Revision control
Copy as Markdown
Other Tools
//! Common parsing utilities for derive macros.
//!
//! Fair parsing of [`syn::Type`] and [`syn::Expr`] requires [`syn`]'s `full`
//! feature to be enabled, which unnecessary increases compile times. As we
//! don't have complex AST manipulation, usually requiring only understanding
//! where syntax item begins and ends, simpler manual parsing is implemented.
use proc_macro2::{Delimiter, Spacing, TokenStream};
use quote::ToTokens;
use syn::{
buffer::Cursor,
parse::{Parse, ParseStream},
punctuated::Punctuated,
spanned::Spanned as _,
token, Error, Ident, Result,
};
/// [`syn::Type`] [`Parse`]ing polyfill.
#[derive(Clone, Debug)]
pub(crate) enum Type {
/// [`syn::Type::Tuple`] [`Parse`]ing polyfill.
Tuple {
paren: token::Paren,
items: Punctuated<TokenStream, token::Comma>,
},
/// Every other [`syn::Type`] variant.
Other(TokenStream),
}
impl Type {
/// Creates a [`Type::Tuple`] from the provided [`Iterator`] of [`TokenStream`]s.
pub(crate) fn tuple<T: ToTokens>(items: impl IntoIterator<Item = T>) -> Self {
Self::Tuple {
paren: token::Paren::default(),
items: items.into_iter().map(ToTokens::into_token_stream).collect(),
}
}
}
impl Parse for Type {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|c| {
let outer = *c;
if let Some((mut cursor, paren_span, next_item)) =
outer.group(Delimiter::Parenthesis)
{
let mut items = Punctuated::new();
while !cursor.eof() {
let (stream, c) = Self::parse_other(cursor).ok_or_else(|| {
Error::new(cursor.span(), "failed to parse type")
})?;
items.push_value(stream);
cursor = c;
if let Some((p, c)) = punct(',')(cursor) {
items.push_punct(token::Comma(p.span()));
cursor = c;
}
}
// `(Type)` is equivalent to `Type`, so isn't top-level tuple.
if items.len() == 1 && !items.trailing_punct() {
let stream = outer
.token_tree()
.unwrap_or_else(|| unreachable!())
.0
.into_token_stream();
Ok((Type::Other(stream), next_item))
} else {
Ok((
Type::Tuple {
paren: token::Paren(paren_span),
items,
},
next_item,
))
}
} else {
Self::parse_other(outer)
.map(|(s, c)| (Self::Other(s), c))
.ok_or_else(|| Error::new(outer.span(), "failed to parse type"))
}
})
}
}
impl ToTokens for Type {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
Type::Tuple { paren, items } => {
paren.surround(tokens, |tokens| items.to_tokens(tokens))
}
Type::Other(other) => other.to_tokens(tokens),
}
}
}
impl Type {
/// Parses a single [`Type::Other`].
pub fn parse_other(c: Cursor<'_>) -> Option<(TokenStream, Cursor<'_>)> {
take_until1(
alt([&mut balanced_pair(punct('<'), punct('>')), &mut token_tree]),
punct(','),
)(c)
}
}
/// [`syn::Expr`] [`Parse`]ing polyfill.
#[derive(Debug)]
pub(crate) enum Expr {
/// [`syn::Expr::Path`] of length 1 [`Parse`]ing polyfill.
Ident(Ident),
/// Every other [`syn::Expr`] variant.
Other(TokenStream),
}
impl Expr {
/// Returns an [`Ident`] in case this [`Expr`] is represented only by it.
pub(crate) fn ident(&self) -> Option<&Ident> {
match self {
Self::Ident(ident) => Some(ident),
Self::Other(_) => None,
}
}
}
impl Parse for Expr {
fn parse(input: ParseStream) -> Result<Self> {
if let Ok(ident) = input.step(|c| {
c.ident()
.filter(|(_, c)| c.eof() || punct(',')(*c).is_some())
.ok_or_else(|| Error::new(c.span(), "expected `ident(,|eof)`"))
}) {
Ok(Self::Ident(ident))
} else {
input.step(|c| {
take_until1(
alt([
&mut seq([
&mut colon2,
&mut balanced_pair(punct('<'), punct('>')),
]),
&mut seq([
&mut balanced_pair(punct('<'), punct('>')),
&mut colon2,
]),
&mut balanced_pair(punct('|'), punct('|')),
&mut token_tree,
]),
punct(','),
)(*c)
.map(|(stream, cursor)| (Self::Other(stream), cursor))
.ok_or_else(|| Error::new(c.span(), "failed to parse expression"))
})
}
}
}
impl ToTokens for Expr {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
Self::Ident(ident) => ident.to_tokens(tokens),
Self::Other(other) => other.to_tokens(tokens),
}
}
}
/// Result of parsing.
type ParsingResult<'a> = Option<(TokenStream, Cursor<'a>)>;
/// Tries to parse a [`syn::token::Colon2`].
pub fn colon2(c: Cursor<'_>) -> ParsingResult<'_> {
seq([
&mut punct_with_spacing(':', Spacing::Joint),
&mut punct(':'),
])(c)
}
/// Tries to parse a [`punct`] with [`Spacing`].
pub fn punct_with_spacing(
p: char,
spacing: Spacing,
) -> impl FnMut(Cursor<'_>) -> ParsingResult<'_> {
move |c| {
c.punct().and_then(|(punct, c)| {
(punct.as_char() == p && punct.spacing() == spacing)
.then(|| (punct.into_token_stream(), c))
})
}
}
/// Tries to parse a [`Punct`].
///
/// [`Punct`]: proc_macro2::Punct
pub fn punct(p: char) -> impl FnMut(Cursor<'_>) -> ParsingResult<'_> {
move |c| {
c.punct().and_then(|(punct, c)| {
(punct.as_char() == p).then(|| (punct.into_token_stream(), c))
})
}
}
/// Tries to parse any [`TokenTree`].
///
/// [`TokenTree`]: proc_macro2::TokenTree
pub fn token_tree(c: Cursor<'_>) -> ParsingResult<'_> {
c.token_tree().map(|(tt, c)| (tt.into_token_stream(), c))
}
/// Parses until balanced amount of `open` and `close` or eof.
///
/// [`Cursor`] should be pointing **right after** the first `open`ing.
pub fn balanced_pair(
mut open: impl FnMut(Cursor<'_>) -> ParsingResult<'_>,
mut close: impl FnMut(Cursor<'_>) -> ParsingResult<'_>,
) -> impl FnMut(Cursor<'_>) -> ParsingResult<'_> {
move |c| {
let (mut out, mut c) = open(c)?;
let mut count = 1;
while count != 0 {
let (stream, cursor) = if let Some(closing) = close(c) {
count -= 1;
closing
} else if let Some(opening) = open(c) {
count += 1;
opening
} else {
let (tt, c) = c.token_tree()?;
(tt.into_token_stream(), c)
};
out.extend(stream);
c = cursor;
}
Some((out, c))
}
}
/// Tries to execute the provided sequence of `parsers`.
pub fn seq<const N: usize>(
mut parsers: [&mut dyn FnMut(Cursor<'_>) -> ParsingResult<'_>; N],
) -> impl FnMut(Cursor<'_>) -> ParsingResult<'_> + '_ {
move |c| {
parsers
.iter_mut()
.fold(Some((TokenStream::new(), c)), |out, parser| {
let (mut out, mut c) = out?;
let (stream, cursor) = parser(c)?;
out.extend(stream);
c = cursor;
Some((out, c))
})
}
}
/// Tries to execute the first successful parser.
pub fn alt<const N: usize>(
mut parsers: [&mut dyn FnMut(Cursor<'_>) -> ParsingResult<'_>; N],
) -> impl FnMut(Cursor<'_>) -> ParsingResult<'_> + '_ {
move |c| {
parsers
.iter_mut()
.find_map(|parser| parser(c).map(|(s, c)| (s, c)))
}
}
/// Parses with `basic` while `until` fails. Returns [`None`] in case
/// `until` succeeded initially or `basic` never succeeded. Doesn't consume
/// tokens parsed by `until`.
pub fn take_until1<P, U>(
mut parser: P,
mut until: U,
) -> impl FnMut(Cursor<'_>) -> ParsingResult<'_>
where
P: FnMut(Cursor<'_>) -> ParsingResult<'_>,
U: FnMut(Cursor<'_>) -> ParsingResult<'_>,
{
move |mut cursor| {
let mut out = TokenStream::new();
let mut parsed = false;
loop {
if cursor.eof() || until(cursor).is_some() {
return parsed.then_some((out, cursor));
}
let (stream, c) = parser(cursor)?;
out.extend(stream);
cursor = c;
parsed = true;
}
}
}
#[cfg(test)]
mod spec {
use std::{fmt::Debug, str::FromStr};
use itertools::Itertools as _;
use proc_macro2::TokenStream;
use quote::ToTokens;
use syn::{
parse::{Parse, Parser as _},
punctuated::Punctuated,
token::Comma,
};
use super::{Expr, Type};
fn assert<'a, T: Debug + Parse + ToTokens>(
input: &'a str,
parsed: impl AsRef<[&'a str]>,
) {
let parsed = parsed.as_ref();
let punctuated = Punctuated::<T, Comma>::parse_terminated
.parse2(TokenStream::from_str(input).unwrap())
.unwrap();
assert_eq!(
parsed.len(),
punctuated.len(),
"Wrong length\n\
Expected: {parsed:?}\n\
Found: {punctuated:?}",
);
punctuated
.iter()
.map(|ty| ty.to_token_stream().to_string())
.zip(parsed)
.enumerate()
.for_each(|(i, (found, expected))| {
assert_eq!(
*expected, &found,
"Mismatch at index {i}\n\
Expected: {parsed:?}\n\
Found: {punctuated:?}",
);
});
}
mod tuple {
use super::*;
#[test]
fn zst_is_tuple() {
let zst = "()";
match syn::parse_str::<Type>(zst).unwrap() {
Type::Tuple { items, .. } => {
assert!(items.is_empty(), "Expected empty tuple, found: {items:?}");
}
other => panic!("Expected `Type::Tuple {{ .. }}`, found: {other:?}"),
}
}
#[test]
fn group_not_tuple() {
let group = "(Type)";
match syn::parse_str::<Type>(group).unwrap() {
Type::Other(tokens) => {
assert_eq!(tokens.to_string(), group);
}
tuple => panic!("Expected `Type::Other(_)`, found: {tuple:?}"),
}
}
#[test]
fn single_element_tuple() {
let tuple = "(Type,)";
match syn::parse_str::<Type>(tuple).unwrap() {
Type::Tuple { items, .. } => {
assert_eq!(
items.len(),
1,
"Expected empty tuple, found: {items:?}",
);
assert_eq!(items.first().unwrap().to_string(), "Type");
}
other => panic!("Expected `Type::Tuple {{ .. }}`, found: {other:?}"),
}
}
#[test]
fn cases() {
let cases = [
"[Type ; 3]",
"fn (usize) -> bool",
"for <'a > fn (&'a usize) -> bool",
"(Type)",
"path :: to :: Type",
"path :: to :: Generic < Type >",
"< Type as Trait >:: Assoc",
"< Type as Trait >:: Assoc < GAT >",
"* const ()",
"* mut ()",
"& i32",
"&'static str",
"& [str]",
"dyn Trait",
"dyn Trait + Send",
"()",
"(Type ,)",
"(Type , Type)",
"(Type , Type ,)",
];
assert::<Type>("", []);
for i in 1..4 {
for permutations in cases.into_iter().permutations(i) {
let mut input = permutations.join(",");
assert::<Type>(&input, &permutations);
input.push(',');
assert::<Type>(&input, &permutations);
}
}
}
}
mod expr {
use super::*;
#[test]
fn cases() {
let cases = [
"ident",
"[a , b , c , d]",
"counter += 1",
"async { fut . await }",
"a < b",
"a > b",
"{ let x = (a , b) ; }",
"invoke (a , b)",
"foo as f64",
"| a , b | a + b",
"obj . k",
"for pat in expr { break pat ; }",
"if expr { true } else { false }",
"vector [2]",
"1",
"\"foo\"",
"loop { break i ; }",
"format ! (\"{}\" , q)",
"match n { Some (n) => { } , None => { } }",
"x . foo ::< T > (a , b)",
"x . foo ::< T < [T < T >; if a < b { 1 } else { 2 }] >, { a < b } > (a , b)",
"(a + b)",
"i32 :: MAX",
"1 .. 2",
"& a",
"[0u8 ; N]",
"(a , b , c , d)",
"< Ty as Trait > :: T",
"< Ty < Ty < T >, { a < b } > as Trait < T > > :: T",
];
assert::<Expr>("", []);
for i in 1..4 {
for permutations in cases.into_iter().permutations(i) {
let mut input = permutations.clone().join(",");
assert::<Expr>(&input, &permutations);
input.push(',');
assert::<Expr>(&input, &permutations);
}
}
}
}
}