Revision control
Copy as Markdown
Other Tools
/*!
Provides direct access to a DFA implementation of Aho-Corasick.
This is a low-level API that generally only needs to be used in niche
circumstances. When possible, prefer using [`AhoCorasick`](crate::AhoCorasick)
instead of a DFA directly. Using an `DFA` directly is typically only necessary
when one needs access to the [`Automaton`] trait implementation.
*/
use alloc::{vec, vec::Vec};
use crate::{
automaton::Automaton,
nfa::noncontiguous,
util::{
alphabet::ByteClasses,
error::{BuildError, MatchError},
int::{Usize, U32},
prefilter::Prefilter,
primitives::{IteratorIndexExt, PatternID, SmallIndex, StateID},
search::{Anchored, MatchKind, StartKind},
special::Special,
},
};
/// A DFA implementation of Aho-Corasick.
///
/// When possible, prefer using [`AhoCorasick`](crate::AhoCorasick) instead of
/// this type directly. Using a `DFA` directly is typically only necessary when
/// one needs access to the [`Automaton`] trait implementation.
///
/// This DFA can only be built by first constructing a [`noncontiguous::NFA`].
/// Both [`DFA::new`] and [`Builder::build`] do this for you automatically, but
/// [`Builder::build_from_noncontiguous`] permits doing it explicitly.
///
/// A DFA provides the best possible search performance (in this crate) via two
/// mechanisms:
///
/// * All states use a dense representation for their transitions.
/// * All failure transitions are pre-computed such that they are never
/// explicitly handled at search time.
///
/// These two facts combined mean that every state transition is performed
/// using a constant number of instructions. However, this comes at
/// great cost. The memory usage of a DFA can be quite exorbitant.
/// It is potentially multiple orders of magnitude greater than a
/// [`contiguous::NFA`](crate::nfa::contiguous::NFA) for example. In exchange,
/// a DFA will typically have better search speed than a `contiguous::NFA`, but
/// not by orders of magnitude.
///
/// Unless you have a small number of patterns or memory usage is not a concern
/// and search performance is critical, a DFA is usually not the best choice.
///
/// Moreover, unlike the NFAs in this crate, it is costly for a DFA to
/// support for anchored and unanchored search configurations. Namely,
/// since failure transitions are pre-computed, supporting both anchored
/// and unanchored searches requires a duplication of the transition table,
/// making the memory usage of such a DFA ever bigger. (The NFAs in this crate
/// unconditionally support both anchored and unanchored searches because there
/// is essentially no added cost for doing so.) It is for this reason that
/// a DFA's support for anchored and unanchored searches can be configured
/// via [`Builder::start_kind`]. By default, a DFA only supports unanchored
/// searches.
///
/// # Example
///
/// This example shows how to build an `DFA` directly and use it to execute
/// [`Automaton::try_find`]:
///
/// ```
/// use aho_corasick::{
/// automaton::Automaton,
/// dfa::DFA,
/// Input, Match,
/// };
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let nfa = DFA::new(patterns).unwrap();
/// assert_eq!(
/// Some(Match::must(0, 1..2)),
/// nfa.try_find(&Input::new(haystack))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// It is also possible to implement your own version of `try_find`. See the
/// [`Automaton`] documentation for an example.
#[derive(Clone)]
pub struct DFA {
/// The DFA transition table. IDs in this table are pre-multiplied. So
/// instead of the IDs being 0, 1, 2, 3, ..., they are 0*stride, 1*stride,
/// 2*stride, 3*stride, ...
trans: Vec<StateID>,
/// The matches for every match state in this DFA. This is first indexed by
/// state index (so that's `sid >> stride2`) and then by order in which the
/// matches are meant to occur.
matches: Vec<Vec<PatternID>>,
/// The amount of heap memory used, in bytes, by the inner Vecs of
/// 'matches'.
matches_memory_usage: usize,
/// The length of each pattern. This is used to compute the start offset
/// of a match.
pattern_lens: Vec<SmallIndex>,
/// A prefilter for accelerating searches, if one exists.
prefilter: Option<Prefilter>,
/// The match semantics built into this DFA.
match_kind: MatchKind,
/// The total number of states in this DFA.
state_len: usize,
/// The alphabet size, or total number of equivalence classes, for this
/// DFA. Note that the actual number of transitions in each state is
/// stride=2^stride2, where stride is the smallest power of 2 greater than
/// or equal to alphabet_len. We do things this way so that we can use
/// bitshifting to go from a state ID to an index into 'matches'.
alphabet_len: usize,
/// The exponent with a base 2, such that stride=2^stride2. Given a state
/// index 'i', its state identifier is 'i << stride2'. Given a state
/// identifier 'sid', its state index is 'sid >> stride2'.
stride2: usize,
/// The equivalence classes for this DFA. All transitions are defined on
/// equivalence classes and not on the 256 distinct byte values.
byte_classes: ByteClasses,
/// The length of the shortest pattern in this automaton.
min_pattern_len: usize,
/// The length of the longest pattern in this automaton.
max_pattern_len: usize,
/// The information required to deduce which states are "special" in this
/// DFA.
special: Special,
}
impl DFA {
/// Create a new Aho-Corasick DFA using the default configuration.
///
/// Use a [`Builder`] if you want to change the configuration.
pub fn new<I, P>(patterns: I) -> Result<DFA, BuildError>
where
I: IntoIterator<Item = P>,
P: AsRef<[u8]>,
{
DFA::builder().build(patterns)
}
/// A convenience method for returning a new Aho-Corasick DFA builder.
///
/// This usually permits one to just import the `DFA` type.
pub fn builder() -> Builder {
Builder::new()
}
}
impl DFA {
/// A sentinel state ID indicating that a search should stop once it has
/// entered this state. When a search stops, it returns a match if one has
/// been found, otherwise no match. A DFA always has an actual dead state
/// at this ID.
///
/// N.B. DFAs, unlike NFAs, do not have any notion of a FAIL state.
/// Namely, the whole point of a DFA is that the FAIL state is completely
/// compiled away. That is, DFA construction involves pre-computing the
/// failure transitions everywhere, such that failure transitions are no
/// longer used at search time. This, combined with its uniformly dense
/// representation, are the two most important factors in why it's faster
/// than the NFAs in this crate.
const DEAD: StateID = StateID::new_unchecked(0);
/// Adds the given pattern IDs as matches to the given state and also
/// records the added memory usage.
fn set_matches(
&mut self,
sid: StateID,
pids: impl Iterator<Item = PatternID>,
) {
let index = (sid.as_usize() >> self.stride2).checked_sub(2).unwrap();
let mut at_least_one = false;
for pid in pids {
self.matches[index].push(pid);
self.matches_memory_usage += PatternID::SIZE;
at_least_one = true;
}
assert!(at_least_one, "match state must have non-empty pids");
}
}
// SAFETY: 'start_state' always returns a valid state ID, 'next_state' always
// returns a valid state ID given a valid state ID. We otherwise claim that
// all other methods are correct as well.
unsafe impl Automaton for DFA {
#[inline(always)]
fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError> {
// Either of the start state IDs can be DEAD, in which case, support
// for that type of search is not provided by this DFA. Which start
// state IDs are inactive depends on the 'StartKind' configuration at
// DFA construction time.
match anchored {
Anchored::No => {
let start = self.special.start_unanchored_id;
if start == DFA::DEAD {
Err(MatchError::invalid_input_unanchored())
} else {
Ok(start)
}
}
Anchored::Yes => {
let start = self.special.start_anchored_id;
if start == DFA::DEAD {
Err(MatchError::invalid_input_anchored())
} else {
Ok(start)
}
}
}
}
#[inline(always)]
fn next_state(
&self,
_anchored: Anchored,
sid: StateID,
byte: u8,
) -> StateID {
let class = self.byte_classes.get(byte);
self.trans[(sid.as_u32() + u32::from(class)).as_usize()]
}
#[inline(always)]
fn is_special(&self, sid: StateID) -> bool {
sid <= self.special.max_special_id
}
#[inline(always)]
fn is_dead(&self, sid: StateID) -> bool {
sid == DFA::DEAD
}
#[inline(always)]
fn is_match(&self, sid: StateID) -> bool {
!self.is_dead(sid) && sid <= self.special.max_match_id
}
#[inline(always)]
fn is_start(&self, sid: StateID) -> bool {
sid == self.special.start_unanchored_id
|| sid == self.special.start_anchored_id
}
#[inline(always)]
fn match_kind(&self) -> MatchKind {
self.match_kind
}
#[inline(always)]
fn patterns_len(&self) -> usize {
self.pattern_lens.len()
}
#[inline(always)]
fn pattern_len(&self, pid: PatternID) -> usize {
self.pattern_lens[pid].as_usize()
}
#[inline(always)]
fn min_pattern_len(&self) -> usize {
self.min_pattern_len
}
#[inline(always)]
fn max_pattern_len(&self) -> usize {
self.max_pattern_len
}
#[inline(always)]
fn match_len(&self, sid: StateID) -> usize {
debug_assert!(self.is_match(sid));
let offset = (sid.as_usize() >> self.stride2) - 2;
self.matches[offset].len()
}
#[inline(always)]
fn match_pattern(&self, sid: StateID, index: usize) -> PatternID {
debug_assert!(self.is_match(sid));
let offset = (sid.as_usize() >> self.stride2) - 2;
self.matches[offset][index]
}
#[inline(always)]
fn memory_usage(&self) -> usize {
use core::mem::size_of;
(self.trans.len() * size_of::<u32>())
+ (self.matches.len() * size_of::<Vec<PatternID>>())
+ self.matches_memory_usage
+ (self.pattern_lens.len() * size_of::<SmallIndex>())
+ self.prefilter.as_ref().map_or(0, |p| p.memory_usage())
}
#[inline(always)]
fn prefilter(&self) -> Option<&Prefilter> {
self.prefilter.as_ref()
}
}
impl core::fmt::Debug for DFA {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use crate::{
automaton::{fmt_state_indicator, sparse_transitions},
util::debug::DebugByte,
};
writeln!(f, "dfa::DFA(")?;
for index in 0..self.state_len {
let sid = StateID::new_unchecked(index << self.stride2);
// While we do currently include the FAIL state in the transition
// table (to simplify construction), it is never actually used. It
// poses problems with the code below because it gets treated as
// a match state incidentally when it is, of course, not. So we
// special case it. The fail state is always the first state after
// the dead state.
//
// If the construction is changed to remove the fail state (it
// probably should be), then this special case should be updated.
if index == 1 {
writeln!(f, "F {:06}:", sid.as_usize())?;
continue;
}
fmt_state_indicator(f, self, sid)?;
write!(f, "{:06}: ", sid.as_usize())?;
let it = (0..self.byte_classes.alphabet_len()).map(|class| {
(class.as_u8(), self.trans[sid.as_usize() + class])
});
for (i, (start, end, next)) in sparse_transitions(it).enumerate() {
if i > 0 {
write!(f, ", ")?;
}
if start == end {
write!(
f,
"{:?} => {:?}",
DebugByte(start),
next.as_usize()
)?;
} else {
write!(
f,
"{:?}-{:?} => {:?}",
DebugByte(start),
DebugByte(end),
next.as_usize()
)?;
}
}
write!(f, "\n")?;
if self.is_match(sid) {
write!(f, " matches: ")?;
for i in 0..self.match_len(sid) {
if i > 0 {
write!(f, ", ")?;
}
let pid = self.match_pattern(sid, i);
write!(f, "{}", pid.as_usize())?;
}
write!(f, "\n")?;
}
}
writeln!(f, "match kind: {:?}", self.match_kind)?;
writeln!(f, "prefilter: {:?}", self.prefilter.is_some())?;
writeln!(f, "state length: {:?}", self.state_len)?;
writeln!(f, "pattern length: {:?}", self.patterns_len())?;
writeln!(f, "shortest pattern length: {:?}", self.min_pattern_len)?;
writeln!(f, "longest pattern length: {:?}", self.max_pattern_len)?;
writeln!(f, "alphabet length: {:?}", self.alphabet_len)?;
writeln!(f, "stride: {:?}", 1 << self.stride2)?;
writeln!(f, "byte classes: {:?}", self.byte_classes)?;
writeln!(f, "memory usage: {:?}", self.memory_usage())?;
writeln!(f, ")")?;
Ok(())
}
}
/// A builder for configuring an Aho-Corasick DFA.
///
/// This builder has a subset of the options available to a
/// [`AhoCorasickBuilder`](crate::AhoCorasickBuilder). Of the shared options,
/// their behavior is identical.
#[derive(Clone, Debug)]
pub struct Builder {
noncontiguous: noncontiguous::Builder,
start_kind: StartKind,
byte_classes: bool,
}
impl Default for Builder {
fn default() -> Builder {
Builder {
noncontiguous: noncontiguous::Builder::new(),
start_kind: StartKind::Unanchored,
byte_classes: true,
}
}
}
impl Builder {
/// Create a new builder for configuring an Aho-Corasick DFA.
pub fn new() -> Builder {
Builder::default()
}
/// Build an Aho-Corasick DFA from the given iterator of patterns.
///
/// A builder may be reused to create more DFAs.
pub fn build<I, P>(&self, patterns: I) -> Result<DFA, BuildError>
where
I: IntoIterator<Item = P>,
P: AsRef<[u8]>,
{
let nnfa = self.noncontiguous.build(patterns)?;
self.build_from_noncontiguous(&nnfa)
}
/// Build an Aho-Corasick DFA from the given noncontiguous NFA.
///
/// Note that when this method is used, only the `start_kind` and
/// `byte_classes` settings on this builder are respected. The other
/// settings only apply to the initial construction of the Aho-Corasick
/// automaton. Since using this method requires that initial construction
/// has already completed, all settings impacting only initial construction
/// are no longer relevant.
pub fn build_from_noncontiguous(
&self,
nnfa: &noncontiguous::NFA,
) -> Result<DFA, BuildError> {
debug!("building DFA");
let byte_classes = if self.byte_classes {
nnfa.byte_classes().clone()
} else {
ByteClasses::singletons()
};
let state_len = match self.start_kind {
StartKind::Unanchored | StartKind::Anchored => nnfa.states().len(),
StartKind::Both => {
// These unwraps are OK because we know that the number of
// NFA states is < StateID::LIMIT which is in turn less than
// i32::MAX. Thus, there is always room to multiply by 2.
// Finally, the number of states is always at least 4 in the
// NFA (DEAD, FAIL, START-UNANCHORED, START-ANCHORED), so the
// subtraction of 4 is okay.
//
// Note that we subtract 4 because the "anchored" part of
// the DFA duplicates the unanchored part (without failure
// transitions), but reuses the DEAD, FAIL and START states.
nnfa.states()
.len()
.checked_mul(2)
.unwrap()
.checked_sub(4)
.unwrap()
}
};
let trans_len =
match state_len.checked_shl(byte_classes.stride2().as_u32()) {
Some(trans_len) => trans_len,
None => {
return Err(BuildError::state_id_overflow(
StateID::MAX.as_u64(),
usize::MAX.as_u64(),
))
}
};
StateID::new(trans_len.checked_sub(byte_classes.stride()).unwrap())
.map_err(|e| {
BuildError::state_id_overflow(
StateID::MAX.as_u64(),
e.attempted(),
)
})?;
let num_match_states = match self.start_kind {
StartKind::Unanchored | StartKind::Anchored => {
nnfa.special().max_match_id.as_usize().checked_sub(1).unwrap()
}
StartKind::Both => nnfa
.special()
.max_match_id
.as_usize()
.checked_sub(1)
.unwrap()
.checked_mul(2)
.unwrap(),
};
let mut dfa = DFA {
trans: vec![DFA::DEAD; trans_len],
matches: vec![vec![]; num_match_states],
matches_memory_usage: 0,
pattern_lens: nnfa.pattern_lens_raw().to_vec(),
prefilter: nnfa.prefilter().map(|p| p.clone()),
match_kind: nnfa.match_kind(),
state_len,
alphabet_len: byte_classes.alphabet_len(),
stride2: byte_classes.stride2(),
byte_classes,
min_pattern_len: nnfa.min_pattern_len(),
max_pattern_len: nnfa.max_pattern_len(),
// The special state IDs are set later.
special: Special::zero(),
};
match self.start_kind {
StartKind::Both => {
self.finish_build_both_starts(nnfa, &mut dfa);
}
StartKind::Unanchored => {
self.finish_build_one_start(Anchored::No, nnfa, &mut dfa);
}
StartKind::Anchored => {
self.finish_build_one_start(Anchored::Yes, nnfa, &mut dfa)
}
}
debug!(
"DFA built, <states: {:?}, size: {:?}, \
alphabet len: {:?}, stride: {:?}>",
dfa.state_len,
dfa.memory_usage(),
dfa.byte_classes.alphabet_len(),
dfa.byte_classes.stride(),
);
// The vectors can grow ~twice as big during construction because a
// Vec amortizes growth. But here, let's shrink things back down to
// what we actually need since we're never going to add more to it.
dfa.trans.shrink_to_fit();
dfa.pattern_lens.shrink_to_fit();
dfa.matches.shrink_to_fit();
// TODO: We might also want to shrink each Vec inside of `dfa.matches`,
// or even better, convert it to one contiguous allocation. But I think
// I went with nested allocs for good reason (can't remember), so this
// may be tricky to do. I decided not to shrink them here because it
// might require a fair bit of work to do. It's unclear whether it's
// worth it.
Ok(dfa)
}
/// Finishes building a DFA for either unanchored or anchored searches,
/// but NOT both.
fn finish_build_one_start(
&self,
anchored: Anchored,
nnfa: &noncontiguous::NFA,
dfa: &mut DFA,
) {
// This function always succeeds because we check above that all of the
// states in the NFA can be mapped to DFA state IDs.
let stride2 = dfa.stride2;
let old2new = |oldsid: StateID| {
StateID::new_unchecked(oldsid.as_usize() << stride2)
};
for (oldsid, state) in nnfa.states().iter().with_state_ids() {
let newsid = old2new(oldsid);
if state.is_match() {
dfa.set_matches(newsid, nnfa.iter_matches(oldsid));
}
sparse_iter(
nnfa,
oldsid,
&dfa.byte_classes,
|byte, class, mut oldnextsid| {
if oldnextsid == noncontiguous::NFA::FAIL {
if anchored.is_anchored() {
oldnextsid = noncontiguous::NFA::DEAD;
} else {
oldnextsid = nnfa.next_state(
Anchored::No,
state.fail(),
byte,
);
}
}
dfa.trans[newsid.as_usize() + usize::from(class)] =
old2new(oldnextsid);
},
);
}
// Now that we've remapped all the IDs in our states, all that's left
// is remapping the special state IDs.
let old = nnfa.special();
let new = &mut dfa.special;
new.max_special_id = old2new(old.max_special_id);
new.max_match_id = old2new(old.max_match_id);
if anchored.is_anchored() {
new.start_unanchored_id = DFA::DEAD;
new.start_anchored_id = old2new(old.start_anchored_id);
} else {
new.start_unanchored_id = old2new(old.start_unanchored_id);
new.start_anchored_id = DFA::DEAD;
}
}
/// Finishes building a DFA that supports BOTH unanchored and anchored
/// searches. It works by inter-leaving unanchored states with anchored
/// states in the same transition table. This way, we avoid needing to
/// re-shuffle states afterward to ensure that our states still look like
/// DEAD, MATCH, ..., START-UNANCHORED, START-ANCHORED, NON-MATCH, ...
///
/// Honestly this is pretty inscrutable... Simplifications are most
/// welcome.
fn finish_build_both_starts(
&self,
nnfa: &noncontiguous::NFA,
dfa: &mut DFA,
) {
let stride2 = dfa.stride2;
let stride = 1 << stride2;
let mut remap_unanchored = vec![DFA::DEAD; nnfa.states().len()];
let mut remap_anchored = vec![DFA::DEAD; nnfa.states().len()];
let mut is_anchored = vec![false; dfa.state_len];
let mut newsid = DFA::DEAD;
let next_dfa_id =
|sid: StateID| StateID::new_unchecked(sid.as_usize() + stride);
for (oldsid, state) in nnfa.states().iter().with_state_ids() {
if oldsid == noncontiguous::NFA::DEAD
|| oldsid == noncontiguous::NFA::FAIL
{
remap_unanchored[oldsid] = newsid;
remap_anchored[oldsid] = newsid;
newsid = next_dfa_id(newsid);
} else if oldsid == nnfa.special().start_unanchored_id
|| oldsid == nnfa.special().start_anchored_id
{
if oldsid == nnfa.special().start_unanchored_id {
remap_unanchored[oldsid] = newsid;
remap_anchored[oldsid] = DFA::DEAD;
} else {
remap_unanchored[oldsid] = DFA::DEAD;
remap_anchored[oldsid] = newsid;
is_anchored[newsid.as_usize() >> stride2] = true;
}
if state.is_match() {
dfa.set_matches(newsid, nnfa.iter_matches(oldsid));
}
sparse_iter(
nnfa,
oldsid,
&dfa.byte_classes,
|_, class, oldnextsid| {
let class = usize::from(class);
if oldnextsid == noncontiguous::NFA::FAIL {
dfa.trans[newsid.as_usize() + class] = DFA::DEAD;
} else {
dfa.trans[newsid.as_usize() + class] = oldnextsid;
}
},
);
newsid = next_dfa_id(newsid);
} else {
let unewsid = newsid;
newsid = next_dfa_id(newsid);
let anewsid = newsid;
newsid = next_dfa_id(newsid);
remap_unanchored[oldsid] = unewsid;
remap_anchored[oldsid] = anewsid;
is_anchored[anewsid.as_usize() >> stride2] = true;
if state.is_match() {
dfa.set_matches(unewsid, nnfa.iter_matches(oldsid));
dfa.set_matches(anewsid, nnfa.iter_matches(oldsid));
}
sparse_iter(
nnfa,
oldsid,
&dfa.byte_classes,
|byte, class, oldnextsid| {
let class = usize::from(class);
if oldnextsid == noncontiguous::NFA::FAIL {
dfa.trans[unewsid.as_usize() + class] = nnfa
.next_state(Anchored::No, state.fail(), byte);
} else {
dfa.trans[unewsid.as_usize() + class] = oldnextsid;
dfa.trans[anewsid.as_usize() + class] = oldnextsid;
}
},
);
}
}
for i in 0..dfa.state_len {
let sid = i << stride2;
if is_anchored[i] {
for next in dfa.trans[sid..][..stride].iter_mut() {
*next = remap_anchored[*next];
}
} else {
for next in dfa.trans[sid..][..stride].iter_mut() {
*next = remap_unanchored[*next];
}
}
}
// Now that we've remapped all the IDs in our states, all that's left
// is remapping the special state IDs.
let old = nnfa.special();
let new = &mut dfa.special;
new.max_special_id = remap_anchored[old.max_special_id];
new.max_match_id = remap_anchored[old.max_match_id];
new.start_unanchored_id = remap_unanchored[old.start_unanchored_id];
new.start_anchored_id = remap_anchored[old.start_anchored_id];
}
/// Set the desired match semantics.
///
/// This only applies when using [`Builder::build`] and not
/// [`Builder::build_from_noncontiguous`].
///
/// See
/// [`AhoCorasickBuilder::match_kind`](crate::AhoCorasickBuilder::match_kind)
/// for more documentation and examples.
pub fn match_kind(&mut self, kind: MatchKind) -> &mut Builder {
self.noncontiguous.match_kind(kind);
self
}
/// Enable ASCII-aware case insensitive matching.
///
/// This only applies when using [`Builder::build`] and not
/// [`Builder::build_from_noncontiguous`].
///
/// See
/// [`AhoCorasickBuilder::ascii_case_insensitive`](crate::AhoCorasickBuilder::ascii_case_insensitive)
/// for more documentation and examples.
pub fn ascii_case_insensitive(&mut self, yes: bool) -> &mut Builder {
self.noncontiguous.ascii_case_insensitive(yes);
self
}
/// Enable heuristic prefilter optimizations.
///
/// This only applies when using [`Builder::build`] and not
/// [`Builder::build_from_noncontiguous`].
///
/// See
/// [`AhoCorasickBuilder::prefilter`](crate::AhoCorasickBuilder::prefilter)
/// for more documentation and examples.
pub fn prefilter(&mut self, yes: bool) -> &mut Builder {
self.noncontiguous.prefilter(yes);
self
}
/// Sets the starting state configuration for the automaton.
///
/// See
/// [`AhoCorasickBuilder::start_kind`](crate::AhoCorasickBuilder::start_kind)
/// for more documentation and examples.
pub fn start_kind(&mut self, kind: StartKind) -> &mut Builder {
self.start_kind = kind;
self
}
/// A debug setting for whether to attempt to shrink the size of the
/// automaton's alphabet or not.
///
/// This should never be enabled unless you're debugging an automaton.
/// Namely, disabling byte classes makes transitions easier to reason
/// about, since they use the actual bytes instead of equivalence classes.
/// Disabling this confers no performance benefit at search time.
///
/// See
/// [`AhoCorasickBuilder::byte_classes`](crate::AhoCorasickBuilder::byte_classes)
/// for more documentation and examples.
pub fn byte_classes(&mut self, yes: bool) -> &mut Builder {
self.byte_classes = yes;
self
}
}
/// Iterate over all possible equivalence class transitions in this state.
/// The closure is called for all transitions with a distinct equivalence
/// class, even those not explicitly represented in this sparse state. For
/// any implicitly defined transitions, the given closure is called with
/// the fail state ID.
///
/// The closure is guaranteed to be called precisely
/// `byte_classes.alphabet_len()` times, once for every possible class in
/// ascending order.
fn sparse_iter<F: FnMut(u8, u8, StateID)>(
nnfa: &noncontiguous::NFA,
oldsid: StateID,
classes: &ByteClasses,
mut f: F,
) {
let mut prev_class = None;
let mut byte = 0usize;
for t in nnfa.iter_trans(oldsid) {
while byte < usize::from(t.byte()) {
let rep = byte.as_u8();
let class = classes.get(rep);
byte += 1;
if prev_class != Some(class) {
f(rep, class, noncontiguous::NFA::FAIL);
prev_class = Some(class);
}
}
let rep = t.byte();
let class = classes.get(rep);
byte += 1;
if prev_class != Some(class) {
f(rep, class, t.next());
prev_class = Some(class);
}
}
for b in byte..=255 {
let rep = b.as_u8();
let class = classes.get(rep);
if prev_class != Some(class) {
f(rep, class, noncontiguous::NFA::FAIL);
prev_class = Some(class);
}
}
}