Revision control
Copy as Markdown
Other Tools
/* sha256.c - SHA256 hash function
* Copyright (C) 2003, 2006, 2008, 2009 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
*/
/* Test vectors:
"abc"
SHA224: 23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7
SHA256: ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
SHA224: 75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525
SHA256: 248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1
"a" one million times
SHA224: 20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67
SHA256: cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "g10lib.h"
#include "bithelp.h"
#include "bufhelp.h"
#include "cipher.h"
#include "hash-common.h"
/* USE_SSSE3 indicates whether to compile with Intel SSSE3 code. */
#undef USE_SSSE3
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_SSSE3) && \
defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_SSSE3 1
#endif
/* USE_AVX indicates whether to compile with Intel AVX code. */
#undef USE_AVX
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \
defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_AVX 1
#endif
/* USE_AVX2 indicates whether to compile with Intel AVX2/BMI2 code. */
#undef USE_AVX2
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX2) && \
defined(HAVE_GCC_INLINE_ASM_BMI2) && \
defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_AVX2 1
#endif
/* USE_SHAEXT indicates whether to compile with Intel SHA Extension code. */
#undef USE_SHAEXT
#if defined(HAVE_GCC_INLINE_ASM_SHAEXT) && \
defined(HAVE_GCC_INLINE_ASM_SSE41) && \
defined(ENABLE_SHAEXT_SUPPORT)
# define USE_SHAEXT 1
#endif
/* USE_ARM_CE indicates whether to enable ARMv8 Crypto Extension assembly
* code. */
#undef USE_ARM_CE
#ifdef ENABLE_ARM_CRYPTO_SUPPORT
# if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \
&& defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \
&& defined(HAVE_GCC_INLINE_ASM_AARCH32_CRYPTO)
# define USE_ARM_CE 1
# elif defined(__AARCH64EL__) \
&& defined(HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS) \
&& defined(HAVE_GCC_INLINE_ASM_AARCH64_CRYPTO)
# define USE_ARM_CE 1
# endif
#endif
/* USE_PPC_CRYPTO indicates whether to enable PowerPC vector crypto
* accelerated code. */
#undef USE_PPC_CRYPTO
#ifdef ENABLE_PPC_CRYPTO_SUPPORT
# if defined(HAVE_COMPATIBLE_CC_PPC_ALTIVEC) && \
defined(HAVE_GCC_INLINE_ASM_PPC_ALTIVEC)
# if __GNUC__ >= 4
# define USE_PPC_CRYPTO 1
# endif
# endif
#endif
/* USE_S390X_CRYPTO indicates whether to enable zSeries code. */
#undef USE_S390X_CRYPTO
#if defined(HAVE_GCC_INLINE_ASM_S390X)
# define USE_S390X_CRYPTO 1
#endif /* USE_S390X_CRYPTO */
typedef struct {
gcry_md_block_ctx_t bctx;
u32 h0,h1,h2,h3,h4,h5,h6,h7;
#ifdef USE_S390X_CRYPTO
u32 final_len_msb, final_len_lsb; /* needs to be right after h7. */
int use_s390x_crypto;
#endif
} SHA256_CONTEXT;
/* Assembly implementations use SystemV ABI, ABI conversion and additional
* stack to store XMM6-XMM15 needed on Win64. */
#undef ASM_FUNC_ABI
#undef ASM_EXTRA_STACK
#if defined(USE_SSSE3) || defined(USE_AVX) || defined(USE_AVX2) || \
defined(USE_SHAEXT)
# ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
# define ASM_FUNC_ABI __attribute__((sysv_abi))
# define ASM_EXTRA_STACK (10 * 16 + sizeof(void *) * 4)
# else
# define ASM_FUNC_ABI
# define ASM_EXTRA_STACK 0
# endif
#endif
#ifdef USE_SSSE3
unsigned int _gcry_sha256_transform_amd64_ssse3(const void *input_data,
u32 state[8],
size_t num_blks) ASM_FUNC_ABI;
static unsigned int
do_sha256_transform_amd64_ssse3(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_amd64_ssse3 (data, &hd->h0, nblks)
+ ASM_EXTRA_STACK;
}
#endif
#ifdef USE_AVX
unsigned int _gcry_sha256_transform_amd64_avx(const void *input_data,
u32 state[8],
size_t num_blks) ASM_FUNC_ABI;
static unsigned int
do_sha256_transform_amd64_avx(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_amd64_avx (data, &hd->h0, nblks)
+ ASM_EXTRA_STACK;
}
#endif
#ifdef USE_AVX2
unsigned int _gcry_sha256_transform_amd64_avx2(const void *input_data,
u32 state[8],
size_t num_blks) ASM_FUNC_ABI;
static unsigned int
do_sha256_transform_amd64_avx2(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_amd64_avx2 (data, &hd->h0, nblks)
+ ASM_EXTRA_STACK;
}
#endif
#ifdef USE_SHAEXT
/* Does not need ASM_FUNC_ABI */
unsigned int
_gcry_sha256_transform_intel_shaext(u32 state[8],
const unsigned char *input_data,
size_t num_blks);
static unsigned int
do_sha256_transform_intel_shaext(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_intel_shaext (&hd->h0, data, nblks);
}
#endif
#ifdef USE_ARM_CE
unsigned int _gcry_sha256_transform_armv8_ce(u32 state[8],
const void *input_data,
size_t num_blks);
static unsigned int
do_sha256_transform_armv8_ce(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_armv8_ce (&hd->h0, data, nblks);
}
#endif
#ifdef USE_PPC_CRYPTO
unsigned int _gcry_sha256_transform_ppc8(u32 state[8],
const unsigned char *input_data,
size_t num_blks);
unsigned int _gcry_sha256_transform_ppc9(u32 state[8],
const unsigned char *input_data,
size_t num_blks);
static unsigned int
do_sha256_transform_ppc8(void *ctx, const unsigned char *data, size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_ppc8 (&hd->h0, data, nblks);
}
static unsigned int
do_sha256_transform_ppc9(void *ctx, const unsigned char *data, size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_ppc9 (&hd->h0, data, nblks);
}
#endif
#ifdef USE_S390X_CRYPTO
#include "asm-inline-s390x.h"
static unsigned int
do_sha256_transform_s390x (void *ctx, const unsigned char *data, size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
kimd_execute (KMID_FUNCTION_SHA256, &hd->h0, data, nblks * 64);
return 0;
}
static unsigned int
do_sha256_final_s390x (void *ctx, const unsigned char *data, size_t datalen,
u32 len_msb, u32 len_lsb)
{
SHA256_CONTEXT *hd = ctx;
/* Make sure that 'final_len' is positioned at correct offset relative
* to 'h0'. This is because we are passing 'h0' pointer as start of
* parameter block to 'klmd' instruction. */
gcry_assert (offsetof (SHA256_CONTEXT, final_len_msb)
- offsetof (SHA256_CONTEXT, h0) == 8 * sizeof(u32));
gcry_assert (offsetof (SHA256_CONTEXT, final_len_lsb)
- offsetof (SHA256_CONTEXT, final_len_msb) == 1 * sizeof(u32));
hd->final_len_msb = len_msb;
hd->final_len_lsb = len_lsb;
klmd_execute (KMID_FUNCTION_SHA256, &hd->h0, data, datalen);
return 0;
}
#endif
static unsigned int
do_transform_generic (void *ctx, const unsigned char *data, size_t nblks);
static void
sha256_common_init (SHA256_CONTEXT *hd)
{
unsigned int features = _gcry_get_hw_features ();
hd->bctx.nblocks = 0;
hd->bctx.nblocks_high = 0;
hd->bctx.count = 0;
hd->bctx.blocksize_shift = _gcry_ctz(64);
/* Order of feature checks is important here; last match will be
* selected. Keep slower implementations at the top and faster at
* the bottom. */
hd->bctx.bwrite = do_transform_generic;
#ifdef USE_SSSE3
if ((features & HWF_INTEL_SSSE3) != 0)
hd->bctx.bwrite = do_sha256_transform_amd64_ssse3;
#endif
#ifdef USE_AVX
/* AVX implementation uses SHLD which is known to be slow on non-Intel CPUs.
* Therefore use this implementation on Intel CPUs only. */
if ((features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD))
hd->bctx.bwrite = do_sha256_transform_amd64_avx;
#endif
#ifdef USE_AVX2
if ((features & HWF_INTEL_AVX2) && (features & HWF_INTEL_BMI2))
hd->bctx.bwrite = do_sha256_transform_amd64_avx2;
#endif
#ifdef USE_SHAEXT
if ((features & HWF_INTEL_SHAEXT) && (features & HWF_INTEL_SSE4_1))
hd->bctx.bwrite = do_sha256_transform_intel_shaext;
#endif
#ifdef USE_ARM_CE
if ((features & HWF_ARM_SHA2) != 0)
hd->bctx.bwrite = do_sha256_transform_armv8_ce;
#endif
#ifdef USE_PPC_CRYPTO
if ((features & HWF_PPC_VCRYPTO) != 0)
hd->bctx.bwrite = do_sha256_transform_ppc8;
if ((features & HWF_PPC_VCRYPTO) != 0 && (features & HWF_PPC_ARCH_3_00) != 0)
hd->bctx.bwrite = do_sha256_transform_ppc9;
#endif
#ifdef USE_S390X_CRYPTO
hd->use_s390x_crypto = 0;
if ((features & HWF_S390X_MSA) != 0)
{
if ((kimd_query () & km_function_to_mask (KMID_FUNCTION_SHA256)) &&
(klmd_query () & km_function_to_mask (KMID_FUNCTION_SHA256)))
{
hd->bctx.bwrite = do_sha256_transform_s390x;
hd->use_s390x_crypto = 1;
}
}
#endif
(void)features;
}
static void
sha256_init (void *context, unsigned int flags)
{
SHA256_CONTEXT *hd = context;
(void)flags;
hd->h0 = 0x6a09e667;
hd->h1 = 0xbb67ae85;
hd->h2 = 0x3c6ef372;
hd->h3 = 0xa54ff53a;
hd->h4 = 0x510e527f;
hd->h5 = 0x9b05688c;
hd->h6 = 0x1f83d9ab;
hd->h7 = 0x5be0cd19;
sha256_common_init (hd);
}
static void
sha224_init (void *context, unsigned int flags)
{
SHA256_CONTEXT *hd = context;
(void)flags;
hd->h0 = 0xc1059ed8;
hd->h1 = 0x367cd507;
hd->h2 = 0x3070dd17;
hd->h3 = 0xf70e5939;
hd->h4 = 0xffc00b31;
hd->h5 = 0x68581511;
hd->h6 = 0x64f98fa7;
hd->h7 = 0xbefa4fa4;
sha256_common_init (hd);
}
/*
Transform the message X which consists of 16 32-bit-words. See FIPS
180-2 for details. */
#define R(a,b,c,d,e,f,g,h,k,w) do \
{ \
t1 = (h) + Sum1((e)) + Cho((e),(f),(g)) + (k) + (w); \
t2 = Sum0((a)) + Maj((a),(b),(c)); \
d += t1; \
h = t1 + t2; \
} while (0)
/* (4.2) same as SHA-1's F1. */
#define Cho(x, y, z) (z ^ (x & (y ^ z)))
/* (4.3) same as SHA-1's F3 */
#define Maj(x, y, z) ((x & y) + (z & (x ^ y)))
/* (4.4) */
#define Sum0(x) (ror (x, 2) ^ ror (x, 13) ^ ror (x, 22))
/* (4.5) */
#define Sum1(x) (ror (x, 6) ^ ror (x, 11) ^ ror (x, 25))
/* Message expansion */
#define S0(x) (ror ((x), 7) ^ ror ((x), 18) ^ ((x) >> 3)) /* (4.6) */
#define S1(x) (ror ((x), 17) ^ ror ((x), 19) ^ ((x) >> 10)) /* (4.7) */
#define I(i) ( w[i] = buf_get_be32(data + i * 4) )
#define W(i) ( w[i&0x0f] = S1(w[(i-2) &0x0f]) \
+ w[(i-7) &0x0f] \
+ S0(w[(i-15)&0x0f]) \
+ w[(i-16)&0x0f] )
static unsigned int
do_transform_generic (void *ctx, const unsigned char *data, size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
static const u32 K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
do
{
u32 a,b,c,d,e,f,g,h,t1,t2;
u32 w[16];
a = hd->h0;
b = hd->h1;
c = hd->h2;
d = hd->h3;
e = hd->h4;
f = hd->h5;
g = hd->h6;
h = hd->h7;
R(a, b, c, d, e, f, g, h, K[0], I(0));
R(h, a, b, c, d, e, f, g, K[1], I(1));
R(g, h, a, b, c, d, e, f, K[2], I(2));
R(f, g, h, a, b, c, d, e, K[3], I(3));
R(e, f, g, h, a, b, c, d, K[4], I(4));
R(d, e, f, g, h, a, b, c, K[5], I(5));
R(c, d, e, f, g, h, a, b, K[6], I(6));
R(b, c, d, e, f, g, h, a, K[7], I(7));
R(a, b, c, d, e, f, g, h, K[8], I(8));
R(h, a, b, c, d, e, f, g, K[9], I(9));
R(g, h, a, b, c, d, e, f, K[10], I(10));
R(f, g, h, a, b, c, d, e, K[11], I(11));
R(e, f, g, h, a, b, c, d, K[12], I(12));
R(d, e, f, g, h, a, b, c, K[13], I(13));
R(c, d, e, f, g, h, a, b, K[14], I(14));
R(b, c, d, e, f, g, h, a, K[15], I(15));
R(a, b, c, d, e, f, g, h, K[16], W(16));
R(h, a, b, c, d, e, f, g, K[17], W(17));
R(g, h, a, b, c, d, e, f, K[18], W(18));
R(f, g, h, a, b, c, d, e, K[19], W(19));
R(e, f, g, h, a, b, c, d, K[20], W(20));
R(d, e, f, g, h, a, b, c, K[21], W(21));
R(c, d, e, f, g, h, a, b, K[22], W(22));
R(b, c, d, e, f, g, h, a, K[23], W(23));
R(a, b, c, d, e, f, g, h, K[24], W(24));
R(h, a, b, c, d, e, f, g, K[25], W(25));
R(g, h, a, b, c, d, e, f, K[26], W(26));
R(f, g, h, a, b, c, d, e, K[27], W(27));
R(e, f, g, h, a, b, c, d, K[28], W(28));
R(d, e, f, g, h, a, b, c, K[29], W(29));
R(c, d, e, f, g, h, a, b, K[30], W(30));
R(b, c, d, e, f, g, h, a, K[31], W(31));
R(a, b, c, d, e, f, g, h, K[32], W(32));
R(h, a, b, c, d, e, f, g, K[33], W(33));
R(g, h, a, b, c, d, e, f, K[34], W(34));
R(f, g, h, a, b, c, d, e, K[35], W(35));
R(e, f, g, h, a, b, c, d, K[36], W(36));
R(d, e, f, g, h, a, b, c, K[37], W(37));
R(c, d, e, f, g, h, a, b, K[38], W(38));
R(b, c, d, e, f, g, h, a, K[39], W(39));
R(a, b, c, d, e, f, g, h, K[40], W(40));
R(h, a, b, c, d, e, f, g, K[41], W(41));
R(g, h, a, b, c, d, e, f, K[42], W(42));
R(f, g, h, a, b, c, d, e, K[43], W(43));
R(e, f, g, h, a, b, c, d, K[44], W(44));
R(d, e, f, g, h, a, b, c, K[45], W(45));
R(c, d, e, f, g, h, a, b, K[46], W(46));
R(b, c, d, e, f, g, h, a, K[47], W(47));
R(a, b, c, d, e, f, g, h, K[48], W(48));
R(h, a, b, c, d, e, f, g, K[49], W(49));
R(g, h, a, b, c, d, e, f, K[50], W(50));
R(f, g, h, a, b, c, d, e, K[51], W(51));
R(e, f, g, h, a, b, c, d, K[52], W(52));
R(d, e, f, g, h, a, b, c, K[53], W(53));
R(c, d, e, f, g, h, a, b, K[54], W(54));
R(b, c, d, e, f, g, h, a, K[55], W(55));
R(a, b, c, d, e, f, g, h, K[56], W(56));
R(h, a, b, c, d, e, f, g, K[57], W(57));
R(g, h, a, b, c, d, e, f, K[58], W(58));
R(f, g, h, a, b, c, d, e, K[59], W(59));
R(e, f, g, h, a, b, c, d, K[60], W(60));
R(d, e, f, g, h, a, b, c, K[61], W(61));
R(c, d, e, f, g, h, a, b, K[62], W(62));
R(b, c, d, e, f, g, h, a, K[63], W(63));
hd->h0 += a;
hd->h1 += b;
hd->h2 += c;
hd->h3 += d;
hd->h4 += e;
hd->h5 += f;
hd->h6 += g;
hd->h7 += h;
data += 64;
}
while (--nblks);
return 26*4 + 32 + 3 * sizeof(void*);
}
#undef S0
#undef S1
#undef R
/*
The routine finally terminates the computation and returns the
digest. The handle is prepared for a new cycle, but adding bytes
to the handle will the destroy the returned buffer. Returns: 32
bytes with the message the digest. */
static void
sha256_final(void *context)
{
SHA256_CONTEXT *hd = context;
u32 t, th, msb, lsb;
byte *p;
unsigned int burn;
t = hd->bctx.nblocks;
if (sizeof t == sizeof hd->bctx.nblocks)
th = hd->bctx.nblocks_high;
else
th = hd->bctx.nblocks >> 32;
/* multiply by 64 to make a byte count */
lsb = t << 6;
msb = (th << 6) | (t >> 26);
/* add the count */
t = lsb;
if ((lsb += hd->bctx.count) < t)
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
lsb <<= 3;
msb <<= 3;
msb |= t >> 29;
if (0)
{ }
#ifdef USE_S390X_CRYPTO
else if (hd->use_s390x_crypto)
{
burn = do_sha256_final_s390x (hd, hd->bctx.buf, hd->bctx.count, msb, lsb);
}
#endif
else if (hd->bctx.count < 56) /* enough room */
{
hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */
if (hd->bctx.count < 56)
memset (&hd->bctx.buf[hd->bctx.count], 0, 56 - hd->bctx.count);
/* append the 64 bit count */
buf_put_be32(hd->bctx.buf + 56, msb);
buf_put_be32(hd->bctx.buf + 60, lsb);
burn = (*hd->bctx.bwrite) (hd, hd->bctx.buf, 1);
}
else /* need one extra block */
{
hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */
/* fill pad and next block with zeroes */
memset (&hd->bctx.buf[hd->bctx.count], 0, 64 - hd->bctx.count + 56);
/* append the 64 bit count */
buf_put_be32(hd->bctx.buf + 64 + 56, msb);
buf_put_be32(hd->bctx.buf + 64 + 60, lsb);
burn = (*hd->bctx.bwrite) (hd, hd->bctx.buf, 2);
}
p = hd->bctx.buf;
#define X(a) do { buf_put_be32(p, hd->h##a); p += 4; } while(0)
X(0);
X(1);
X(2);
X(3);
X(4);
X(5);
X(6);
X(7);
#undef X
hd->bctx.count = 0;
_gcry_burn_stack (burn);
}
static byte *
sha256_read (void *context)
{
SHA256_CONTEXT *hd = context;
return hd->bctx.buf;
}
/* Shortcut functions which puts the hash value of the supplied buffer
* into outbuf which must have a size of 32 bytes. */
void
_gcry_sha256_hash_buffer (void *outbuf, const void *buffer, size_t length)
{
SHA256_CONTEXT hd;
sha256_init (&hd, 0);
_gcry_md_block_write (&hd, buffer, length);
sha256_final (&hd);
memcpy (outbuf, hd.bctx.buf, 32);
}
/* Variant of the above shortcut function using multiple buffers. */
void
_gcry_sha256_hash_buffers (void *outbuf, const gcry_buffer_t *iov, int iovcnt)
{
SHA256_CONTEXT hd;
sha256_init (&hd, 0);
for (;iovcnt > 0; iov++, iovcnt--)
_gcry_md_block_write (&hd,
(const char*)iov[0].data + iov[0].off, iov[0].len);
sha256_final (&hd);
memcpy (outbuf, hd.bctx.buf, 32);
}
/* Shortcut functions which puts the hash value of the supplied buffer
* into outbuf which must have a size of 28 bytes. */
static void
_gcry_sha224_hash_buffer (void *outbuf, const void *buffer, size_t length)
{
SHA256_CONTEXT hd;
sha224_init (&hd, 0);
_gcry_md_block_write (&hd, buffer, length);
sha256_final (&hd);
memcpy (outbuf, hd.bctx.buf, 28);
}
/* Variant of the above shortcut function using multiple buffers. */
static void
_gcry_sha224_hash_buffers (void *outbuf, const gcry_buffer_t *iov, int iovcnt)
{
SHA256_CONTEXT hd;
sha224_init (&hd, 0);
for (;iovcnt > 0; iov++, iovcnt--)
_gcry_md_block_write (&hd,
(const char*)iov[0].data + iov[0].off, iov[0].len);
sha256_final (&hd);
memcpy (outbuf, hd.bctx.buf, 28);
}
/*
Self-test section.
*/
static gpg_err_code_t
selftests_sha224 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
what = "short string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA224, 0,
"abc", 3,
"\x23\x09\x7d\x22\x34\x05\xd8\x22\x86\x42\xa4\x77\xbd\xa2\x55\xb3"
"\x2a\xad\xbc\xe4\xbd\xa0\xb3\xf7\xe3\x6c\x9d\xa7", 28);
if (errtxt)
goto failed;
if (extended)
{
what = "long string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA224, 0,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56,
"\x75\x38\x8b\x16\x51\x27\x76\xcc\x5d\xba\x5d\xa1\xfd\x89\x01\x50"
"\xb0\xc6\x45\x5c\xb4\xf5\x8b\x19\x52\x52\x25\x25", 28);
if (errtxt)
goto failed;
what = "one million \"a\"";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA224, 1,
NULL, 0,
"\x20\x79\x46\x55\x98\x0c\x91\xd8\xbb\xb4\xc1\xea\x97\x61\x8a\x4b"
"\xf0\x3f\x42\x58\x19\x48\xb2\xee\x4e\xe7\xad\x67", 28);
if (errtxt)
goto failed;
}
return 0; /* Succeeded. */
failed:
if (report)
report ("digest", GCRY_MD_SHA224, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
static gpg_err_code_t
selftests_sha256 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
what = "short string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA256, 0,
"abc", 3,
"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad", 32);
if (errtxt)
goto failed;
if (extended)
{
what = "long string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA256, 0,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56,
"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1",
32);
if (errtxt)
goto failed;
what = "one million \"a\"";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA256, 1,
NULL, 0,
"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0",
32);
if (errtxt)
goto failed;
}
return 0; /* Succeeded. */
failed:
if (report)
report ("digest", GCRY_MD_SHA256, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
/* Run a full self-test for ALGO and return 0 on success. */
static gpg_err_code_t
run_selftests (int algo, int extended, selftest_report_func_t report)
{
gpg_err_code_t ec;
switch (algo)
{
case GCRY_MD_SHA224:
ec = selftests_sha224 (extended, report);
break;
case GCRY_MD_SHA256:
ec = selftests_sha256 (extended, report);
break;
default:
ec = GPG_ERR_DIGEST_ALGO;
break;
}
return ec;
}
static byte asn224[19] = /* Object ID is 2.16.840.1.101.3.4.2.4 */
{ 0x30, 0x2D, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04,
0x1C
};
static gcry_md_oid_spec_t oid_spec_sha224[] =
{
/* From RFC3874, Section 4 */
{ "2.16.840.1.101.3.4.2.4" },
{ NULL },
};
static byte asn256[19] = /* Object ID is 2.16.840.1.101.3.4.2.1 */
{ 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20 };
static gcry_md_oid_spec_t oid_spec_sha256[] =
{
/* According to the OpenPGP draft rfc2440-bis06 */
{ "2.16.840.1.101.3.4.2.1" },
/* PKCS#1 sha256WithRSAEncryption */
{ "1.2.840.113549.1.1.11" },
{ NULL },
};
gcry_md_spec_t _gcry_digest_spec_sha224 =
{
GCRY_MD_SHA224, {0, 1},
"SHA224", asn224, DIM (asn224), oid_spec_sha224, 28,
sha224_init, _gcry_md_block_write, sha256_final, sha256_read, NULL,
_gcry_sha224_hash_buffer, _gcry_sha224_hash_buffers,
sizeof (SHA256_CONTEXT),
run_selftests
};
gcry_md_spec_t _gcry_digest_spec_sha256 =
{
GCRY_MD_SHA256, {0, 1},
"SHA256", asn256, DIM (asn256), oid_spec_sha256, 32,
sha256_init, _gcry_md_block_write, sha256_final, sha256_read, NULL,
_gcry_sha256_hash_buffer, _gcry_sha256_hash_buffers,
sizeof (SHA256_CONTEXT),
run_selftests
};