Revision control

Copy as Markdown

Other Tools

// Copyright Mozilla Foundation. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::*;
use crate::ascii::*;
use crate::data::position;
use crate::handles::*;
use crate::variant::*;
pub struct SingleByteDecoder {
table: &'static [u16; 128],
}
impl SingleByteDecoder {
pub fn new(data: &'static [u16; 128]) -> VariantDecoder {
VariantDecoder::SingleByte(SingleByteDecoder { table: data })
}
pub fn max_utf16_buffer_length(&self, byte_length: usize) -> Option<usize> {
Some(byte_length)
}
pub fn max_utf8_buffer_length_without_replacement(&self, byte_length: usize) -> Option<usize> {
byte_length.checked_mul(3)
}
pub fn max_utf8_buffer_length(&self, byte_length: usize) -> Option<usize> {
byte_length.checked_mul(3)
}
pub fn decode_to_utf8_raw(
&mut self,
src: &[u8],
dst: &mut [u8],
_last: bool,
) -> (DecoderResult, usize, usize) {
let mut source = ByteSource::new(src);
let mut dest = Utf8Destination::new(dst);
'outermost: loop {
match dest.copy_ascii_from_check_space_bmp(&mut source) {
CopyAsciiResult::Stop(ret) => return ret,
CopyAsciiResult::GoOn((mut non_ascii, mut handle)) => 'middle: loop {
// Start non-boilerplate
//
// Since the non-ASCIIness of `non_ascii` is hidden from
// the optimizer, it can't figure out that it's OK to
// statically omit the bound check when accessing
// `[u16; 128]` with an index
// `non_ascii as usize - 0x80usize`.
//
// Safety: `non_ascii` is a u8 byte >=0x80, from the invariants
// on Utf8Destination::copy_ascii_from_check_space_bmp()
let mapped =
unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
// let mapped = self.table[non_ascii as usize - 0x80usize];
if mapped == 0u16 {
return (
DecoderResult::Malformed(1, 0),
source.consumed(),
handle.written(),
);
}
let dest_again = handle.write_bmp_excl_ascii(mapped);
// End non-boilerplate
match source.check_available() {
Space::Full(src_consumed) => {
return (
DecoderResult::InputEmpty,
src_consumed,
dest_again.written(),
);
}
Space::Available(source_handle) => {
match dest_again.check_space_bmp() {
Space::Full(dst_written) => {
return (
DecoderResult::OutputFull,
source_handle.consumed(),
dst_written,
);
}
Space::Available(mut destination_handle) => {
let (mut b, unread_handle) = source_handle.read();
let source_again = unread_handle.commit();
'innermost: loop {
if b > 127 {
non_ascii = b;
handle = destination_handle;
continue 'middle;
}
// Testing on Haswell says that we should write the
// byte unconditionally instead of trying to unread it
// to make it part of the next SIMD stride.
let dest_again_again = destination_handle.write_ascii(b);
if b < 60 {
// We've got punctuation
match source_again.check_available() {
Space::Full(src_consumed_again) => {
return (
DecoderResult::InputEmpty,
src_consumed_again,
dest_again_again.written(),
);
}
Space::Available(source_handle_again) => {
match dest_again_again.check_space_bmp() {
Space::Full(dst_written_again) => {
return (
DecoderResult::OutputFull,
source_handle_again.consumed(),
dst_written_again,
);
}
Space::Available(
destination_handle_again,
) => {
let (b_again, _unread_handle_again) =
source_handle_again.read();
b = b_again;
destination_handle =
destination_handle_again;
continue 'innermost;
}
}
}
}
}
// We've got markup or ASCII text
continue 'outermost;
}
}
}
}
}
},
}
}
}
pub fn decode_to_utf16_raw(
&mut self,
src: &[u8],
dst: &mut [u16],
_last: bool,
) -> (DecoderResult, usize, usize) {
let (pending, length) = if dst.len() < src.len() {
(DecoderResult::OutputFull, dst.len())
} else {
(DecoderResult::InputEmpty, src.len())
};
// Safety invariant: converted <= length. Quite often we have `converted < length`
// which will be separately marked.
let mut converted = 0usize;
'outermost: loop {
match unsafe {
// Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x`
ascii_to_basic_latin(
src.as_ptr().add(converted),
dst.as_mut_ptr().add(converted),
length - converted,
)
} {
None => {
return (pending, length, length);
}
Some((mut non_ascii, consumed)) => {
// Safety invariant: `converted <= length` upheld, since this can only consume
// up to `length - converted` bytes.
//
// Furthermore, in this context,
// we can assume `converted < length` since this branch is only ever hit when
// ascii_to_basic_latin fails to consume the entire slice
converted += consumed;
'middle: loop {
// `converted` doesn't count the reading of `non_ascii` yet.
// Since the non-ASCIIness of `non_ascii` is hidden from
// the optimizer, it can't figure out that it's OK to
// statically omit the bound check when accessing
// `[u16; 128]` with an index
// `non_ascii as usize - 0x80usize`.
//
// Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to
// the invariants of `ascii_to_basic_latin()`, and our table has enough space for that.
let mapped =
unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
// let mapped = self.table[non_ascii as usize - 0x80usize];
if mapped == 0u16 {
return (
DecoderResult::Malformed(1, 0),
converted + 1, // +1 `for non_ascii`
converted,
);
}
unsafe {
// Safety: As mentioned above, `converted < length`
*(dst.get_unchecked_mut(converted)) = mapped;
}
// Safety: `converted <= length` upheld, since `converted < length` before this
converted += 1;
// Next, handle ASCII punctuation and non-ASCII without
// going back to ASCII acceleration. Non-ASCII scripts
// use ASCII punctuation, so this avoid going to
// acceleration just for punctuation/space and then
// failing. This is a significant boost to non-ASCII
// scripts.
// TODO: Split out Latin converters without this part
// this stuff makes Latin script-conversion slower.
if converted == length {
return (pending, length, length);
}
// Safety: We are back to `converted < length` because of the == above
// and can perform this check.
let mut b = unsafe { *(src.get_unchecked(converted)) };
// Safety: `converted < length` is upheld for this loop
'innermost: loop {
if b > 127 {
non_ascii = b;
continue 'middle;
}
// Testing on Haswell says that we should write the
// byte unconditionally instead of trying to unread it
// to make it part of the next SIMD stride.
unsafe {
// Safety: `converted < length` is true for this loop
*(dst.get_unchecked_mut(converted)) = u16::from(b);
}
// Safety: We are now at `converted <= length`. We should *not* `continue`
// the loop without reverifying
converted += 1;
if b < 60 {
// We've got punctuation
if converted == length {
return (pending, length, length);
}
// Safety: we're back to `converted <= length` because of the == above
b = unsafe { *(src.get_unchecked(converted)) };
// Safety: The loop continues as `converted < length`
continue 'innermost;
}
// We've got markup or ASCII text
continue 'outermost;
}
}
}
}
}
}
pub fn latin1_byte_compatible_up_to(&self, buffer: &[u8]) -> usize {
let mut bytes = buffer;
let mut total = 0;
loop {
if let Some((non_ascii, offset)) = validate_ascii(bytes) {
total += offset;
// Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to
// the invariants of `ascii_to_basic_latin()`, and our table has enough space for that.
let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
if mapped != u16::from(non_ascii) {
return total;
}
total += 1;
bytes = &bytes[offset + 1..];
} else {
return total;
}
}
}
}
pub struct SingleByteEncoder {
table: &'static [u16; 128],
run_bmp_offset: usize,
run_byte_offset: usize,
run_length: usize,
}
impl SingleByteEncoder {
pub fn new(
encoding: &'static Encoding,
data: &'static [u16; 128],
run_bmp_offset: u16,
run_byte_offset: u8,
run_length: u8,
) -> Encoder {
Encoder::new(
encoding,
VariantEncoder::SingleByte(SingleByteEncoder {
table: data,
run_bmp_offset: run_bmp_offset as usize,
run_byte_offset: run_byte_offset as usize,
run_length: run_length as usize,
}),
)
}
pub fn max_buffer_length_from_utf16_without_replacement(
&self,
u16_length: usize,
) -> Option<usize> {
Some(u16_length)
}
pub fn max_buffer_length_from_utf8_without_replacement(
&self,
byte_length: usize,
) -> Option<usize> {
Some(byte_length)
}
#[inline(always)]
fn encode_u16(&self, code_unit: u16) -> Option<u8> {
// First, we see if the code unit falls into a run of consecutive
// code units that can be mapped by offset. This is very efficient
// for most non-Latin encodings as well as Latin1-ish encodings.
//
// For encodings that don't fit this pattern, the run (which may
// have the length of just one) just establishes the starting point
// for the next rule.
//
// Next, we do a forward linear search in the part of the index
// after the run. Even in non-Latin1-ish Latin encodings (except
// macintosh), the lower case letters are here.
//
// Next, we search the third quadrant up to the start of the run
// (upper case letters in Latin encodings except macintosh, in
// Greek and in KOI encodings) and then the second quadrant,
// except if the run stared before the third quadrant, we search
// the second quadrant up to the run.
//
// Last, we search the first quadrant, which has unused controls
// or punctuation in most encodings. This is bad for macintosh
// and IBM866, but those are rare.
// Run of consecutive units
let unit_as_usize = code_unit as usize;
let offset = unit_as_usize.wrapping_sub(self.run_bmp_offset);
if offset < self.run_length {
return Some((128 + self.run_byte_offset + offset) as u8);
}
// Search after the run
let tail_start = self.run_byte_offset + self.run_length;
if let Some(pos) = position(&self.table[tail_start..], code_unit) {
return Some((128 + tail_start + pos) as u8);
}
if self.run_byte_offset >= 64 {
// Search third quadrant before the run
if let Some(pos) = position(&self.table[64..self.run_byte_offset], code_unit) {
return Some(((128 + 64) + pos) as u8);
}
// Search second quadrant
if let Some(pos) = position(&self.table[32..64], code_unit) {
return Some(((128 + 32) + pos) as u8);
}
} else if let Some(pos) = position(&self.table[32..self.run_byte_offset], code_unit) {
// windows-1252, windows-874, ISO-8859-15 and ISO-8859-5
// Search second quadrant before the run
return Some(((128 + 32) + pos) as u8);
}
// Search first quadrant
if let Some(pos) = position(&self.table[..32], code_unit) {
return Some((128 + pos) as u8);
}
None
}
ascii_compatible_bmp_encoder_function!(
{
match self.encode_u16(bmp) {
Some(byte) => handle.write_one(byte),
None => {
return (
EncoderResult::unmappable_from_bmp(bmp),
source.consumed(),
handle.written(),
);
}
}
},
bmp,
self,
source,
handle,
copy_ascii_to_check_space_one,
check_space_one,
encode_from_utf8_raw,
str,
Utf8Source,
true
);
pub fn encode_from_utf16_raw(
&mut self,
src: &[u16],
dst: &mut [u8],
_last: bool,
) -> (EncoderResult, usize, usize) {
let (pending, length) = if dst.len() < src.len() {
(EncoderResult::OutputFull, dst.len())
} else {
(EncoderResult::InputEmpty, src.len())
};
// Safety invariant: converted <= length. Quite often we have `converted < length`
// which will be separately marked.
let mut converted = 0usize;
'outermost: loop {
match unsafe {
// Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x`
basic_latin_to_ascii(
src.as_ptr().add(converted),
dst.as_mut_ptr().add(converted),
length - converted,
)
} {
None => {
return (pending, length, length);
}
Some((mut non_ascii, consumed)) => {
// Safety invariant: `converted <= length` upheld, since this can only consume
// up to `length - converted` bytes.
//
// Furthermore, in this context,
// we can assume `converted < length` since this branch is only ever hit when
// ascii_to_basic_latin fails to consume the entire slice
converted += consumed;
'middle: loop {
// `converted` doesn't count the reading of `non_ascii` yet.
match self.encode_u16(non_ascii) {
Some(byte) => {
unsafe {
// Safety: we're allowed this access since `converted < length`
*(dst.get_unchecked_mut(converted)) = byte;
}
converted += 1;
// `converted <= length` now
}
None => {
// At this point, we need to know if we
// have a surrogate.
let high_bits = non_ascii & 0xFC00u16;
if high_bits == 0xD800u16 {
// high surrogate
if converted + 1 == length {
// End of buffer. This surrogate is unpaired.
return (
EncoderResult::Unmappable('\u{FFFD}'),
converted + 1, // +1 `for non_ascii`
converted,
);
}
// Safety: convered < length from outside the match, and `converted + 1 != length`,
// So `converted + 1 < length` as well. We're in bounds
let second =
u32::from(unsafe { *src.get_unchecked(converted + 1) });
if second & 0xFC00u32 != 0xDC00u32 {
return (
EncoderResult::Unmappable('\u{FFFD}'),
converted + 1, // +1 `for non_ascii`
converted,
);
}
// The next code unit is a low surrogate.
let astral: char = unsafe {
// Safety: We can rely on non_ascii being 0xD800-0xDBFF since the high bits are 0xD800
// Then, (non_ascii << 10 - 0xD800 << 10) becomes between (0 to 0x3FF) << 10, which is between
// 0x400 to 0xffc00. Adding the 0x10000 gives a range of 0x10400 to 0x10fc00. Subtracting the 0xDC00
// gives 0x2800 to 0x102000
// The second term is between 0xDC00 and 0xDFFF from the check above. This gives a maximum
// possible range of (0x10400 + 0xDC00) to (0x102000 + 0xDFFF) which is 0x1E000 to 0x10ffff.
// This is in range.
//
// From a Unicode principles perspective this can also be verified as we have checked that `non_ascii` is a high surrogate
// (0xD800..=0xDBFF), and that `second` is a low surrogate (`0xDC00..=0xDFFF`), and we are applying reverse of the UTC16 transformation
// algorithm <https://en.wikipedia.org/wiki/UTF-16#Code_points_from_U+010000_to_U+10FFFF>, by applying the high surrogate - 0xD800 to the
// high ten bits, and the low surrogate - 0xDc00 to the low ten bits, and then adding 0x10000
::core::char::from_u32_unchecked(
(u32::from(non_ascii) << 10) + second
- (((0xD800u32 << 10) - 0x1_0000u32) + 0xDC00u32),
)
};
return (
EncoderResult::Unmappable(astral),
converted + 2, // +2 `for non_ascii` and `second`
converted,
);
}
if high_bits == 0xDC00u16 {
// Unpaired low surrogate
return (
EncoderResult::Unmappable('\u{FFFD}'),
converted + 1, // +1 `for non_ascii`
converted,
);
}
return (
EncoderResult::unmappable_from_bmp(non_ascii),
converted + 1, // +1 `for non_ascii`
converted,
);
// Safety: This branch diverges, so no need to uphold invariants on `converted`
}
}
// Next, handle ASCII punctuation and non-ASCII without
// going back to ASCII acceleration. Non-ASCII scripts
// use ASCII punctuation, so this avoid going to
// acceleration just for punctuation/space and then
// failing. This is a significant boost to non-ASCII
// scripts.
// TODO: Split out Latin converters without this part
// this stuff makes Latin script-conversion slower.
if converted == length {
return (pending, length, length);
}
// Safety: we're back to `converted < length` due to the == above and can perform
// the unchecked read
let mut unit = unsafe { *(src.get_unchecked(converted)) };
'innermost: loop {
// Safety: This loop always begins with `converted < length`, see
// the invariant outside and the comment on the continue below
if unit > 127 {
non_ascii = unit;
continue 'middle;
}
// Testing on Haswell says that we should write the
// byte unconditionally instead of trying to unread it
// to make it part of the next SIMD stride.
unsafe {
// Safety: Can rely on converted < length
*(dst.get_unchecked_mut(converted)) = unit as u8;
}
converted += 1;
// `converted <= length` here
if unit < 60 {
// We've got punctuation
if converted == length {
return (pending, length, length);
}
// Safety: `converted < length` due to the == above. The read is safe.
unit = unsafe { *(src.get_unchecked(converted)) };
// Safety: This only happens if `converted < length`, maintaining it
continue 'innermost;
}
// We've got markup or ASCII text
continue 'outermost;
// Safety: All other routes to here diverge so the continue is the only
// way to run the innermost loop.
}
}
}
}
}
}
}
// Any copyright to the test code below this comment is dedicated to the
#[cfg(all(test, feature = "alloc"))]
mod tests {
use super::super::testing::*;
use super::super::*;
#[test]
fn test_windows_1255_ca() {
decode(WINDOWS_1255, b"\xCA", "\u{05BA}");
encode(WINDOWS_1255, "\u{05BA}", b"\xCA");
}
#[test]
fn test_ascii_punctuation() {
let bytes = b"\xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4. \xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4.";
let characters = "\u{0391}\u{03C5}\u{03C4}\u{03CC} \
\u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \
\u{03C4}\u{03B5}\u{03C3}\u{03C4}. \u{0391}\u{03C5}\u{03C4}\u{03CC} \
\u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \
\u{03C4}\u{03B5}\u{03C3}\u{03C4}.";
decode(WINDOWS_1253, bytes, characters);
encode(WINDOWS_1253, characters, bytes);
}
#[test]
fn test_decode_malformed() {
decode(
WINDOWS_1253,
b"\xC1\xF5\xD2\xF4\xFC",
"\u{0391}\u{03C5}\u{FFFD}\u{03C4}\u{03CC}",
);
}
#[test]
fn test_encode_unmappables() {
encode(
WINDOWS_1253,
"\u{0391}\u{03C5}\u{2603}\u{03C4}\u{03CC}",
b"\xC1\xF5&#9731;\xF4\xFC",
);
encode(
WINDOWS_1253,
"\u{0391}\u{03C5}\u{1F4A9}\u{03C4}\u{03CC}",
b"\xC1\xF5&#128169;\xF4\xFC",
);
}
#[test]
fn test_encode_unpaired_surrogates() {
encode_from_utf16(
WINDOWS_1253,
&[0x0391u16, 0x03C5u16, 0xDCA9u16, 0x03C4u16, 0x03CCu16],
b"\xC1\xF5&#65533;\xF4\xFC",
);
encode_from_utf16(
WINDOWS_1253,
&[0x0391u16, 0x03C5u16, 0xD83Du16, 0x03C4u16, 0x03CCu16],
b"\xC1\xF5&#65533;\xF4\xFC",
);
encode_from_utf16(
WINDOWS_1253,
&[0x0391u16, 0x03C5u16, 0x03C4u16, 0x03CCu16, 0xD83Du16],
b"\xC1\xF5\xF4\xFC&#65533;",
);
}
pub const HIGH_BYTES: &'static [u8; 128] = &[
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E,
0x8F, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D,
0x9E, 0x9F, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC,
0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB,
0xBC, 0xBD, 0xBE, 0xBF, 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA,
0xCB, 0xCC, 0xCD, 0xCE, 0xCF, 0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9,
0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8,
0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7,
0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF,
];
fn decode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) {
let mut with_replacement = [0u16; 128];
let mut it = data.iter().enumerate();
loop {
match it.next() {
Some((i, code_point)) => {
if *code_point == 0 {
with_replacement[i] = 0xFFFD;
} else {
with_replacement[i] = *code_point;
}
}
None => {
break;
}
}
}
decode_to_utf16(encoding, HIGH_BYTES, &with_replacement[..]);
}
fn encode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) {
let mut with_zeros = [0u8; 128];
let mut it = data.iter().enumerate();
loop {
match it.next() {
Some((i, code_point)) => {
if *code_point == 0 {
with_zeros[i] = 0;
} else {
with_zeros[i] = HIGH_BYTES[i];
}
}
None => {
break;
}
}
}
encode_from_utf16(encoding, data, &with_zeros[..]);
}
#[test]
fn test_single_byte_from_two_low_surrogates() {
let expectation = b"&#65533;&#65533;";
let mut output = [0u8; 40];
let mut encoder = WINDOWS_1253.new_encoder();
let (result, read, written, had_errors) =
encoder.encode_from_utf16(&[0xDC00u16, 0xDEDEu16], &mut output[..], true);
assert_eq!(result, CoderResult::InputEmpty);
assert_eq!(read, 2);
assert_eq!(written, expectation.len());
assert!(had_errors);
assert_eq!(&output[..written], expectation);
}
// These tests are so self-referential that they are pretty useless.
// BEGIN GENERATED CODE. PLEASE DO NOT EDIT.
// Instead, please regenerate using generate-encoding-data.py
#[test]
fn test_single_byte_decode() {
decode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866);
decode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10);
if cfg!(miri) {
// Miri is too slow
return;
}
decode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13);
decode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14);
decode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15);
decode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16);
decode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2);
decode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3);
decode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4);
decode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5);
decode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6);
decode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7);
decode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8);
decode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r);
decode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u);
decode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh);
decode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250);
decode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251);
decode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252);
decode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253);
decode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254);
decode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255);
decode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256);
decode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257);
decode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258);
decode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874);
decode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic);
}
#[test]
fn test_single_byte_encode() {
encode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866);
encode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10);
if cfg!(miri) {
// Miri is too slow
return;
}
encode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13);
encode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14);
encode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15);
encode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16);
encode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2);
encode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3);
encode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4);
encode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5);
encode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6);
encode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7);
encode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8);
encode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r);
encode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u);
encode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh);
encode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250);
encode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251);
encode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252);
encode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253);
encode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254);
encode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255);
encode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256);
encode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257);
encode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258);
encode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874);
encode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic);
}
// END GENERATED CODE
}