Revision control

Copy as Markdown

Other Tools

// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
#![allow(non_snake_case)]
use std::ops::{Sub, Mul, Add, AddAssign, SubAssign, MulAssign, Div};
macro_rules! IFC {
($e: expr) => {
assert_eq!($e, S_OK);
}
}
pub type HRESULT = i32;
pub const S_OK: i32 = 0;
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct GpPointR {
pub x: f32,
pub y: f32
}
impl Sub for GpPointR {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
GpPointR { x: self.x - rhs.x, y: self.y - rhs.y }
}
}
impl Add for GpPointR {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
GpPointR { x: self.x + rhs.x, y: self.y + rhs.y }
}
}
impl AddAssign for GpPointR {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl SubAssign for GpPointR {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl MulAssign<f32> for GpPointR {
fn mul_assign(&mut self, rhs: f32) {
*self = *self * rhs;
}
}
impl Mul<f32> for GpPointR {
type Output = Self;
fn mul(self, rhs: f32) -> Self::Output {
GpPointR { x: self.x * rhs, y: self.y * rhs }
}
}
impl Div<f32> for GpPointR {
type Output = Self;
fn div(self, rhs: f32) -> Self::Output {
GpPointR { x: self.x / rhs, y: self.y / rhs }
}
}
impl Mul for GpPointR {
type Output = f32;
fn mul(self, rhs: Self) -> Self::Output {
self.x * rhs.x + self.y * rhs.y
}
}
impl GpPointR {
pub fn ApproxNorm(&self) -> f32 {
self.x.abs().max(self.y.abs())
}
pub fn Norm(&self) -> f32 {
self.x.hypot(self.y)
}
}
// Relative to this is relative to the tolerance squared. In other words, a vector
// whose length is less than .01*tolerance will be considered 0
const SQ_LENGTH_FUZZ: f32 = 1.0e-4;
// Some of these constants need further thinking
//const FUZZ: f64 = 1.0e-6; // Relative 0
// Minimum allowed tolerance - should probably be adjusted to the size of the
// geometry we are rendering, but for now ---
/*
const FUZZ_DOUBLE: f64 = 1.0e-12; // Double-precision relative 0
const MIN_TOLERANCE: f64 = 1.0e-6;
const DEFAULT_FLATTENING_TOLERANCE: f64 = 0.25;*/
const TWICE_MIN_BEZIER_STEP_SIZE: f32 = 1.0e-3; // The step size in the Bezier flattener should
// never go below half this amount.
//+-----------------------------------------------------------------------------
//
//
// $TAG ENGR
// $Module: win_mil_graphics_geometry
// $Keywords:
//
// $Description:
// Definition of CBezierFlattener.
//
// $ENDTAG
//
//------------------------------------------------------------------------------
//+-----------------------------------------------------------------------------
//
// Class:
// CFlatteningSink
//
// Synopsis:
// Callback interface for the results of curve flattening
//
// Notes:
// Methods are implemented rather than pure, for callers who do not use all
// of them.
//
//------------------------------------------------------------------------------
//
// Definition of CFlatteningSink
//
//------------------------------------------------------------------------------
/*
struct CFlatteningSink
{
public:
CFlatteningSink() {}
virtual ~CFlatteningSink() {}
virtual HRESULT Begin(
__in_ecount(1) const GpPointR &)
// First point (transformed)
{
// Do nothing stub, should not be called
RIP("Base class Begin called");
return E_NOTIMPL;
}
virtual HRESULT AcceptPoint(
__in_ecount(1) const GpPointR &pt,
// The point
IN GpReal t,
// Parameter we're at
__out_ecount(1) bool &fAborted)
// Set to true to signal aborting
{
UNREFERENCED_PARAMETER(pt);
UNREFERENCED_PARAMETER(t);
UNREFERENCED_PARAMETER(fAborted);
// Do nothing stub, should not be called
RIP("Base class AcceptPoint called");
return E_NOTIMPL;
}
virtual HRESULT AcceptPointAndTangent(
__in_ecount(1) const GpPointR &,
//The point
__in_ecount(1) const GpPointR &,
//The tangent there
IN bool fLast) // Is this the last point on the curve?
{
// Do nothing stub, should not be called
RIP("Base class AcceptPointAndTangent called");
return E_NOTIMPL;
}
};
*/
#[derive(Clone, Debug)]
pub struct CBezier
{
/*
public:
CBezier()
{
}
CBezier(
__in_ecount(4) const GpPointR *pPt)
// The defining Bezier points
{
Assert(pPt);
memcpy(&m_ptB, pPt, 4 * sizeof(GpPointR));
}
CBezier(
__in_ecount(1) const CBezier &other)
// Another Bezier to copy
{
Copy(other);
}
void Copy(
__in_ecount(1) const CBezier &other)
// Another Bezier to copy
{
memcpy(&m_ptB, other.m_ptB, 4 * sizeof(GpPointR));
}
void Initialize(
__in_ecount(1) const GpPointR &ptFirst,
// The first Bezier point
__in_ecount(3) const GpPointR *pPt)
// The remaining 3 Bezier points
{
m_ptB[0] = ptFirst;
memcpy(m_ptB + 1, pPt, 3 * sizeof(GpPointR));
}
__outro_ecount(1) const GpPointR &GetControlPoint(__range(0, 3) UINT i) const
{
Assert(i < 4);
return m_ptB[i];
}
__outro_ecount(1) const GpPointR &GetFirstPoint() const
{
return m_ptB[0];
}
__outro_ecount(1) const GpPointR &GetLastPoint() const
{
return m_ptB[3];
}
void GetPoint(
_In_ double t,
// Parameter value
__out_ecount(1) GpPointR &pt) const;
// Point there
void GetPointAndDerivatives(
__in double t,
// Parameter value
__out_ecount(3) GpPointR *pValues) const;
// Point, first derivative and second derivative there
void TrimToStartAt(
IN double t); // Parameter value
void TrimToEndAt(
IN double t); // Parameter value
bool TrimBetween(
__in double rStart,
// Parameter value for the new start, must be between 0 and 1
__in double rEnd);
// Parameter value for the new end, must be between 0 and 1
bool operator ==(__in_ecount(1) const CBezier &other) const
{
return (m_ptB[0] == other.m_ptB[0]) &&
(m_ptB[1] == other.m_ptB[1]) &&
(m_ptB[2] == other.m_ptB[2]) &&
(m_ptB[3] == other.m_ptB[3]);
}
void AssertEqualOrNaN(__in_ecount(1) const CBezier &other) const
{
m_ptB[0].AssertEqualOrNaN(other.m_ptB[0]);
m_ptB[1].AssertEqualOrNaN(other.m_ptB[1]);
m_ptB[2].AssertEqualOrNaN(other.m_ptB[2]);
m_ptB[3].AssertEqualOrNaN(other.m_ptB[3]);
}
protected:
*/
// Data
m_ptB: [GpPointR; 4],
// The defining Bezier points
}
impl CBezier {
pub fn new(curve: [GpPointR; 4]) -> Self {
Self { m_ptB: curve }
}
pub fn is_degenerate(&self) -> bool {
self.m_ptB[0] == self.m_ptB[1] &&
self.m_ptB[0] == self.m_ptB[2] &&
self.m_ptB[0] == self.m_ptB[3]
}
}
pub trait CFlatteningSink {
fn FirstTangent(&mut self, vecTangent: Option<GpPointR>);
fn AcceptPointAndTangent(&mut self,
pt: &GpPointR,
// The point
vec: &GpPointR,
// The tangent there
fLast: bool
// Is this the last point on the curve?
) -> HRESULT;
fn AcceptPoint(&mut self,
pt: &GpPointR,
// The point
t: f32,
// Parameter we're at
fAborted: &mut bool,
lastPoint: bool
) -> HRESULT;
}
//+-----------------------------------------------------------------------------
//
// Class:
// CBezierFlattener
//
// Synopsis:
// Generates a polygonal apprximation to a given Bezier curve
//
//------------------------------------------------------------------------------
pub struct CBezierFlattener<'a>
{
bezier: CBezier,
// Flattening defining data
m_pSink: &'a mut dyn CFlatteningSink, // The recipient of the flattening data
m_rTolerance: f32, // Prescribed tolerance
m_fWithTangents: bool, // Generate tangent vectors if true
m_rQuarterTolerance: f32,// Prescribed tolerance/4 (for doubling the step)
m_rFuzz: f32, // Computational zero
// Flattening working data
m_ptE: [GpPointR; 4], // The moving basis of the curve definition
m_cSteps: i32, // The number of steps left to the end of the curve
m_rParameter: f32, // Parameter value
m_rStepSize: f32, // Steps size in parameter domain
}
impl<'a> CBezierFlattener<'a> {
/*fn new(
__in_ecount_opt(1) CFlatteningSink *pSink,
// The reciptient of the flattened data
IN GpReal rTolerance)
// Flattening tolerance
{
Initialize(pSink, rTolerance);
}*/
/*
void SetTarget(__in_ecount_opt(1) CFlatteningSink *pSink)
{
m_pSink = pSink;
}
void Initialize(
__in_ecount_opt(1) CFlatteningSink *pSink,
// The reciptient of the flattened data
IN GpReal rTolerance);
// Flattening tolerance
void SetPoint(
__in UINT i,
// index of the point (must be between 0 and 3)
__in_ecount(1) const GpPointR &pt)
// point value
{
Assert(i < 4);
m_ptB[i] = pt;
}
HRESULT GetFirstTangent(
__out_ecount(1) GpPointR &vecTangent) const;
// Tangent vector there
GpPointR GetLastTangent() const;
HRESULT Flatten(
IN bool fWithTangents); // Return tangents with the points if true
private:
// Disallow copy constructor
CBezierFlattener(__in_ecount(1) const CBezierFlattener &)
{
RIP("CBezierFlattener copy constructor reached.");
}
protected:
*/
/* fn Step(
__out_ecount(1) bool &fAbort); // Set to true if flattening should be aborted
fn HalveTheStep();
fn TryDoubleTheStep();*/
}
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
//+-----------------------------------------------------------------------------
//
//
// $TAG ENGR
// $Module: win_mil_graphics_geometry
// $Keywords:
//
// $Description:
// Implementation of CBezierFlattener.
//
// $ENDTAG
//
//------------------------------------------------------------------------------
impl<'a> CBezierFlattener<'a> {
/////////////////////////////////////////////////////////////////////////////////
//
// Implementation of CBezierFlattener
//+-----------------------------------------------------------------------------
//
// Member:
// CBezierFlattener::Initialize
//
// Synopsis:
// Initialize the sink and tolerance
//
//------------------------------------------------------------------------------
pub fn new(bezier: &CBezier,
pSink: &'a mut dyn CFlatteningSink,
// The reciptient of the flattened data
rTolerance: f32) // Flattening tolerance
-> Self
{
let mut result = CBezierFlattener {
bezier: bezier.clone(),
// Flattening defining data
m_pSink: pSink, // The recipient of the flattening data
m_rTolerance: 0., // Prescribed tolerance
m_fWithTangents: false, // Generate tangent vectors if true
m_rQuarterTolerance: 0.,// Prescribed tolerance/4 (for doubling the step)
m_rFuzz: 0., // Computational zero
// Flattening working data
m_ptE: [GpPointR { x: 0., y: 0.}; 4], // The moving basis of the curve definition
m_cSteps: 0, // The number of steps left to the end of the curve
m_rParameter: 0., // Parameter value
m_rStepSize: 0., // Steps size in parameter domain
};
// If rTolerance == NaN or less than 0, we'll treat it as 0.
result.m_rTolerance = if rTolerance >= 0.0 { rTolerance } else { 0.0 };
result.m_rFuzz = rTolerance * rTolerance * SQ_LENGTH_FUZZ;
// The error is tested on max(|e2|, |e2|), which represent 6 times the actual error, so:
result.m_rTolerance *= 6.;
result.m_rQuarterTolerance = result.m_rTolerance * 0.25;
result
}
//+-----------------------------------------------------------------------------
//
// Member:
// CBezierFlattener::Flatten
//
// Synopsis:
// Flatten this curve
//
// Notes:
// The algorithm is described in detail in the 1995 patent # 5367617 "System and
// method of hybrid forward differencing to render Bezier splines" to be found
// on the Microsoft legal dept. web site (LCAWEB). Additional references are:
// Lien, Shantz and Vaughan Pratt, "Adaptive Forward Differencing for
// Rendering Curves and Surfaces", Computer Graphics, July 1987
// Chang and Shantz, "Rendering Trimmed NURBS with Adaptive Forward
// Differencing", Computer Graphics, August 1988
// Foley and Van Dam, "Fundamentals of Interactive Computer Graphics"
//
// The basic idea is to replace the Bernstein basis (underlying Bezier curves)
// with the Hybrid Forward Differencing (HFD) basis which is more efficient at
// for flattening. Each one of the 3 actions - Step, Halve and Double (step
// size) this basis affords very efficient formulas for computing coefficients
// for the new interval.
//
// The coefficients of the HFD basis are defined in terms of the Bezier
// coefficients as follows:
//
// e0 = p0, e1 = p3 - p0, e2 = 6(p1 - 2p2 + p3), e3 = 6(p0 - 2p1 + p2),
//
// but formulas may be easier to understand by going through the power basis
// representation: f(t) = a*t + b*t + c * t^2 + d * t^3.
//
// The conversion is then:
// e0 = a
// e1 = f(1) - f(0) = b + c + d
// e2 = f"(1) = 2c + 6d
// e3 = f"(0) = 2c
//
// This is inverted to:
// a = e0
// c = e3 / 2
// d = (e2 - 2c) / 6 = (e2 - e3) / 6
// b = e1 - c - d = e1 - e2 / 6 - e3 / 3
//
// a, b, c, d for the new (halved, doubled or forwarded) interval are derived
// and then converted to e0, e1, e2, e3 using these relationships.
//
// An exact integer version is implemented in Bezier.h and Bezier.cpp.
//
//------------------------------------------------------------------------------
pub fn Flatten(&mut self,
fWithTangents: bool) // Return tangents with the points if true
-> HRESULT
{
let hr = S_OK;
let mut fAbort = false;
/*if (!self.m_pSink)
{
return E_UNEXPECTED;
}*/
self.m_fWithTangents = fWithTangents;
if self.m_fWithTangents {
self.m_pSink.FirstTangent(self.GetFirstTangent())
}
self.m_cSteps = 1;
self.m_rParameter = 0.;
self.m_rStepSize = 1.;
// Compute the HFD basis
self.m_ptE[0] = self.bezier.m_ptB[0];
self.m_ptE[1] = self.bezier.m_ptB[3] - self.bezier.m_ptB[0];
self.m_ptE[2] = (self.bezier.m_ptB[1] - self.bezier.m_ptB[2] * 2. + self.bezier.m_ptB[3]) * 6.; // The second derivative at curve end
self.m_ptE[3] = (self.bezier.m_ptB[0] - self.bezier.m_ptB[1] * 2. + self.bezier.m_ptB[2]) * 6.; // The second derivative at curve start
// Determine the initial step size
self.m_cSteps = 1;
while ((self.m_ptE[2].ApproxNorm() > self.m_rTolerance) || (self.m_ptE[3].ApproxNorm() > self.m_rTolerance)) &&
(self.m_rStepSize > TWICE_MIN_BEZIER_STEP_SIZE)
{
self.HalveTheStep();
}
while self.m_cSteps > 1
{
IFC!(self.Step(&mut fAbort));
if fAbort {
return hr;
}
// E[3] was already tested as E[2] in the previous step
if self.m_ptE[2].ApproxNorm() > self.m_rTolerance &&
self.m_rStepSize > TWICE_MIN_BEZIER_STEP_SIZE
{
// Halving the step once is provably sufficient (see Notes above), so ---
self.HalveTheStep();
}
else
{
// --- but the step can possibly be more than doubled, hence the while loop
while self.TryDoubleTheStep() {
continue;
}
}
}
// Last point
if self.m_fWithTangents
{
IFC!(self.m_pSink.AcceptPointAndTangent(&self.bezier.m_ptB[3], &self.GetLastTangent(), true /* last point */));
}
else
{
IFC!(self.m_pSink.AcceptPoint(&self.bezier.m_ptB[3], 1., &mut fAbort, true));
}
return hr;
}
//+-----------------------------------------------------------------------------
//
// Member:
// CBezierFlattener::Step
//
// Synopsis:
// Step forward on the polygonal approximation of the curve
//
// Notes:
// Taking a step means replacing a,b,c,d by coefficients of g(t) = f(t+1).
// Express those in terms of a,b,c,d and convert to e0, e1, e2, e3 to get:
//
// New e0 = e0 + e1
// New e1 = e1 + e2
// New e2 = 2e2 - e3
// New e3 = e2
//
// The patent application (see above) explains why.
//
// Getting a tangent vector is a minor enhancement along the same lines:
// f'(0) = b = 6e1 - e2 - 2e3.
//
//------------------------------------------------------------------------------
fn Step(&mut self,
fAbort: &mut bool) -> HRESULT // Set to true if flattening should be aborted, untouched otherwise
{
let hr = S_OK;
// Compute the basis for the same curve on the next interval
let mut pt;
self.m_ptE[0] += self.m_ptE[1];
pt = self.m_ptE[2];
self.m_ptE[1] += pt;
self.m_ptE[2] += pt; self.m_ptE[2] -= self.m_ptE[3];
self.m_ptE[3] = pt;
// Increment the parameter
self.m_rParameter += self.m_rStepSize;
// Generate the start point of the new interval
if self.m_fWithTangents
{
// Compute the tangent there
pt = self.m_ptE[1] * 6. - self.m_ptE[2] - self.m_ptE[3] * 2.; // = twice the derivative at E[0]
IFC!(self.m_pSink.AcceptPointAndTangent(&self.m_ptE[0], &pt, false /* not the last point */));
}
else
{
IFC!(self.m_pSink.AcceptPoint(&self.m_ptE[0], self.m_rParameter, fAbort, false));
}
self.m_cSteps-=1;
return hr;
}
//+-----------------------------------------------------------------------------
//
// Member:
// CBezierFlattener::HalveTheStep
//
// Synopsis:
// Halve the size of the step
//
// Notes:
// Halving the step means replacing a,b,c,d by coefficients of g(t) =
// f(t/2). Experss those in terms of a,b,c,d and convert to e0, e1, e2, e3
// to get:
//
// New e0 = e0
// New e1 = (e1 - e2) / 2
// New e2 = (e2 + e3) / 8
// New e3 = e3 / 4
//
// The patent application (see above) explains why.
//
//------------------------------------------------------------------------------
fn HalveTheStep(&mut self)
{
self.m_ptE[2] += self.m_ptE[3]; self.m_ptE[2] *= 0.125;
self.m_ptE[1] -= self.m_ptE[2]; self.m_ptE[1] *= 0.5;
self.m_ptE[3] *= 0.25;
self.m_cSteps *= 2; // Double the number of steps left
self.m_rStepSize *= 0.5;
}
//+-----------------------------------------------------------------------------
//
// Member:
// CBezierFlattener::TryDoubleTheStep
//
// Synopsis:
// Double the step size if possible within tolerance.
//
// Notes:
// Coubling the step means replacing a,b,c,d by coefficients of g(t) =
// f(2t). Experss those in terms of a,b,c,d and convert to e0, e1, e2, e3
// to get:
//
// New e0 = e0
// New e1 = 2e1 + e2
// New e2 = 8e2 - 4e3
// New e3 = 4e3
//
// The patent application (see above) explains why. Note also that these
// formulas are the inverse of those for halving the step.
//
//------------------------------------------------------------------------------
fn
TryDoubleTheStep(&mut self) -> bool
{
let mut fDoubled = 0 == (self.m_cSteps & 1);
if fDoubled
{
let ptTemp = self.m_ptE[2] * 2. - self.m_ptE[3];
fDoubled = (self.m_ptE[3].ApproxNorm() <= self.m_rQuarterTolerance) &&
(ptTemp.ApproxNorm() <= self.m_rQuarterTolerance);
if fDoubled
{
self.m_ptE[1] *= 2.; self.m_ptE[1] += self.m_ptE[2];
self.m_ptE[3] *= 4.;
self.m_ptE[2] = ptTemp * 4.;
self.m_cSteps /= 2; // Halve the number of steps left
self.m_rStepSize *= 2.;
}
}
return fDoubled;
}
//+-----------------------------------------------------------------------------
//
// Member:
// CBezierFlattener::GetFirstTangent
//
// Synopsis:
// Get the tangent at curve start
//
// Return:
// WGXERR_ZEROVECTOR if the tangent vector has practically 0 length
//
// Notes:
// This method can return an error if all the points are bunched together.
// The idea is that the caller will detect that, abandon this curve, and
// never call GetLasttangent, which can therefore be presumed to succeed.
// The failure here is benign.
//
//------------------------------------------------------------------------------
pub fn GetFirstTangent(&self) -> Option<GpPointR> // Tangent vector there
{
let mut vecTangent = self.bezier.m_ptB[1] - self.bezier.m_ptB[0];
if vecTangent * vecTangent > self.m_rFuzz
{
return Some(vecTangent); // - we're done
}
// Zero first derivative, go for the second
vecTangent = self.bezier.m_ptB[2] - self.bezier.m_ptB[0];
if vecTangent * vecTangent > self.m_rFuzz
{
return Some(vecTangent); // - we're done
}
// Zero second derivative, go for the third
vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[0];
if vecTangent * vecTangent <= self.m_rFuzz
{
return None;
}
return Some(vecTangent); // no RRETURN, error is expected
}
//+-----------------------------------------------------------------------------
//
// Member:
// CBezierFlattener::GetLastTangent
//
// Synopsis:
// Get the tangent at curve end
//
// Return:
// The tangent
//
// Notes:
// This method has no error return while GetFirstTangent returns
// WGXERR_ZEROVECTOR if the tangent is zero. The idea is that we should
// only fail if all the control points coincide, that should have been
// detected at GetFirstTangent, and then we should have not be called.
//
//------------------------------------------------------------------------------
fn GetLastTangent(&self) -> GpPointR
{
let mut vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[2];
// If the curve is degenerate, we should have detected it at curve-start, skipped this curve
// altogether and not be here. But the test in GetFirstTangent is for the point-differences
// 1-0, 2-0 and 3-0, while here it is for points 3-2, 3-1 and 3-0, which is not quite the same.
// Still, In a disk of radius r no 2 points are more than 2r apart. The tests are done with
// squared distance, and m_rFuzz is the minimal accepted squared distance. GetFirstTangent()
// succeeded, so there is a pair of points whose squared distance is greater than m_rfuzz.
// So the squared radius of a disk about point 3 that contains the remaining points must be
// at least m_rFuzz/4. Allowing some margin for arithmetic error:
let rLastTangentFuzz = self.m_rFuzz/8.;
if vecTangent * vecTangent <= rLastTangentFuzz
{
// Zero first derivative, go for the second
vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[1];
if vecTangent * vecTangent <= rLastTangentFuzz
{
// Zero second derivative, go for the third
vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[0];
}
}
debug_assert! (!(vecTangent * vecTangent < rLastTangentFuzz)); // Ignore NaNs
return vecTangent;
}
}
#[test]
#[cfg_attr(debug_assertions, should_panic)]
fn degenerate_tangent() {
struct Sink;
impl CFlatteningSink for Sink {
fn FirstTangent(&mut self, _: Option<GpPointR>) { }
fn AcceptPointAndTangent(&mut self,
_: &GpPointR, _: &GpPointR, _: bool
) -> HRESULT {
return S_OK;
}
fn AcceptPoint(&mut self,
_: &GpPointR, _: f32,
_: &mut bool, _: bool
) -> HRESULT {
return S_OK;
}
}
let bezier = CBezier {m_ptB: [
GpPointR {x: 0., y: 0.0005},
GpPointR {x: 0., y: 0.0005},
GpPointR {x: 0., y: 0.},
GpPointR {x: 0., y: 0.}]};
let mut t = Sink;
let mut f = CBezierFlattener::new(&bezier, &mut t, 0.25);
f.Flatten(true);
}