Revision control

Copy as Markdown

Other Tools

/* sm4-avx-aesni-amd64.S - AES-NI/AVX implementation of SM4 cipher
*
* Copyright (C) 2020 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* Based on SM4 AES-NI work by Markku-Juhani O. Saarinen at:
*/
#include <config.h>
#ifdef __x86_64
#if (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) && \
defined(ENABLE_AESNI_SUPPORT) && defined(ENABLE_AVX_SUPPORT)
#include "asm-common-amd64.h"
/* vector registers */
#define RX0 %xmm0
#define RX1 %xmm1
#define MASK_4BIT %xmm2
#define RTMP0 %xmm3
#define RTMP1 %xmm4
#define RTMP2 %xmm5
#define RTMP3 %xmm6
#define RTMP4 %xmm7
#define RA0 %xmm8
#define RA1 %xmm9
#define RA2 %xmm10
#define RA3 %xmm11
#define RB0 %xmm12
#define RB1 %xmm13
#define RB2 %xmm14
#define RB3 %xmm15
#define RNOT %xmm0
#define RBSWAP %xmm1
/**********************************************************************
helper macros
**********************************************************************/
/* Transpose four 32-bit words between 128-bit vectors. */
#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
vpunpckhdq x1, x0, t2; \
vpunpckldq x1, x0, x0; \
\
vpunpckldq x3, x2, t1; \
vpunpckhdq x3, x2, x2; \
\
vpunpckhqdq t1, x0, x1; \
vpunpcklqdq t1, x0, x0; \
\
vpunpckhqdq x2, t2, x3; \
vpunpcklqdq x2, t2, x2;
/* post-SubByte transform. */
#define transform_pre(x, lo_t, hi_t, mask4bit, tmp0) \
vpand x, mask4bit, tmp0; \
vpandn x, mask4bit, x; \
vpsrld $4, x, x; \
\
vpshufb tmp0, lo_t, tmp0; \
vpshufb x, hi_t, x; \
vpxor tmp0, x, x;
/* post-SubByte transform. Note: x has been XOR'ed with mask4bit by
* 'vaeslastenc' instruction. */
#define transform_post(x, lo_t, hi_t, mask4bit, tmp0) \
vpandn mask4bit, x, tmp0; \
vpsrld $4, x, x; \
vpand x, mask4bit, x; \
\
vpshufb tmp0, lo_t, tmp0; \
vpshufb x, hi_t, x; \
vpxor tmp0, x, x;
/**********************************************************************
4-way && 8-way SM4 with AES-NI and AVX
**********************************************************************/
.text
.align 16
/*
* Following four affine transform look-up tables are from work by
* Markku-Juhani O. Saarinen, at https://github.com/mjosaarinen/sm4ni
*
* These allow exposing SM4 S-Box from AES SubByte.
*/
/* pre-SubByte affine transform, from SM4 field to AES field. */
.Lpre_tf_lo_s:
.quad 0x9197E2E474720701, 0xC7C1B4B222245157
.Lpre_tf_hi_s:
.quad 0xE240AB09EB49A200, 0xF052B91BF95BB012
/* post-SubByte affine transform, from AES field to SM4 field. */
.Lpost_tf_lo_s:
.quad 0x5B67F2CEA19D0834, 0xEDD14478172BBE82
.Lpost_tf_hi_s:
.quad 0xAE7201DD73AFDC00, 0x11CDBE62CC1063BF
/* For isolating SubBytes from AESENCLAST, inverse shift row */
.Linv_shift_row:
.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
/* Inverse shift row + Rotate left by 8 bits on 32-bit words with vpshufb */
.Linv_shift_row_rol_8:
.byte 0x07, 0x00, 0x0d, 0x0a, 0x0b, 0x04, 0x01, 0x0e
.byte 0x0f, 0x08, 0x05, 0x02, 0x03, 0x0c, 0x09, 0x06
/* Inverse shift row + Rotate left by 16 bits on 32-bit words with vpshufb */
.Linv_shift_row_rol_16:
.byte 0x0a, 0x07, 0x00, 0x0d, 0x0e, 0x0b, 0x04, 0x01
.byte 0x02, 0x0f, 0x08, 0x05, 0x06, 0x03, 0x0c, 0x09
/* Inverse shift row + Rotate left by 24 bits on 32-bit words with vpshufb */
.Linv_shift_row_rol_24:
.byte 0x0d, 0x0a, 0x07, 0x00, 0x01, 0x0e, 0x0b, 0x04
.byte 0x05, 0x02, 0x0f, 0x08, 0x09, 0x06, 0x03, 0x0c
/* For CTR-mode IV byteswap */
.Lbswap128_mask:
.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
/* For input word byte-swap */
.Lbswap32_mask:
.byte 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
.align 4
/* 4-bit mask */
.L0f0f0f0f:
.long 0x0f0f0f0f
.align 8
.globl _gcry_sm4_aesni_avx_expand_key
ELF(.type _gcry_sm4_aesni_avx_expand_key,@function;)
_gcry_sm4_aesni_avx_expand_key:
/* input:
* %rdi: 128-bit key
* %rsi: rkey_enc
* %rdx: rkey_dec
* %rcx: fk array
* %r8: ck array
*/
CFI_STARTPROC();
vmovd 0*4(%rdi), RA0;
vmovd 1*4(%rdi), RA1;
vmovd 2*4(%rdi), RA2;
vmovd 3*4(%rdi), RA3;
vmovdqa .Lbswap32_mask rRIP, RTMP2;
vpshufb RTMP2, RA0, RA0;
vpshufb RTMP2, RA1, RA1;
vpshufb RTMP2, RA2, RA2;
vpshufb RTMP2, RA3, RA3;
vmovd 0*4(%rcx), RB0;
vmovd 1*4(%rcx), RB1;
vmovd 2*4(%rcx), RB2;
vmovd 3*4(%rcx), RB3;
vpxor RB0, RA0, RA0;
vpxor RB1, RA1, RA1;
vpxor RB2, RA2, RA2;
vpxor RB3, RA3, RA3;
vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT;
vmovdqa .Lpre_tf_lo_s rRIP, RTMP4;
vmovdqa .Lpre_tf_hi_s rRIP, RB0;
vmovdqa .Lpost_tf_lo_s rRIP, RB1;
vmovdqa .Lpost_tf_hi_s rRIP, RB2;
vmovdqa .Linv_shift_row rRIP, RB3;
#define ROUND(round, s0, s1, s2, s3) \
vbroadcastss (4*(round))(%r8), RX0; \
vpxor s1, RX0, RX0; \
vpxor s2, RX0, RX0; \
vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
\
/* sbox, non-linear part */ \
transform_pre(RX0, RTMP4, RB0, MASK_4BIT, RTMP0); \
vaesenclast MASK_4BIT, RX0, RX0; \
transform_post(RX0, RB1, RB2, MASK_4BIT, RTMP0); \
\
/* linear part */ \
vpshufb RB3, RX0, RX0; \
vpxor RX0, s0, s0; /* s0 ^ x */ \
vpslld $13, RX0, RTMP0; \
vpsrld $19, RX0, RTMP1; \
vpslld $23, RX0, RTMP2; \
vpsrld $9, RX0, RTMP3; \
vpxor RTMP0, RTMP1, RTMP1; \
vpxor RTMP2, RTMP3, RTMP3; \
vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,13) */ \
vpxor RTMP3, s0, s0; /* s0 ^ x ^ rol(x,13) ^ rol(x,23) */
leaq (32*4)(%r8), %rax;
leaq (32*4)(%rdx), %rdx;
.align 16
.Lroundloop_expand_key:
leaq (-4*4)(%rdx), %rdx;
ROUND(0, RA0, RA1, RA2, RA3);
ROUND(1, RA1, RA2, RA3, RA0);
ROUND(2, RA2, RA3, RA0, RA1);
ROUND(3, RA3, RA0, RA1, RA2);
leaq (4*4)(%r8), %r8;
vmovd RA0, (0*4)(%rsi);
vmovd RA1, (1*4)(%rsi);
vmovd RA2, (2*4)(%rsi);
vmovd RA3, (3*4)(%rsi);
vmovd RA0, (3*4)(%rdx);
vmovd RA1, (2*4)(%rdx);
vmovd RA2, (1*4)(%rdx);
vmovd RA3, (0*4)(%rdx);
leaq (4*4)(%rsi), %rsi;
cmpq %rax, %r8;
jne .Lroundloop_expand_key;
#undef ROUND
vzeroall;
ret;
CFI_ENDPROC();
ELF(.size _gcry_sm4_aesni_avx_expand_key,.-_gcry_sm4_aesni_avx_expand_key;)
.align 8
ELF(.type sm4_aesni_avx_crypt_blk1_4,@function;)
sm4_aesni_avx_crypt_blk1_4:
/* input:
* %rdi: round key array, CTX
* %rsi: dst (1..4 blocks)
* %rdx: src (1..4 blocks)
* %rcx: num blocks (1..4)
*/
CFI_STARTPROC();
vmovdqu 0*16(%rdx), RA0;
vmovdqa RA0, RA1;
vmovdqa RA0, RA2;
vmovdqa RA0, RA3;
cmpq $2, %rcx;
jb .Lblk4_load_input_done;
vmovdqu 1*16(%rdx), RA1;
je .Lblk4_load_input_done;
vmovdqu 2*16(%rdx), RA2;
cmpq $3, %rcx;
je .Lblk4_load_input_done;
vmovdqu 3*16(%rdx), RA3;
.Lblk4_load_input_done:
vmovdqa .Lbswap32_mask rRIP, RTMP2;
vpshufb RTMP2, RA0, RA0;
vpshufb RTMP2, RA1, RA1;
vpshufb RTMP2, RA2, RA2;
vpshufb RTMP2, RA3, RA3;
vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT;
vmovdqa .Lpre_tf_lo_s rRIP, RTMP4;
vmovdqa .Lpre_tf_hi_s rRIP, RB0;
vmovdqa .Lpost_tf_lo_s rRIP, RB1;
vmovdqa .Lpost_tf_hi_s rRIP, RB2;
vmovdqa .Linv_shift_row rRIP, RB3;
vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP2;
vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP3;
transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
#define ROUND(round, s0, s1, s2, s3) \
vbroadcastss (4*(round))(%rdi), RX0; \
vpxor s1, RX0, RX0; \
vpxor s2, RX0, RX0; \
vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
\
/* sbox, non-linear part */ \
transform_pre(RX0, RTMP4, RB0, MASK_4BIT, RTMP0); \
vaesenclast MASK_4BIT, RX0, RX0; \
transform_post(RX0, RB1, RB2, MASK_4BIT, RTMP0); \
\
/* linear part */ \
vpshufb RB3, RX0, RTMP0; \
vpxor RTMP0, s0, s0; /* s0 ^ x */ \
vpshufb RTMP2, RX0, RTMP1; \
vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \
vpshufb RTMP3, RX0, RTMP1; \
vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \
vpshufb .Linv_shift_row_rol_24 rRIP, RX0, RTMP1; \
vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \
vpslld $2, RTMP0, RTMP1; \
vpsrld $30, RTMP0, RTMP0; \
vpxor RTMP0, s0, s0; \
vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */
leaq (32*4)(%rdi), %rax;
.align 16
.Lroundloop_blk4:
ROUND(0, RA0, RA1, RA2, RA3);
ROUND(1, RA1, RA2, RA3, RA0);
ROUND(2, RA2, RA3, RA0, RA1);
ROUND(3, RA3, RA0, RA1, RA2);
leaq (4*4)(%rdi), %rdi;
cmpq %rax, %rdi;
jne .Lroundloop_blk4;
#undef ROUND
vmovdqa .Lbswap128_mask rRIP, RTMP2;
transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
vpshufb RTMP2, RA0, RA0;
vpshufb RTMP2, RA1, RA1;
vpshufb RTMP2, RA2, RA2;
vpshufb RTMP2, RA3, RA3;
vmovdqu RA0, 0*16(%rsi);
cmpq $2, %rcx;
jb .Lblk4_store_output_done;
vmovdqu RA1, 1*16(%rsi);
je .Lblk4_store_output_done;
vmovdqu RA2, 2*16(%rsi);
cmpq $3, %rcx;
je .Lblk4_store_output_done;
vmovdqu RA3, 3*16(%rsi);
.Lblk4_store_output_done:
vzeroall;
xorl %eax, %eax;
ret;
CFI_ENDPROC();
ELF(.size sm4_aesni_avx_crypt_blk1_4,.-sm4_aesni_avx_crypt_blk1_4;)
.align 8
ELF(.type __sm4_crypt_blk8,@function;)
__sm4_crypt_blk8:
/* input:
* %rdi: round key array, CTX
* RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel
* ciphertext blocks
* output:
* RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel plaintext
* blocks
*/
CFI_STARTPROC();
vmovdqa .Lbswap32_mask rRIP, RTMP2;
vpshufb RTMP2, RA0, RA0;
vpshufb RTMP2, RA1, RA1;
vpshufb RTMP2, RA2, RA2;
vpshufb RTMP2, RA3, RA3;
vpshufb RTMP2, RB0, RB0;
vpshufb RTMP2, RB1, RB1;
vpshufb RTMP2, RB2, RB2;
vpshufb RTMP2, RB3, RB3;
vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT;
transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
#define ROUND(round, s0, s1, s2, s3, r0, r1, r2, r3) \
vbroadcastss (4*(round))(%rdi), RX0; \
vmovdqa .Lpre_tf_lo_s rRIP, RTMP4; \
vmovdqa .Lpre_tf_hi_s rRIP, RTMP1; \
vmovdqa RX0, RX1; \
vpxor s1, RX0, RX0; \
vpxor s2, RX0, RX0; \
vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
vmovdqa .Lpost_tf_lo_s rRIP, RTMP2; \
vmovdqa .Lpost_tf_hi_s rRIP, RTMP3; \
vpxor r1, RX1, RX1; \
vpxor r2, RX1, RX1; \
vpxor r3, RX1, RX1; /* r1 ^ r2 ^ r3 ^ rk */ \
\
/* sbox, non-linear part */ \
transform_pre(RX0, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
transform_pre(RX1, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
vmovdqa .Linv_shift_row rRIP, RTMP4; \
vaesenclast MASK_4BIT, RX0, RX0; \
vaesenclast MASK_4BIT, RX1, RX1; \
transform_post(RX0, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
transform_post(RX1, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
\
/* linear part */ \
vpshufb RTMP4, RX0, RTMP0; \
vpxor RTMP0, s0, s0; /* s0 ^ x */ \
vpshufb RTMP4, RX1, RTMP2; \
vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP4; \
vpxor RTMP2, r0, r0; /* r0 ^ x */ \
vpshufb RTMP4, RX0, RTMP1; \
vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \
vpshufb RTMP4, RX1, RTMP3; \
vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP4; \
vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) */ \
vpshufb RTMP4, RX0, RTMP1; \
vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \
vpshufb RTMP4, RX1, RTMP3; \
vmovdqa .Linv_shift_row_rol_24 rRIP, RTMP4; \
vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) ^ rol(x,16) */ \
vpshufb RTMP4, RX0, RTMP1; \
vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \
vpslld $2, RTMP0, RTMP1; \
vpsrld $30, RTMP0, RTMP0; \
vpxor RTMP0, s0, s0; \
vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
vpshufb RTMP4, RX1, RTMP3; \
vpxor RTMP3, r0, r0; /* r0 ^ x ^ rol(x,24) */ \
vpslld $2, RTMP2, RTMP3; \
vpsrld $30, RTMP2, RTMP2; \
vpxor RTMP2, r0, r0; \
vpxor RTMP3, r0, r0; /* r0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */
leaq (32*4)(%rdi), %rax;
.align 16
.Lroundloop_blk8:
ROUND(0, RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3);
ROUND(1, RA1, RA2, RA3, RA0, RB1, RB2, RB3, RB0);
ROUND(2, RA2, RA3, RA0, RA1, RB2, RB3, RB0, RB1);
ROUND(3, RA3, RA0, RA1, RA2, RB3, RB0, RB1, RB2);
leaq (4*4)(%rdi), %rdi;
cmpq %rax, %rdi;
jne .Lroundloop_blk8;
#undef ROUND
vmovdqa .Lbswap128_mask rRIP, RTMP2;
transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
vpshufb RTMP2, RA0, RA0;
vpshufb RTMP2, RA1, RA1;
vpshufb RTMP2, RA2, RA2;
vpshufb RTMP2, RA3, RA3;
vpshufb RTMP2, RB0, RB0;
vpshufb RTMP2, RB1, RB1;
vpshufb RTMP2, RB2, RB2;
vpshufb RTMP2, RB3, RB3;
ret;
CFI_ENDPROC();
ELF(.size __sm4_crypt_blk8,.-__sm4_crypt_blk8;)
.align 8
.globl _gcry_sm4_aesni_avx_crypt_blk1_8
ELF(.type _gcry_sm4_aesni_avx_crypt_blk1_8,@function;)
_gcry_sm4_aesni_avx_crypt_blk1_8:
/* input:
* %rdi: round key array, CTX
* %rsi: dst (1..8 blocks)
* %rdx: src (1..8 blocks)
* %rcx: num blocks (1..8)
*/
CFI_STARTPROC();
cmpq $5, %rcx;
jb sm4_aesni_avx_crypt_blk1_4;
vmovdqu (0 * 16)(%rdx), RA0;
vmovdqu (1 * 16)(%rdx), RA1;
vmovdqu (2 * 16)(%rdx), RA2;
vmovdqu (3 * 16)(%rdx), RA3;
vmovdqu (4 * 16)(%rdx), RB0;
vmovdqa RB0, RB1;
vmovdqa RB0, RB2;
vmovdqa RB0, RB3;
je .Lblk8_load_input_done;
vmovdqu (5 * 16)(%rdx), RB1;
cmpq $7, %rcx;
jb .Lblk8_load_input_done;
vmovdqu (6 * 16)(%rdx), RB2;
je .Lblk8_load_input_done;
vmovdqu (7 * 16)(%rdx), RB3;
.Lblk8_load_input_done:
call __sm4_crypt_blk8;
cmpq $6, %rcx;
vmovdqu RA0, (0 * 16)(%rsi);
vmovdqu RA1, (1 * 16)(%rsi);
vmovdqu RA2, (2 * 16)(%rsi);
vmovdqu RA3, (3 * 16)(%rsi);
vmovdqu RB0, (4 * 16)(%rsi);
jb .Lblk8_store_output_done;
vmovdqu RB1, (5 * 16)(%rsi);
je .Lblk8_store_output_done;
vmovdqu RB2, (6 * 16)(%rsi);
cmpq $7, %rcx;
je .Lblk8_store_output_done;
vmovdqu RB3, (7 * 16)(%rsi);
.Lblk8_store_output_done:
vzeroall;
xorl %eax, %eax;
ret;
CFI_ENDPROC();
ELF(.size _gcry_sm4_aesni_avx_crypt_blk1_8,.-_gcry_sm4_aesni_avx_crypt_blk1_8;)
.align 8
.globl _gcry_sm4_aesni_avx_ctr_enc
ELF(.type _gcry_sm4_aesni_avx_ctr_enc,@function;)
_gcry_sm4_aesni_avx_ctr_enc:
/* input:
* %rdi: round key array, CTX
* %rsi: dst (8 blocks)
* %rdx: src (8 blocks)
* %rcx: iv (big endian, 128bit)
*/
CFI_STARTPROC();
/* load IV and byteswap */
vmovdqu (%rcx), RA0;
vmovdqa .Lbswap128_mask rRIP, RBSWAP;
vpshufb RBSWAP, RA0, RTMP0; /* be => le */
vpcmpeqd RNOT, RNOT, RNOT;
vpsrldq $8, RNOT, RNOT; /* low: -1, high: 0 */
#define inc_le128(x, minus_one, tmp) \
vpcmpeqq minus_one, x, tmp; \
vpsubq minus_one, x, x; \
vpslldq $8, tmp, tmp; \
vpsubq tmp, x, x;
/* construct IVs */
inc_le128(RTMP0, RNOT, RTMP2); /* +1 */
vpshufb RBSWAP, RTMP0, RA1;
inc_le128(RTMP0, RNOT, RTMP2); /* +2 */
vpshufb RBSWAP, RTMP0, RA2;
inc_le128(RTMP0, RNOT, RTMP2); /* +3 */
vpshufb RBSWAP, RTMP0, RA3;
inc_le128(RTMP0, RNOT, RTMP2); /* +4 */
vpshufb RBSWAP, RTMP0, RB0;
inc_le128(RTMP0, RNOT, RTMP2); /* +5 */
vpshufb RBSWAP, RTMP0, RB1;
inc_le128(RTMP0, RNOT, RTMP2); /* +6 */
vpshufb RBSWAP, RTMP0, RB2;
inc_le128(RTMP0, RNOT, RTMP2); /* +7 */
vpshufb RBSWAP, RTMP0, RB3;
inc_le128(RTMP0, RNOT, RTMP2); /* +8 */
vpshufb RBSWAP, RTMP0, RTMP1;
/* store new IV */
vmovdqu RTMP1, (%rcx);
call __sm4_crypt_blk8;
vpxor (0 * 16)(%rdx), RA0, RA0;
vpxor (1 * 16)(%rdx), RA1, RA1;
vpxor (2 * 16)(%rdx), RA2, RA2;
vpxor (3 * 16)(%rdx), RA3, RA3;
vpxor (4 * 16)(%rdx), RB0, RB0;
vpxor (5 * 16)(%rdx), RB1, RB1;
vpxor (6 * 16)(%rdx), RB2, RB2;
vpxor (7 * 16)(%rdx), RB3, RB3;
vmovdqu RA0, (0 * 16)(%rsi);
vmovdqu RA1, (1 * 16)(%rsi);
vmovdqu RA2, (2 * 16)(%rsi);
vmovdqu RA3, (3 * 16)(%rsi);
vmovdqu RB0, (4 * 16)(%rsi);
vmovdqu RB1, (5 * 16)(%rsi);
vmovdqu RB2, (6 * 16)(%rsi);
vmovdqu RB3, (7 * 16)(%rsi);
vzeroall;
ret;
CFI_ENDPROC();
ELF(.size _gcry_sm4_aesni_avx_ctr_enc,.-_gcry_sm4_aesni_avx_ctr_enc;)
.align 8
.globl _gcry_sm4_aesni_avx_cbc_dec
ELF(.type _gcry_sm4_aesni_avx_cbc_dec,@function;)
_gcry_sm4_aesni_avx_cbc_dec:
/* input:
* %rdi: round key array, CTX
* %rsi: dst (8 blocks)
* %rdx: src (8 blocks)
* %rcx: iv
*/
CFI_STARTPROC();
vmovdqu (0 * 16)(%rdx), RA0;
vmovdqu (1 * 16)(%rdx), RA1;
vmovdqu (2 * 16)(%rdx), RA2;
vmovdqu (3 * 16)(%rdx), RA3;
vmovdqu (4 * 16)(%rdx), RB0;
vmovdqu (5 * 16)(%rdx), RB1;
vmovdqu (6 * 16)(%rdx), RB2;
vmovdqu (7 * 16)(%rdx), RB3;
call __sm4_crypt_blk8;
vmovdqu (7 * 16)(%rdx), RNOT;
vpxor (%rcx), RA0, RA0;
vpxor (0 * 16)(%rdx), RA1, RA1;
vpxor (1 * 16)(%rdx), RA2, RA2;
vpxor (2 * 16)(%rdx), RA3, RA3;
vpxor (3 * 16)(%rdx), RB0, RB0;
vpxor (4 * 16)(%rdx), RB1, RB1;
vpxor (5 * 16)(%rdx), RB2, RB2;
vpxor (6 * 16)(%rdx), RB3, RB3;
vmovdqu RNOT, (%rcx); /* store new IV */
vmovdqu RA0, (0 * 16)(%rsi);
vmovdqu RA1, (1 * 16)(%rsi);
vmovdqu RA2, (2 * 16)(%rsi);
vmovdqu RA3, (3 * 16)(%rsi);
vmovdqu RB0, (4 * 16)(%rsi);
vmovdqu RB1, (5 * 16)(%rsi);
vmovdqu RB2, (6 * 16)(%rsi);
vmovdqu RB3, (7 * 16)(%rsi);
vzeroall;
ret;
CFI_ENDPROC();
ELF(.size _gcry_sm4_aesni_avx_cbc_dec,.-_gcry_sm4_aesni_avx_cbc_dec;)
.align 8
.globl _gcry_sm4_aesni_avx_cfb_dec
ELF(.type _gcry_sm4_aesni_avx_cfb_dec,@function;)
_gcry_sm4_aesni_avx_cfb_dec:
/* input:
* %rdi: round key array, CTX
* %rsi: dst (8 blocks)
* %rdx: src (8 blocks)
* %rcx: iv
*/
CFI_STARTPROC();
/* Load input */
vmovdqu (%rcx), RA0;
vmovdqu 0 * 16(%rdx), RA1;
vmovdqu 1 * 16(%rdx), RA2;
vmovdqu 2 * 16(%rdx), RA3;
vmovdqu 3 * 16(%rdx), RB0;
vmovdqu 4 * 16(%rdx), RB1;
vmovdqu 5 * 16(%rdx), RB2;
vmovdqu 6 * 16(%rdx), RB3;
/* Update IV */
vmovdqu 7 * 16(%rdx), RNOT;
vmovdqu RNOT, (%rcx);
call __sm4_crypt_blk8;
vpxor (0 * 16)(%rdx), RA0, RA0;
vpxor (1 * 16)(%rdx), RA1, RA1;
vpxor (2 * 16)(%rdx), RA2, RA2;
vpxor (3 * 16)(%rdx), RA3, RA3;
vpxor (4 * 16)(%rdx), RB0, RB0;
vpxor (5 * 16)(%rdx), RB1, RB1;
vpxor (6 * 16)(%rdx), RB2, RB2;
vpxor (7 * 16)(%rdx), RB3, RB3;
vmovdqu RA0, (0 * 16)(%rsi);
vmovdqu RA1, (1 * 16)(%rsi);
vmovdqu RA2, (2 * 16)(%rsi);
vmovdqu RA3, (3 * 16)(%rsi);
vmovdqu RB0, (4 * 16)(%rsi);
vmovdqu RB1, (5 * 16)(%rsi);
vmovdqu RB2, (6 * 16)(%rsi);
vmovdqu RB3, (7 * 16)(%rsi);
vzeroall;
ret;
CFI_ENDPROC();
ELF(.size _gcry_sm4_aesni_avx_cfb_dec,.-_gcry_sm4_aesni_avx_cfb_dec;)
.align 8
.globl _gcry_sm4_aesni_avx_ocb_enc
ELF(.type _gcry_sm4_aesni_avx_ocb_enc,@function;)
_gcry_sm4_aesni_avx_ocb_enc:
/* input:
* %rdi: round key array, CTX
* %rsi: dst (8 blocks)
* %rdx: src (8 blocks)
* %rcx: offset
* %r8 : checksum
* %r9 : L pointers (void *L[8])
*/
CFI_STARTPROC();
subq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(4 * 8);
movq %r10, (0 * 8)(%rsp);
movq %r11, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
CFI_REL_OFFSET(%r10, 0 * 8);
CFI_REL_OFFSET(%r11, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
vmovdqu (%rcx), RTMP0;
vmovdqu (%r8), RTMP1;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
/* Checksum_i = Checksum_{i-1} xor P_i */
/* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
#define OCB_INPUT(n, lreg, xreg) \
vmovdqu (n * 16)(%rdx), xreg; \
vpxor (lreg), RTMP0, RTMP0; \
vpxor xreg, RTMP1, RTMP1; \
vpxor RTMP0, xreg, xreg; \
vmovdqu RTMP0, (n * 16)(%rsi);
movq (0 * 8)(%r9), %r10;
movq (1 * 8)(%r9), %r11;
movq (2 * 8)(%r9), %r12;
movq (3 * 8)(%r9), %r13;
OCB_INPUT(0, %r10, RA0);
OCB_INPUT(1, %r11, RA1);
OCB_INPUT(2, %r12, RA2);
OCB_INPUT(3, %r13, RA3);
movq (4 * 8)(%r9), %r10;
movq (5 * 8)(%r9), %r11;
movq (6 * 8)(%r9), %r12;
movq (7 * 8)(%r9), %r13;
OCB_INPUT(4, %r10, RB0);
OCB_INPUT(5, %r11, RB1);
OCB_INPUT(6, %r12, RB2);
OCB_INPUT(7, %r13, RB3);
#undef OCB_INPUT
vmovdqu RTMP0, (%rcx);
vmovdqu RTMP1, (%r8);
movq (0 * 8)(%rsp), %r10;
CFI_RESTORE(%r10);
movq (1 * 8)(%rsp), %r11;
CFI_RESTORE(%r11);
movq (2 * 8)(%rsp), %r12;
CFI_RESTORE(%r12);
movq (3 * 8)(%rsp), %r13;
CFI_RESTORE(%r13);
call __sm4_crypt_blk8;
addq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-4 * 8);
vpxor (0 * 16)(%rsi), RA0, RA0;
vpxor (1 * 16)(%rsi), RA1, RA1;
vpxor (2 * 16)(%rsi), RA2, RA2;
vpxor (3 * 16)(%rsi), RA3, RA3;
vpxor (4 * 16)(%rsi), RB0, RB0;
vpxor (5 * 16)(%rsi), RB1, RB1;
vpxor (6 * 16)(%rsi), RB2, RB2;
vpxor (7 * 16)(%rsi), RB3, RB3;
vmovdqu RA0, (0 * 16)(%rsi);
vmovdqu RA1, (1 * 16)(%rsi);
vmovdqu RA2, (2 * 16)(%rsi);
vmovdqu RA3, (3 * 16)(%rsi);
vmovdqu RB0, (4 * 16)(%rsi);
vmovdqu RB1, (5 * 16)(%rsi);
vmovdqu RB2, (6 * 16)(%rsi);
vmovdqu RB3, (7 * 16)(%rsi);
vzeroall;
ret;
CFI_ENDPROC();
ELF(.size _gcry_sm4_aesni_avx_ocb_enc,.-_gcry_sm4_aesni_avx_ocb_enc;)
.align 8
.globl _gcry_sm4_aesni_avx_ocb_dec
ELF(.type _gcry_sm4_aesni_avx_ocb_dec,@function;)
_gcry_sm4_aesni_avx_ocb_dec:
/* input:
* %rdi: round key array, CTX
* %rsi: dst (8 blocks)
* %rdx: src (8 blocks)
* %rcx: offset
* %r8 : checksum
* %r9 : L pointers (void *L[8])
*/
CFI_STARTPROC();
subq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(4 * 8);
movq %r10, (0 * 8)(%rsp);
movq %r11, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
CFI_REL_OFFSET(%r10, 0 * 8);
CFI_REL_OFFSET(%r11, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
movdqu (%rcx), RTMP0;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
/* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */
#define OCB_INPUT(n, lreg, xreg) \
vmovdqu (n * 16)(%rdx), xreg; \
vpxor (lreg), RTMP0, RTMP0; \
vpxor RTMP0, xreg, xreg; \
vmovdqu RTMP0, (n * 16)(%rsi);
movq (0 * 8)(%r9), %r10;
movq (1 * 8)(%r9), %r11;
movq (2 * 8)(%r9), %r12;
movq (3 * 8)(%r9), %r13;
OCB_INPUT(0, %r10, RA0);
OCB_INPUT(1, %r11, RA1);
OCB_INPUT(2, %r12, RA2);
OCB_INPUT(3, %r13, RA3);
movq (4 * 8)(%r9), %r10;
movq (5 * 8)(%r9), %r11;
movq (6 * 8)(%r9), %r12;
movq (7 * 8)(%r9), %r13;
OCB_INPUT(4, %r10, RB0);
OCB_INPUT(5, %r11, RB1);
OCB_INPUT(6, %r12, RB2);
OCB_INPUT(7, %r13, RB3);
#undef OCB_INPUT
vmovdqu RTMP0, (%rcx);
movq (0 * 8)(%rsp), %r10;
CFI_RESTORE(%r10);
movq (1 * 8)(%rsp), %r11;
CFI_RESTORE(%r11);
movq (2 * 8)(%rsp), %r12;
CFI_RESTORE(%r12);
movq (3 * 8)(%rsp), %r13;
CFI_RESTORE(%r13);
call __sm4_crypt_blk8;
addq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-4 * 8);
vmovdqu (%r8), RTMP0;
vpxor (0 * 16)(%rsi), RA0, RA0;
vpxor (1 * 16)(%rsi), RA1, RA1;
vpxor (2 * 16)(%rsi), RA2, RA2;
vpxor (3 * 16)(%rsi), RA3, RA3;
vpxor (4 * 16)(%rsi), RB0, RB0;
vpxor (5 * 16)(%rsi), RB1, RB1;
vpxor (6 * 16)(%rsi), RB2, RB2;
vpxor (7 * 16)(%rsi), RB3, RB3;
/* Checksum_i = Checksum_{i-1} xor P_i */
vmovdqu RA0, (0 * 16)(%rsi);
vpxor RA0, RTMP0, RTMP0;
vmovdqu RA1, (1 * 16)(%rsi);
vpxor RA1, RTMP0, RTMP0;
vmovdqu RA2, (2 * 16)(%rsi);
vpxor RA2, RTMP0, RTMP0;
vmovdqu RA3, (3 * 16)(%rsi);
vpxor RA3, RTMP0, RTMP0;
vmovdqu RB0, (4 * 16)(%rsi);
vpxor RB0, RTMP0, RTMP0;
vmovdqu RB1, (5 * 16)(%rsi);
vpxor RB1, RTMP0, RTMP0;
vmovdqu RB2, (6 * 16)(%rsi);
vpxor RB2, RTMP0, RTMP0;
vmovdqu RB3, (7 * 16)(%rsi);
vpxor RB3, RTMP0, RTMP0;
vmovdqu RTMP0, (%r8);
vzeroall;
ret;
CFI_ENDPROC();
ELF(.size _gcry_sm4_aesni_avx_ocb_dec,.-_gcry_sm4_aesni_avx_ocb_dec;)
.align 8
.globl _gcry_sm4_aesni_avx_ocb_auth
ELF(.type _gcry_sm4_aesni_avx_ocb_auth,@function;)
_gcry_sm4_aesni_avx_ocb_auth:
/* input:
* %rdi: round key array, CTX
* %rsi: abuf (8 blocks)
* %rdx: offset
* %rcx: checksum
* %r8 : L pointers (void *L[8])
*/
CFI_STARTPROC();
subq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(4 * 8);
movq %r10, (0 * 8)(%rsp);
movq %r11, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
CFI_REL_OFFSET(%r10, 0 * 8);
CFI_REL_OFFSET(%r11, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
vmovdqu (%rdx), RTMP0;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
/* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
#define OCB_INPUT(n, lreg, xreg) \
vmovdqu (n * 16)(%rsi), xreg; \
vpxor (lreg), RTMP0, RTMP0; \
vpxor RTMP0, xreg, xreg;
movq (0 * 8)(%r8), %r10;
movq (1 * 8)(%r8), %r11;
movq (2 * 8)(%r8), %r12;
movq (3 * 8)(%r8), %r13;
OCB_INPUT(0, %r10, RA0);
OCB_INPUT(1, %r11, RA1);
OCB_INPUT(2, %r12, RA2);
OCB_INPUT(3, %r13, RA3);
movq (4 * 8)(%r8), %r10;
movq (5 * 8)(%r8), %r11;
movq (6 * 8)(%r8), %r12;
movq (7 * 8)(%r8), %r13;
OCB_INPUT(4, %r10, RB0);
OCB_INPUT(5, %r11, RB1);
OCB_INPUT(6, %r12, RB2);
OCB_INPUT(7, %r13, RB3);
#undef OCB_INPUT
vmovdqu RTMP0, (%rdx);
movq (0 * 8)(%rsp), %r10;
CFI_RESTORE(%r10);
movq (1 * 8)(%rsp), %r11;
CFI_RESTORE(%r11);
movq (2 * 8)(%rsp), %r12;
CFI_RESTORE(%r12);
movq (3 * 8)(%rsp), %r13;
CFI_RESTORE(%r13);
call __sm4_crypt_blk8;
addq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-4 * 8);
vmovdqu (%rcx), RTMP0;
vpxor RB0, RA0, RA0;
vpxor RB1, RA1, RA1;
vpxor RB2, RA2, RA2;
vpxor RB3, RA3, RA3;
vpxor RTMP0, RA3, RA3;
vpxor RA2, RA0, RA0;
vpxor RA3, RA1, RA1;
vpxor RA1, RA0, RA0;
vmovdqu RA0, (%rcx);
vzeroall;
ret;
CFI_ENDPROC();
ELF(.size _gcry_sm4_aesni_avx_ocb_auth,.-_gcry_sm4_aesni_avx_ocb_auth;)
#endif /*defined(ENABLE_AESNI_SUPPORT) && defined(ENABLE_AVX_SUPPORT)*/
#endif /*__x86_64*/