert('a');
s
};
static ref SET_EXTENSION_EMPTY: Vec<char> = vec![];
static ref SET_EXTENSION: Vec<char> = vec!['c', 'e', 'f', 'd',];
}
#[test]
fn set_seq_par_equivalence_existing_empty_extend_empty() {
let expected = HashSet::new();
let mut set_seq = SET_EXISTING_EMPTY.clone();
let mut set_par = SET_EXISTING_EMPTY.clone();
set_seq.extend(SET_EXTENSION_EMPTY.iter().copied());
set_par.par_extend(SET_EXTENSION_EMPTY.par_iter().copied());
assert_eq3!(set_seq, set_par, expected);
}
#[test]
fn set_seq_par_equivalence_existing_empty_extend() {
let expected = SET_EXTENSION.iter().copied().collect::<HashSet<_>>();
let mut set_seq = SET_EXISTING_EMPTY.clone();
let mut set_par = SET_EXISTING_EMPTY.clone();
set_seq.extend(SET_EXTENSION.iter().copied());
set_par.par_extend(SET_EXTENSION.par_iter().copied());
assert_eq3!(set_seq, set_par, expected);
}
#[test]
fn set_seq_par_equivalence_existing_extend_empty() {
let expected = SET_EXISTING.clone();
let mut set_seq = SET_EXISTING.clone();
let mut set_par = SET_EXISTING.clone();
set_seq.extend(SET_EXTENSION_EMPTY.iter().copied());
set_par.par_extend(SET_EXTENSION_EMPTY.par_iter().copied());
assert_eq3!(set_seq, set_par, expected);
}
#[test]
fn set_seq_par_equivalence_existing_extend() {
let expected = SET.clone();
let mut set_seq = SET_EXISTING.clone();
let mut set_par = SET_EXISTING.clone();
set_seq.extend(SET_EXTENSION.iter().copied());
set_par.par_extend(SET_EXTENSION.par_iter().copied());
assert_eq3!(set_seq, set_par, expected);
}
lazy_static! {
static ref SET_A: HashSet<char> = ['a', 'b', 'c', 'd'].iter().copied().collect();
static ref SET_B: HashSet<char> = ['a', 'b', 'e', 'f'].iter().copied().collect();
static ref SET_DIFF_AB: HashSet<char> = ['c', 'd'].iter().copied().collect();
static ref SET_DIFF_BA: HashSet<char> = ['e', 'f'].iter().copied().collect();
static ref SET_SYMM_DIFF_AB: HashSet<char> = ['c', 'd', 'e', 'f'].iter().copied().collect();
static ref SET_INTERSECTION_AB: HashSet<char> = ['a', 'b'].iter().copied().collect();
static ref SET_UNION_AB: HashSet<char> =
['a', 'b', 'c', 'd', 'e', 'f'].iter().copied().collect();
}
#[test]
fn set_seq_par_equivalence_difference() {
let diff_ab_seq = SET_A.difference(&*SET_B).copied().collect::<HashSet<_>>();
let diff_ab_par = SET_A
.par_difference(&*SET_B)
.copied()
.collect::<HashSet<_>>();
assert_eq3!(diff_ab_seq, diff_ab_par, *SET_DIFF_AB);
let diff_ba_seq = SET_B.difference(&*SET_A).copied().collect::<HashSet<_>>();
let diff_ba_par = SET_B
.par_difference(&*SET_A)
.copied()
.collect::<HashSet<_>>();
assert_eq3!(diff_ba_seq, diff_ba_par, *SET_DIFF_BA);
}
#[test]
fn set_seq_par_equivalence_symmetric_difference() {
let symm_diff_ab_seq = SET_A
.symmetric_difference(&*SET_B)
.copied()
.collect::<HashSet<_>>();
let symm_diff_ab_par = SET_A
.par_symmetric_difference(&*SET_B)
.copied()
.collect::<HashSet<_>>();
assert_eq3!(symm_diff_ab_seq, symm_diff_ab_par, *SET_SYMM_DIFF_AB);
}
#[test]
fn set_seq_par_equivalence_intersection() {
let intersection_ab_seq = SET_A.intersection(&*SET_B).copied().collect::<HashSet<_>>();
let intersection_ab_par = SET_A
.par_intersection(&*SET_B)
.copied()
.collect::<HashSet<_>>();
assert_eq3!(
intersection_ab_seq,
intersection_ab_par,
*SET_INTERSECTION_AB
);
}
#[test]
fn set_seq_par_equivalence_union() {
let union_ab_seq = SET_A.union(&*SET_B).copied().collect::<HashSet<_>>();
let union_ab_par = SET_A.par_union(&*SET_B).copied().collect::<HashSet<_>>();
assert_eq3!(union_ab_seq, union_ab_par, *SET_UNION_AB);
}