Revision control

Copy as Markdown

Other Tools

/* serpent.c - Implementation of the Serpent encryption algorithm.
* Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser general Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include <config.h>
#include <string.h>
#include <stdio.h>
#include "types.h"
#include "g10lib.h"
#include "cipher.h"
#include "bithelp.h"
#include "bufhelp.h"
#include "cipher-internal.h"
#include "cipher-selftest.h"
/* USE_SSE2 indicates whether to compile with AMD64 SSE2 code. */
#undef USE_SSE2
#if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_SSE2 1
#endif
/* USE_AVX2 indicates whether to compile with AMD64 AVX2 code. */
#undef USE_AVX2
#if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# if defined(ENABLE_AVX2_SUPPORT)
# define USE_AVX2 1
# endif
#endif
/* USE_NEON indicates whether to enable ARM NEON assembly code. */
#undef USE_NEON
#ifdef ENABLE_NEON_SUPPORT
# if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \
&& defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \
&& defined(HAVE_GCC_INLINE_ASM_NEON)
# define USE_NEON 1
# endif
#endif /*ENABLE_NEON_SUPPORT*/
/* Number of rounds per Serpent encrypt/decrypt operation. */
#define ROUNDS 32
/* Magic number, used during generating of the subkeys. */
#define PHI 0x9E3779B9
/* Serpent works on 128 bit blocks. */
typedef u32 serpent_block_t[4];
/* Serpent key, provided by the user. If the original key is shorter
than 256 bits, it is padded. */
typedef u32 serpent_key_t[8];
/* The key schedule consists of 33 128 bit subkeys. */
typedef u32 serpent_subkeys_t[ROUNDS + 1][4];
/* A Serpent context. */
typedef struct serpent_context
{
serpent_subkeys_t keys; /* Generated subkeys. */
#ifdef USE_AVX2
int use_avx2;
#endif
#ifdef USE_NEON
int use_neon;
#endif
} serpent_context_t;
/* Assembly implementations use SystemV ABI, ABI conversion and additional
* stack to store XMM6-XMM15 needed on Win64. */
#undef ASM_FUNC_ABI
#if defined(USE_SSE2) || defined(USE_AVX2)
# ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
# define ASM_FUNC_ABI __attribute__((sysv_abi))
# else
# define ASM_FUNC_ABI
# endif
#endif
#ifdef USE_SSE2
/* Assembler implementations of Serpent using SSE2. Process 8 block in
parallel.
*/
extern void _gcry_serpent_sse2_ctr_enc(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *ctr) ASM_FUNC_ABI;
extern void _gcry_serpent_sse2_cbc_dec(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *iv) ASM_FUNC_ABI;
extern void _gcry_serpent_sse2_cfb_dec(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *iv) ASM_FUNC_ABI;
extern void _gcry_serpent_sse2_ocb_enc(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *offset,
unsigned char *checksum,
const u64 Ls[8]) ASM_FUNC_ABI;
extern void _gcry_serpent_sse2_ocb_dec(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *offset,
unsigned char *checksum,
const u64 Ls[8]) ASM_FUNC_ABI;
extern void _gcry_serpent_sse2_ocb_auth(serpent_context_t *ctx,
const unsigned char *abuf,
unsigned char *offset,
unsigned char *checksum,
const u64 Ls[8]) ASM_FUNC_ABI;
#endif
#ifdef USE_AVX2
/* Assembler implementations of Serpent using AVX2. Process 16 block in
parallel.
*/
extern void _gcry_serpent_avx2_ctr_enc(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *ctr) ASM_FUNC_ABI;
extern void _gcry_serpent_avx2_cbc_dec(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *iv) ASM_FUNC_ABI;
extern void _gcry_serpent_avx2_cfb_dec(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *iv) ASM_FUNC_ABI;
extern void _gcry_serpent_avx2_ocb_enc(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *offset,
unsigned char *checksum,
const u64 Ls[16]) ASM_FUNC_ABI;
extern void _gcry_serpent_avx2_ocb_dec(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *offset,
unsigned char *checksum,
const u64 Ls[16]) ASM_FUNC_ABI;
extern void _gcry_serpent_avx2_ocb_auth(serpent_context_t *ctx,
const unsigned char *abuf,
unsigned char *offset,
unsigned char *checksum,
const u64 Ls[16]) ASM_FUNC_ABI;
#endif
#ifdef USE_NEON
/* Assembler implementations of Serpent using ARM NEON. Process 8 block in
parallel.
*/
extern void _gcry_serpent_neon_ctr_enc(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *ctr);
extern void _gcry_serpent_neon_cbc_dec(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *iv);
extern void _gcry_serpent_neon_cfb_dec(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *iv);
extern void _gcry_serpent_neon_ocb_enc(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *offset,
unsigned char *checksum,
const void *Ls[8]);
extern void _gcry_serpent_neon_ocb_dec(serpent_context_t *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *offset,
unsigned char *checksum,
const void *Ls[8]);
extern void _gcry_serpent_neon_ocb_auth(serpent_context_t *ctx,
const unsigned char *abuf,
unsigned char *offset,
unsigned char *checksum,
const void *Ls[8]);
#endif
/* Prototypes. */
static const char *serpent_test (void);
static void _gcry_serpent_ctr_enc (void *context, unsigned char *ctr,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks);
static void _gcry_serpent_cbc_dec (void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks);
static void _gcry_serpent_cfb_dec (void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks);
static size_t _gcry_serpent_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks,
int encrypt);
static size_t _gcry_serpent_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg,
size_t nblocks);
/*
* These are the S-Boxes of Serpent from following research paper.
*
* D. A. Osvik, “Speeding up Serpent,” in Third AES Candidate Conference,
* (New York, New York, USA), p. 317–329, National Institute of Standards and
* Technology, 2000.
*
* Paper is also available at: http://www.ii.uib.no/~osvik/pub/aes3.pdf
*
*/
#define SBOX0(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r3 ^= r0; r4 = r1; \
r1 &= r3; r4 ^= r2; \
r1 ^= r0; r0 |= r3; \
r0 ^= r4; r4 ^= r3; \
r3 ^= r2; r2 |= r1; \
r2 ^= r4; r4 = ~r4; \
r4 |= r1; r1 ^= r3; \
r1 ^= r4; r3 |= r0; \
r1 ^= r3; r4 ^= r3; \
\
w = r1; x = r4; y = r2; z = r0; \
}
#define SBOX0_INVERSE(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r2 = ~r2; r4 = r1; \
r1 |= r0; r4 = ~r4; \
r1 ^= r2; r2 |= r4; \
r1 ^= r3; r0 ^= r4; \
r2 ^= r0; r0 &= r3; \
r4 ^= r0; r0 |= r1; \
r0 ^= r2; r3 ^= r4; \
r2 ^= r1; r3 ^= r0; \
r3 ^= r1; \
r2 &= r3; \
r4 ^= r2; \
\
w = r0; x = r4; y = r1; z = r3; \
}
#define SBOX1(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r0 = ~r0; r2 = ~r2; \
r4 = r0; r0 &= r1; \
r2 ^= r0; r0 |= r3; \
r3 ^= r2; r1 ^= r0; \
r0 ^= r4; r4 |= r1; \
r1 ^= r3; r2 |= r0; \
r2 &= r4; r0 ^= r1; \
r1 &= r2; \
r1 ^= r0; r0 &= r2; \
r0 ^= r4; \
\
w = r2; x = r0; y = r3; z = r1; \
}
#define SBOX1_INVERSE(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r4 = r1; r1 ^= r3; \
r3 &= r1; r4 ^= r2; \
r3 ^= r0; r0 |= r1; \
r2 ^= r3; r0 ^= r4; \
r0 |= r2; r1 ^= r3; \
r0 ^= r1; r1 |= r3; \
r1 ^= r0; r4 = ~r4; \
r4 ^= r1; r1 |= r0; \
r1 ^= r0; \
r1 |= r4; \
r3 ^= r1; \
\
w = r4; x = r0; y = r3; z = r2; \
}
#define SBOX2(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r4 = r0; r0 &= r2; \
r0 ^= r3; r2 ^= r1; \
r2 ^= r0; r3 |= r4; \
r3 ^= r1; r4 ^= r2; \
r1 = r3; r3 |= r4; \
r3 ^= r0; r0 &= r1; \
r4 ^= r0; r1 ^= r3; \
r1 ^= r4; r4 = ~r4; \
\
w = r2; x = r3; y = r1; z = r4; \
}
#define SBOX2_INVERSE(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r2 ^= r3; r3 ^= r0; \
r4 = r3; r3 &= r2; \
r3 ^= r1; r1 |= r2; \
r1 ^= r4; r4 &= r3; \
r2 ^= r3; r4 &= r0; \
r4 ^= r2; r2 &= r1; \
r2 |= r0; r3 = ~r3; \
r2 ^= r3; r0 ^= r3; \
r0 &= r1; r3 ^= r4; \
r3 ^= r0; \
\
w = r1; x = r4; y = r2; z = r3; \
}
#define SBOX3(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r4 = r0; r0 |= r3; \
r3 ^= r1; r1 &= r4; \
r4 ^= r2; r2 ^= r3; \
r3 &= r0; r4 |= r1; \
r3 ^= r4; r0 ^= r1; \
r4 &= r0; r1 ^= r3; \
r4 ^= r2; r1 |= r0; \
r1 ^= r2; r0 ^= r3; \
r2 = r1; r1 |= r3; \
r1 ^= r0; \
\
w = r1; x = r2; y = r3; z = r4; \
}
#define SBOX3_INVERSE(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r4 = r2; r2 ^= r1; \
r0 ^= r2; r4 &= r2; \
r4 ^= r0; r0 &= r1; \
r1 ^= r3; r3 |= r4; \
r2 ^= r3; r0 ^= r3; \
r1 ^= r4; r3 &= r2; \
r3 ^= r1; r1 ^= r0; \
r1 |= r2; r0 ^= r3; \
r1 ^= r4; \
r0 ^= r1; \
\
w = r2; x = r1; y = r3; z = r0; \
}
#define SBOX4(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r1 ^= r3; r3 = ~r3; \
r2 ^= r3; r3 ^= r0; \
r4 = r1; r1 &= r3; \
r1 ^= r2; r4 ^= r3; \
r0 ^= r4; r2 &= r4; \
r2 ^= r0; r0 &= r1; \
r3 ^= r0; r4 |= r1; \
r4 ^= r0; r0 |= r3; \
r0 ^= r2; r2 &= r3; \
r0 = ~r0; r4 ^= r2; \
\
w = r1; x = r4; y = r0; z = r3; \
}
#define SBOX4_INVERSE(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r4 = r2; r2 &= r3; \
r2 ^= r1; r1 |= r3; \
r1 &= r0; r4 ^= r2; \
r4 ^= r1; r1 &= r2; \
r0 = ~r0; r3 ^= r4; \
r1 ^= r3; r3 &= r0; \
r3 ^= r2; r0 ^= r1; \
r2 &= r0; r3 ^= r0; \
r2 ^= r4; \
r2 |= r3; r3 ^= r0; \
r2 ^= r1; \
\
w = r0; x = r3; y = r2; z = r4; \
}
#define SBOX5(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r0 ^= r1; r1 ^= r3; \
r3 = ~r3; r4 = r1; \
r1 &= r0; r2 ^= r3; \
r1 ^= r2; r2 |= r4; \
r4 ^= r3; r3 &= r1; \
r3 ^= r0; r4 ^= r1; \
r4 ^= r2; r2 ^= r0; \
r0 &= r3; r2 = ~r2; \
r0 ^= r4; r4 |= r3; \
r2 ^= r4; \
\
w = r1; x = r3; y = r0; z = r2; \
}
#define SBOX5_INVERSE(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r1 = ~r1; r4 = r3; \
r2 ^= r1; r3 |= r0; \
r3 ^= r2; r2 |= r1; \
r2 &= r0; r4 ^= r3; \
r2 ^= r4; r4 |= r0; \
r4 ^= r1; r1 &= r2; \
r1 ^= r3; r4 ^= r2; \
r3 &= r4; r4 ^= r1; \
r3 ^= r4; r4 = ~r4; \
r3 ^= r0; \
\
w = r1; x = r4; y = r3; z = r2; \
}
#define SBOX6(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r2 = ~r2; r4 = r3; \
r3 &= r0; r0 ^= r4; \
r3 ^= r2; r2 |= r4; \
r1 ^= r3; r2 ^= r0; \
r0 |= r1; r2 ^= r1; \
r4 ^= r0; r0 |= r3; \
r0 ^= r2; r4 ^= r3; \
r4 ^= r0; r3 = ~r3; \
r2 &= r4; \
r2 ^= r3; \
\
w = r0; x = r1; y = r4; z = r2; \
}
#define SBOX6_INVERSE(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r0 ^= r2; r4 = r2; \
r2 &= r0; r4 ^= r3; \
r2 = ~r2; r3 ^= r1; \
r2 ^= r3; r4 |= r0; \
r0 ^= r2; r3 ^= r4; \
r4 ^= r1; r1 &= r3; \
r1 ^= r0; r0 ^= r3; \
r0 |= r2; r3 ^= r1; \
r4 ^= r0; \
\
w = r1; x = r2; y = r4; z = r3; \
}
#define SBOX7(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r4 = r1; r1 |= r2; \
r1 ^= r3; r4 ^= r2; \
r2 ^= r1; r3 |= r4; \
r3 &= r0; r4 ^= r2; \
r3 ^= r1; r1 |= r4; \
r1 ^= r0; r0 |= r4; \
r0 ^= r2; r1 ^= r4; \
r2 ^= r1; r1 &= r0; \
r1 ^= r4; r2 = ~r2; \
r2 |= r0; \
r4 ^= r2; \
\
w = r4; x = r3; y = r1; z = r0; \
}
#define SBOX7_INVERSE(r0, r1, r2, r3, w, x, y, z) \
{ \
u32 r4; \
\
r4 = r2; r2 ^= r0; \
r0 &= r3; r4 |= r3; \
r2 = ~r2; r3 ^= r1; \
r1 |= r0; r0 ^= r2; \
r2 &= r4; r3 &= r4; \
r1 ^= r2; r2 ^= r0; \
r0 |= r2; r4 ^= r1; \
r0 ^= r3; r3 ^= r4; \
r4 |= r0; r3 ^= r2; \
r4 ^= r2; \
\
w = r3; x = r0; y = r1; z = r4; \
}
/* XOR BLOCK1 into BLOCK0. */
#define BLOCK_XOR(block0, block1) \
{ \
block0[0] ^= block1[0]; \
block0[1] ^= block1[1]; \
block0[2] ^= block1[2]; \
block0[3] ^= block1[3]; \
}
/* Copy BLOCK_SRC to BLOCK_DST. */
#define BLOCK_COPY(block_dst, block_src) \
{ \
block_dst[0] = block_src[0]; \
block_dst[1] = block_src[1]; \
block_dst[2] = block_src[2]; \
block_dst[3] = block_src[3]; \
}
/* Apply SBOX number WHICH to to the block found in ARRAY0, writing
the output to the block found in ARRAY1. */
#define SBOX(which, array0, array1) \
SBOX##which (array0[0], array0[1], array0[2], array0[3], \
array1[0], array1[1], array1[2], array1[3]);
/* Apply inverse SBOX number WHICH to to the block found in ARRAY0, writing
the output to the block found in ARRAY1. */
#define SBOX_INVERSE(which, array0, array1) \
SBOX##which##_INVERSE (array0[0], array0[1], array0[2], array0[3], \
array1[0], array1[1], array1[2], array1[3]);
/* Apply the linear transformation to BLOCK. */
#define LINEAR_TRANSFORMATION(block) \
{ \
block[0] = rol (block[0], 13); \
block[2] = rol (block[2], 3); \
block[1] = block[1] ^ block[0] ^ block[2]; \
block[3] = block[3] ^ block[2] ^ (block[0] << 3); \
block[1] = rol (block[1], 1); \
block[3] = rol (block[3], 7); \
block[0] = block[0] ^ block[1] ^ block[3]; \
block[2] = block[2] ^ block[3] ^ (block[1] << 7); \
block[0] = rol (block[0], 5); \
block[2] = rol (block[2], 22); \
}
/* Apply the inverse linear transformation to BLOCK. */
#define LINEAR_TRANSFORMATION_INVERSE(block) \
{ \
block[2] = ror (block[2], 22); \
block[0] = ror (block[0] , 5); \
block[2] = block[2] ^ block[3] ^ (block[1] << 7); \
block[0] = block[0] ^ block[1] ^ block[3]; \
block[3] = ror (block[3], 7); \
block[1] = ror (block[1], 1); \
block[3] = block[3] ^ block[2] ^ (block[0] << 3); \
block[1] = block[1] ^ block[0] ^ block[2]; \
block[2] = ror (block[2], 3); \
block[0] = ror (block[0], 13); \
}
/* Apply a Serpent round to BLOCK, using the SBOX number WHICH and the
subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary storage.
This macro increments `round'. */
#define ROUND(which, subkeys, block, block_tmp) \
{ \
BLOCK_XOR (block, subkeys[round]); \
round++; \
SBOX (which, block, block_tmp); \
LINEAR_TRANSFORMATION (block_tmp); \
BLOCK_COPY (block, block_tmp); \
}
/* Apply the last Serpent round to BLOCK, using the SBOX number WHICH
and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary
storage. The result will be stored in BLOCK_TMP. This macro
increments `round'. */
#define ROUND_LAST(which, subkeys, block, block_tmp) \
{ \
BLOCK_XOR (block, subkeys[round]); \
round++; \
SBOX (which, block, block_tmp); \
BLOCK_XOR (block_tmp, subkeys[round]); \
round++; \
}
/* Apply an inverse Serpent round to BLOCK, using the SBOX number
WHICH and the subkeys contained in SUBKEYS. Use BLOCK_TMP as
temporary storage. This macro increments `round'. */
#define ROUND_INVERSE(which, subkey, block, block_tmp) \
{ \
LINEAR_TRANSFORMATION_INVERSE (block); \
SBOX_INVERSE (which, block, block_tmp); \
BLOCK_XOR (block_tmp, subkey[round]); \
round--; \
BLOCK_COPY (block, block_tmp); \
}
/* Apply the first Serpent round to BLOCK, using the SBOX number WHICH
and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary
storage. The result will be stored in BLOCK_TMP. This macro
increments `round'. */
#define ROUND_FIRST_INVERSE(which, subkeys, block, block_tmp) \
{ \
BLOCK_XOR (block, subkeys[round]); \
round--; \
SBOX_INVERSE (which, block, block_tmp); \
BLOCK_XOR (block_tmp, subkeys[round]); \
round--; \
}
/* Convert the user provided key KEY of KEY_LENGTH bytes into the
internally used format. */
static void
serpent_key_prepare (const byte *key, unsigned int key_length,
serpent_key_t key_prepared)
{
int i;
/* Copy key. */
key_length /= 4;
for (i = 0; i < key_length; i++)
key_prepared[i] = buf_get_le32 (key + i * 4);
if (i < 8)
{
/* Key must be padded according to the Serpent
specification. */
key_prepared[i] = 0x00000001;
for (i++; i < 8; i++)
key_prepared[i] = 0;
}
}
/* Derive the 33 subkeys from KEY and store them in SUBKEYS. */
static void
serpent_subkeys_generate (serpent_key_t key, serpent_subkeys_t subkeys)
{
u32 w[8]; /* The `prekey'. */
u32 ws[4];
u32 wt[4];
/* Initialize with key values. */
w[0] = key[0];
w[1] = key[1];
w[2] = key[2];
w[3] = key[3];
w[4] = key[4];
w[5] = key[5];
w[6] = key[6];
w[7] = key[7];
/* Expand to intermediate key using the affine recurrence. */
#define EXPAND_KEY4(wo, r) \
wo[0] = w[(r+0)%8] = \
rol (w[(r+0)%8] ^ w[(r+3)%8] ^ w[(r+5)%8] ^ w[(r+7)%8] ^ PHI ^ (r+0), 11); \
wo[1] = w[(r+1)%8] = \
rol (w[(r+1)%8] ^ w[(r+4)%8] ^ w[(r+6)%8] ^ w[(r+0)%8] ^ PHI ^ (r+1), 11); \
wo[2] = w[(r+2)%8] = \
rol (w[(r+2)%8] ^ w[(r+5)%8] ^ w[(r+7)%8] ^ w[(r+1)%8] ^ PHI ^ (r+2), 11); \
wo[3] = w[(r+3)%8] = \
rol (w[(r+3)%8] ^ w[(r+6)%8] ^ w[(r+0)%8] ^ w[(r+2)%8] ^ PHI ^ (r+3), 11);
#define EXPAND_KEY(r) \
EXPAND_KEY4(ws, (r)); \
EXPAND_KEY4(wt, (r + 4));
/* Calculate subkeys via S-Boxes, in bitslice mode. */
EXPAND_KEY (0); SBOX (3, ws, subkeys[0]); SBOX (2, wt, subkeys[1]);
EXPAND_KEY (8); SBOX (1, ws, subkeys[2]); SBOX (0, wt, subkeys[3]);
EXPAND_KEY (16); SBOX (7, ws, subkeys[4]); SBOX (6, wt, subkeys[5]);
EXPAND_KEY (24); SBOX (5, ws, subkeys[6]); SBOX (4, wt, subkeys[7]);
EXPAND_KEY (32); SBOX (3, ws, subkeys[8]); SBOX (2, wt, subkeys[9]);
EXPAND_KEY (40); SBOX (1, ws, subkeys[10]); SBOX (0, wt, subkeys[11]);
EXPAND_KEY (48); SBOX (7, ws, subkeys[12]); SBOX (6, wt, subkeys[13]);
EXPAND_KEY (56); SBOX (5, ws, subkeys[14]); SBOX (4, wt, subkeys[15]);
EXPAND_KEY (64); SBOX (3, ws, subkeys[16]); SBOX (2, wt, subkeys[17]);
EXPAND_KEY (72); SBOX (1, ws, subkeys[18]); SBOX (0, wt, subkeys[19]);
EXPAND_KEY (80); SBOX (7, ws, subkeys[20]); SBOX (6, wt, subkeys[21]);
EXPAND_KEY (88); SBOX (5, ws, subkeys[22]); SBOX (4, wt, subkeys[23]);
EXPAND_KEY (96); SBOX (3, ws, subkeys[24]); SBOX (2, wt, subkeys[25]);
EXPAND_KEY (104); SBOX (1, ws, subkeys[26]); SBOX (0, wt, subkeys[27]);
EXPAND_KEY (112); SBOX (7, ws, subkeys[28]); SBOX (6, wt, subkeys[29]);
EXPAND_KEY (120); SBOX (5, ws, subkeys[30]); SBOX (4, wt, subkeys[31]);
EXPAND_KEY4 (ws, 128); SBOX (3, ws, subkeys[32]);
wipememory (ws, sizeof (ws));
wipememory (wt, sizeof (wt));
wipememory (w, sizeof (w));
}
/* Initialize CONTEXT with the key KEY of KEY_LENGTH bits. */
static void
serpent_setkey_internal (serpent_context_t *context,
const byte *key, unsigned int key_length)
{
serpent_key_t key_prepared;
serpent_key_prepare (key, key_length, key_prepared);
serpent_subkeys_generate (key_prepared, context->keys);
#ifdef USE_AVX2
context->use_avx2 = 0;
if ((_gcry_get_hw_features () & HWF_INTEL_AVX2))
{
context->use_avx2 = 1;
}
#endif
#ifdef USE_NEON
context->use_neon = 0;
if ((_gcry_get_hw_features () & HWF_ARM_NEON))
{
context->use_neon = 1;
}
#endif
wipememory (key_prepared, sizeof(key_prepared));
}
/* Initialize CTX with the key KEY of KEY_LENGTH bytes. */
static gcry_err_code_t
serpent_setkey (void *ctx,
const byte *key, unsigned int key_length,
cipher_bulk_ops_t *bulk_ops)
{
serpent_context_t *context = ctx;
static const char *serpent_test_ret;
static int serpent_init_done;
gcry_err_code_t ret = GPG_ERR_NO_ERROR;
if (! serpent_init_done)
{
/* Execute a self-test the first time, Serpent is used. */
serpent_init_done = 1;
serpent_test_ret = serpent_test ();
if (serpent_test_ret)
log_error ("Serpent test failure: %s\n", serpent_test_ret);
}
/* Setup bulk encryption routines. */
memset (bulk_ops, 0, sizeof(*bulk_ops));
bulk_ops->cbc_dec = _gcry_serpent_cbc_dec;
bulk_ops->cfb_dec = _gcry_serpent_cfb_dec;
bulk_ops->ctr_enc = _gcry_serpent_ctr_enc;
bulk_ops->ocb_crypt = _gcry_serpent_ocb_crypt;
bulk_ops->ocb_auth = _gcry_serpent_ocb_auth;
if (serpent_test_ret)
ret = GPG_ERR_SELFTEST_FAILED;
else
serpent_setkey_internal (context, key, key_length);
return ret;
}
static void
serpent_encrypt_internal (serpent_context_t *context,
const byte *input, byte *output)
{
serpent_block_t b, b_next;
int round = 0;
b[0] = buf_get_le32 (input + 0);
b[1] = buf_get_le32 (input + 4);
b[2] = buf_get_le32 (input + 8);
b[3] = buf_get_le32 (input + 12);
ROUND (0, context->keys, b, b_next);
ROUND (1, context->keys, b, b_next);
ROUND (2, context->keys, b, b_next);
ROUND (3, context->keys, b, b_next);
ROUND (4, context->keys, b, b_next);
ROUND (5, context->keys, b, b_next);
ROUND (6, context->keys, b, b_next);
ROUND (7, context->keys, b, b_next);
ROUND (0, context->keys, b, b_next);
ROUND (1, context->keys, b, b_next);
ROUND (2, context->keys, b, b_next);
ROUND (3, context->keys, b, b_next);
ROUND (4, context->keys, b, b_next);
ROUND (5, context->keys, b, b_next);
ROUND (6, context->keys, b, b_next);
ROUND (7, context->keys, b, b_next);
ROUND (0, context->keys, b, b_next);
ROUND (1, context->keys, b, b_next);
ROUND (2, context->keys, b, b_next);
ROUND (3, context->keys, b, b_next);
ROUND (4, context->keys, b, b_next);
ROUND (5, context->keys, b, b_next);
ROUND (6, context->keys, b, b_next);
ROUND (7, context->keys, b, b_next);
ROUND (0, context->keys, b, b_next);
ROUND (1, context->keys, b, b_next);
ROUND (2, context->keys, b, b_next);
ROUND (3, context->keys, b, b_next);
ROUND (4, context->keys, b, b_next);
ROUND (5, context->keys, b, b_next);
ROUND (6, context->keys, b, b_next);
ROUND_LAST (7, context->keys, b, b_next);
buf_put_le32 (output + 0, b_next[0]);
buf_put_le32 (output + 4, b_next[1]);
buf_put_le32 (output + 8, b_next[2]);
buf_put_le32 (output + 12, b_next[3]);
}
static void
serpent_decrypt_internal (serpent_context_t *context,
const byte *input, byte *output)
{
serpent_block_t b, b_next;
int round = ROUNDS;
b_next[0] = buf_get_le32 (input + 0);
b_next[1] = buf_get_le32 (input + 4);
b_next[2] = buf_get_le32 (input + 8);
b_next[3] = buf_get_le32 (input + 12);
ROUND_FIRST_INVERSE (7, context->keys, b_next, b);
ROUND_INVERSE (6, context->keys, b, b_next);
ROUND_INVERSE (5, context->keys, b, b_next);
ROUND_INVERSE (4, context->keys, b, b_next);
ROUND_INVERSE (3, context->keys, b, b_next);
ROUND_INVERSE (2, context->keys, b, b_next);
ROUND_INVERSE (1, context->keys, b, b_next);
ROUND_INVERSE (0, context->keys, b, b_next);
ROUND_INVERSE (7, context->keys, b, b_next);
ROUND_INVERSE (6, context->keys, b, b_next);
ROUND_INVERSE (5, context->keys, b, b_next);
ROUND_INVERSE (4, context->keys, b, b_next);
ROUND_INVERSE (3, context->keys, b, b_next);
ROUND_INVERSE (2, context->keys, b, b_next);
ROUND_INVERSE (1, context->keys, b, b_next);
ROUND_INVERSE (0, context->keys, b, b_next);
ROUND_INVERSE (7, context->keys, b, b_next);
ROUND_INVERSE (6, context->keys, b, b_next);
ROUND_INVERSE (5, context->keys, b, b_next);
ROUND_INVERSE (4, context->keys, b, b_next);
ROUND_INVERSE (3, context->keys, b, b_next);
ROUND_INVERSE (2, context->keys, b, b_next);
ROUND_INVERSE (1, context->keys, b, b_next);
ROUND_INVERSE (0, context->keys, b, b_next);
ROUND_INVERSE (7, context->keys, b, b_next);
ROUND_INVERSE (6, context->keys, b, b_next);
ROUND_INVERSE (5, context->keys, b, b_next);
ROUND_INVERSE (4, context->keys, b, b_next);
ROUND_INVERSE (3, context->keys, b, b_next);
ROUND_INVERSE (2, context->keys, b, b_next);
ROUND_INVERSE (1, context->keys, b, b_next);
ROUND_INVERSE (0, context->keys, b, b_next);
buf_put_le32 (output + 0, b_next[0]);
buf_put_le32 (output + 4, b_next[1]);
buf_put_le32 (output + 8, b_next[2]);
buf_put_le32 (output + 12, b_next[3]);
}
static unsigned int
serpent_encrypt (void *ctx, byte *buffer_out, const byte *buffer_in)
{
serpent_context_t *context = ctx;
serpent_encrypt_internal (context, buffer_in, buffer_out);
return /*burn_stack*/ (2 * sizeof (serpent_block_t));
}
static unsigned int
serpent_decrypt (void *ctx, byte *buffer_out, const byte *buffer_in)
{
serpent_context_t *context = ctx;
serpent_decrypt_internal (context, buffer_in, buffer_out);
return /*burn_stack*/ (2 * sizeof (serpent_block_t));
}
/* Bulk encryption of complete blocks in CTR mode. This function is only
intended for the bulk encryption feature of cipher.c. CTR is expected to be
of size sizeof(serpent_block_t). */
static void
_gcry_serpent_ctr_enc(void *context, unsigned char *ctr,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
serpent_context_t *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned char tmpbuf[sizeof(serpent_block_t)];
int burn_stack_depth = 2 * sizeof (serpent_block_t);
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
_gcry_serpent_avx2_ctr_enc(ctx, outbuf, inbuf, ctr);
nblocks -= 16;
outbuf += 16 * sizeof(serpent_block_t);
inbuf += 16 * sizeof(serpent_block_t);
did_use_avx2 = 1;
}
if (did_use_avx2)
{
/* serpent-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic/sse2 code to handle smaller chunks... */
/* TODO: use caching instead? */
}
#endif
#ifdef USE_SSE2
{
int did_use_sse2 = 0;
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
_gcry_serpent_sse2_ctr_enc(ctx, outbuf, inbuf, ctr);
nblocks -= 8;
outbuf += 8 * sizeof(serpent_block_t);
inbuf += 8 * sizeof(serpent_block_t);
did_use_sse2 = 1;
}
if (did_use_sse2)
{
/* serpent-sse2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
/* TODO: use caching instead? */
}
#endif
#ifdef USE_NEON
if (ctx->use_neon)
{
int did_use_neon = 0;
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
_gcry_serpent_neon_ctr_enc(ctx, outbuf, inbuf, ctr);
nblocks -= 8;
outbuf += 8 * sizeof(serpent_block_t);
inbuf += 8 * sizeof(serpent_block_t);
did_use_neon = 1;
}
if (did_use_neon)
{
/* serpent-neon assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
/* TODO: use caching instead? */
}
#endif
for ( ;nblocks; nblocks-- )
{
/* Encrypt the counter. */
serpent_encrypt_internal(ctx, ctr, tmpbuf);
/* XOR the input with the encrypted counter and store in output. */
cipher_block_xor(outbuf, tmpbuf, inbuf, sizeof(serpent_block_t));
outbuf += sizeof(serpent_block_t);
inbuf += sizeof(serpent_block_t);
/* Increment the counter. */
cipher_block_add(ctr, 1, sizeof(serpent_block_t));
}
wipememory(tmpbuf, sizeof(tmpbuf));
_gcry_burn_stack(burn_stack_depth);
}
/* Bulk decryption of complete blocks in CBC mode. This function is only
intended for the bulk encryption feature of cipher.c. */
static void
_gcry_serpent_cbc_dec(void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
serpent_context_t *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned char savebuf[sizeof(serpent_block_t)];
int burn_stack_depth = 2 * sizeof (serpent_block_t);
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
_gcry_serpent_avx2_cbc_dec(ctx, outbuf, inbuf, iv);
nblocks -= 16;
outbuf += 16 * sizeof(serpent_block_t);
inbuf += 16 * sizeof(serpent_block_t);
did_use_avx2 = 1;
}
if (did_use_avx2)
{
/* serpent-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic/sse2 code to handle smaller chunks... */
}
#endif
#ifdef USE_SSE2
{
int did_use_sse2 = 0;
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
_gcry_serpent_sse2_cbc_dec(ctx, outbuf, inbuf, iv);
nblocks -= 8;
outbuf += 8 * sizeof(serpent_block_t);
inbuf += 8 * sizeof(serpent_block_t);
did_use_sse2 = 1;
}
if (did_use_sse2)
{
/* serpent-sse2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
#ifdef USE_NEON
if (ctx->use_neon)
{
int did_use_neon = 0;
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
_gcry_serpent_neon_cbc_dec(ctx, outbuf, inbuf, iv);
nblocks -= 8;
outbuf += 8 * sizeof(serpent_block_t);
inbuf += 8 * sizeof(serpent_block_t);
did_use_neon = 1;
}
if (did_use_neon)
{
/* serpent-neon assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
for ( ;nblocks; nblocks-- )
{
/* INBUF is needed later and it may be identical to OUTBUF, so store
the intermediate result to SAVEBUF. */
serpent_decrypt_internal (ctx, inbuf, savebuf);
cipher_block_xor_n_copy_2(outbuf, savebuf, iv, inbuf,
sizeof(serpent_block_t));
inbuf += sizeof(serpent_block_t);
outbuf += sizeof(serpent_block_t);
}
wipememory(savebuf, sizeof(savebuf));
_gcry_burn_stack(burn_stack_depth);
}
/* Bulk decryption of complete blocks in CFB mode. This function is only
intended for the bulk encryption feature of cipher.c. */
static void
_gcry_serpent_cfb_dec(void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
serpent_context_t *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
int burn_stack_depth = 2 * sizeof (serpent_block_t);
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
_gcry_serpent_avx2_cfb_dec(ctx, outbuf, inbuf, iv);
nblocks -= 16;
outbuf += 16 * sizeof(serpent_block_t);
inbuf += 16 * sizeof(serpent_block_t);
did_use_avx2 = 1;
}
if (did_use_avx2)
{
/* serpent-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic/sse2 code to handle smaller chunks... */
}
#endif
#ifdef USE_SSE2
{
int did_use_sse2 = 0;
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
_gcry_serpent_sse2_cfb_dec(ctx, outbuf, inbuf, iv);
nblocks -= 8;
outbuf += 8 * sizeof(serpent_block_t);
inbuf += 8 * sizeof(serpent_block_t);
did_use_sse2 = 1;
}
if (did_use_sse2)
{
/* serpent-sse2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
#ifdef USE_NEON
if (ctx->use_neon)
{
int did_use_neon = 0;
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
_gcry_serpent_neon_cfb_dec(ctx, outbuf, inbuf, iv);
nblocks -= 8;
outbuf += 8 * sizeof(serpent_block_t);
inbuf += 8 * sizeof(serpent_block_t);
did_use_neon = 1;
}
if (did_use_neon)
{
/* serpent-neon assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
for ( ;nblocks; nblocks-- )
{
serpent_encrypt_internal(ctx, iv, iv);
cipher_block_xor_n_copy(outbuf, iv, inbuf, sizeof(serpent_block_t));
outbuf += sizeof(serpent_block_t);
inbuf += sizeof(serpent_block_t);
}
_gcry_burn_stack(burn_stack_depth);
}
/* Bulk encryption/decryption of complete blocks in OCB mode. */
static size_t
_gcry_serpent_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks, int encrypt)
{
#if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON)
serpent_context_t *ctx = (void *)&c->context.c;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
int burn_stack_depth = 2 * sizeof (serpent_block_t);
u64 blkn = c->u_mode.ocb.data_nblocks;
#else
(void)c;
(void)outbuf_arg;
(void)inbuf_arg;
(void)encrypt;
#endif
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
u64 Ls[16];
unsigned int n = 16 - (blkn % 16);
u64 *l;
int i;
if (nblocks >= 16)
{
for (i = 0; i < 16; i += 8)
{
/* Use u64 to store pointers for x32 support (assembly function
* assumes 64-bit pointers). */
Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
}
Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3];
l = &Ls[(15 + n) % 16];
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
blkn += 16;
*l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16);
if (encrypt)
_gcry_serpent_avx2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv,
c->u_ctr.ctr, Ls);
else
_gcry_serpent_avx2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv,
c->u_ctr.ctr, Ls);
nblocks -= 16;
outbuf += 16 * sizeof(serpent_block_t);
inbuf += 16 * sizeof(serpent_block_t);
did_use_avx2 = 1;
}
}
if (did_use_avx2)
{
/* serpent-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
#ifdef USE_SSE2
{
int did_use_sse2 = 0;
u64 Ls[8];
unsigned int n = 8 - (blkn % 8);
u64 *l;
if (nblocks >= 8)
{
/* Use u64 to store pointers for x32 support (assembly function
* assumes 64-bit pointers). */
Ls[(0 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(1 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
Ls[(2 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(3 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
Ls[(4 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(5 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
Ls[(6 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
l = &Ls[(7 + n) % 8];
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
blkn += 8;
*l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 8);
if (encrypt)
_gcry_serpent_sse2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv,
c->u_ctr.ctr, Ls);
else
_gcry_serpent_sse2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv,
c->u_ctr.ctr, Ls);
nblocks -= 8;
outbuf += 8 * sizeof(serpent_block_t);
inbuf += 8 * sizeof(serpent_block_t);
did_use_sse2 = 1;
}
}
if (did_use_sse2)
{
/* serpent-sse2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
#ifdef USE_NEON
if (ctx->use_neon)
{
int did_use_neon = 0;
const void *Ls[8];
unsigned int n = 8 - (blkn % 8);
const void **l;
if (nblocks >= 8)
{
Ls[(0 + n) % 8] = c->u_mode.ocb.L[0];
Ls[(1 + n) % 8] = c->u_mode.ocb.L[1];
Ls[(2 + n) % 8] = c->u_mode.ocb.L[0];
Ls[(3 + n) % 8] = c->u_mode.ocb.L[2];
Ls[(4 + n) % 8] = c->u_mode.ocb.L[0];
Ls[(5 + n) % 8] = c->u_mode.ocb.L[1];
Ls[(6 + n) % 8] = c->u_mode.ocb.L[0];
l = &Ls[(7 + n) % 8];
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
blkn += 8;
*l = ocb_get_l(c, blkn - blkn % 8);
if (encrypt)
_gcry_serpent_neon_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv,
c->u_ctr.ctr, Ls);
else
_gcry_serpent_neon_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv,
c->u_ctr.ctr, Ls);
nblocks -= 8;
outbuf += 8 * sizeof(serpent_block_t);
inbuf += 8 * sizeof(serpent_block_t);
did_use_neon = 1;
}
}
if (did_use_neon)
{
/* serpent-neon assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
#if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON)
c->u_mode.ocb.data_nblocks = blkn;
if (burn_stack_depth)
_gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
#endif
return nblocks;
}
/* Bulk authentication of complete blocks in OCB mode. */
static size_t
_gcry_serpent_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg,
size_t nblocks)
{
#if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON)
serpent_context_t *ctx = (void *)&c->context.c;
const unsigned char *abuf = abuf_arg;
int burn_stack_depth = 2 * sizeof(serpent_block_t);
u64 blkn = c->u_mode.ocb.aad_nblocks;
#else
(void)c;
(void)abuf_arg;
#endif
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
u64 Ls[16];
unsigned int n = 16 - (blkn % 16);
u64 *l;
int i;
if (nblocks >= 16)
{
for (i = 0; i < 16; i += 8)
{
/* Use u64 to store pointers for x32 support (assembly function
* assumes 64-bit pointers). */
Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
}
Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3];
l = &Ls[(15 + n) % 16];
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
blkn += 16;
*l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16);
_gcry_serpent_avx2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
c->u_mode.ocb.aad_sum, Ls);
nblocks -= 16;
abuf += 16 * sizeof(serpent_block_t);
did_use_avx2 = 1;
}
}
if (did_use_avx2)
{
/* serpent-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
#ifdef USE_SSE2
{
int did_use_sse2 = 0;
u64 Ls[8];
unsigned int n = 8 - (blkn % 8);
u64 *l;
if (nblocks >= 8)
{
/* Use u64 to store pointers for x32 support (assembly function
* assumes 64-bit pointers). */
Ls[(0 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(1 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
Ls[(2 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(3 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
Ls[(4 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
Ls[(5 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
Ls[(6 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
l = &Ls[(7 + n) % 8];
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
blkn += 8;
*l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 8);
_gcry_serpent_sse2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
c->u_mode.ocb.aad_sum, Ls);
nblocks -= 8;
abuf += 8 * sizeof(serpent_block_t);
did_use_sse2 = 1;
}
}
if (did_use_sse2)
{
/* serpent-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
#ifdef USE_NEON
if (ctx->use_neon)
{
int did_use_neon = 0;
const void *Ls[8];
unsigned int n = 8 - (blkn % 8);
const void **l;
if (nblocks >= 8)
{
Ls[(0 + n) % 8] = c->u_mode.ocb.L[0];
Ls[(1 + n) % 8] = c->u_mode.ocb.L[1];
Ls[(2 + n) % 8] = c->u_mode.ocb.L[0];
Ls[(3 + n) % 8] = c->u_mode.ocb.L[2];
Ls[(4 + n) % 8] = c->u_mode.ocb.L[0];
Ls[(5 + n) % 8] = c->u_mode.ocb.L[1];
Ls[(6 + n) % 8] = c->u_mode.ocb.L[0];
l = &Ls[(7 + n) % 8];
/* Process data in 8 block chunks. */
while (nblocks >= 8)
{
blkn += 8;
*l = ocb_get_l(c, blkn - blkn % 8);
_gcry_serpent_neon_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
c->u_mode.ocb.aad_sum, Ls);
nblocks -= 8;
abuf += 8 * sizeof(serpent_block_t);
did_use_neon = 1;
}
}
if (did_use_neon)
{
/* serpent-neon assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
#if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON)
c->u_mode.ocb.aad_nblocks = blkn;
if (burn_stack_depth)
_gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
#endif
return nblocks;
}
/* Run the self-tests for SERPENT-CTR-128, tests IV increment of bulk CTR
encryption. Returns NULL on success. */
static const char*
selftest_ctr_128 (void)
{
const int nblocks = 16+8+1;
const int blocksize = sizeof(serpent_block_t);
const int context_size = sizeof(serpent_context_t);
return _gcry_selftest_helper_ctr("SERPENT", &serpent_setkey,
&serpent_encrypt, nblocks, blocksize, context_size);
}
/* Run the self-tests for SERPENT-CBC-128, tests bulk CBC decryption.
Returns NULL on success. */
static const char*
selftest_cbc_128 (void)
{
const int nblocks = 16+8+2;
const int blocksize = sizeof(serpent_block_t);
const int context_size = sizeof(serpent_context_t);
return _gcry_selftest_helper_cbc("SERPENT", &serpent_setkey,
&serpent_encrypt, nblocks, blocksize, context_size);
}
/* Run the self-tests for SERPENT-CBC-128, tests bulk CBC decryption.
Returns NULL on success. */
static const char*
selftest_cfb_128 (void)
{
const int nblocks = 16+8+2;
const int blocksize = sizeof(serpent_block_t);
const int context_size = sizeof(serpent_context_t);
return _gcry_selftest_helper_cfb("SERPENT", &serpent_setkey,
&serpent_encrypt, nblocks, blocksize, context_size);
}
/* Serpent test. */
static const char *
serpent_test (void)
{
serpent_context_t context;
unsigned char scratch[16];
unsigned int i;
const char *r;
static struct test
{
int key_length;
unsigned char key[32];
unsigned char text_plain[16];
unsigned char text_cipher[16];
} test_data[] =
{
{
16,
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
"\xD2\x9D\x57\x6F\xCE\xA3\xA3\xA7\xED\x90\x99\xF2\x92\x73\xD7\x8E",
"\xB2\x28\x8B\x96\x8A\xE8\xB0\x86\x48\xD1\xCE\x96\x06\xFD\x99\x2D"
},
{
24,
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00",
"\xD2\x9D\x57\x6F\xCE\xAB\xA3\xA7\xED\x98\x99\xF2\x92\x7B\xD7\x8E",
"\x13\x0E\x35\x3E\x10\x37\xC2\x24\x05\xE8\xFA\xEF\xB2\xC3\xC3\xE9"
},
{
32,
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
"\xD0\x95\x57\x6F\xCE\xA3\xE3\xA7\xED\x98\xD9\xF2\x90\x73\xD7\x8E",
"\xB9\x0E\xE5\x86\x2D\xE6\x91\x68\xF2\xBD\xD5\x12\x5B\x45\x47\x2B"
},
{
32,
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
"\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00",
"\x20\x61\xA4\x27\x82\xBD\x52\xEC\x69\x1E\xC3\x83\xB0\x3B\xA7\x7C"
},
{
0
},
};
for (i = 0; test_data[i].key_length; i++)
{
serpent_setkey_internal (&context, test_data[i].key,
test_data[i].key_length);
serpent_encrypt_internal (&context, test_data[i].text_plain, scratch);
if (memcmp (scratch, test_data[i].text_cipher, sizeof (serpent_block_t)))
switch (test_data[i].key_length)
{
case 16:
return "Serpent-128 test encryption failed.";
case 24:
return "Serpent-192 test encryption failed.";
case 32:
return "Serpent-256 test encryption failed.";
}
serpent_decrypt_internal (&context, test_data[i].text_cipher, scratch);
if (memcmp (scratch, test_data[i].text_plain, sizeof (serpent_block_t)))
switch (test_data[i].key_length)
{
case 16:
return "Serpent-128 test decryption failed.";
case 24:
return "Serpent-192 test decryption failed.";
case 32:
return "Serpent-256 test decryption failed.";
}
}
if ( (r = selftest_ctr_128 ()) )
return r;
if ( (r = selftest_cbc_128 ()) )
return r;
if ( (r = selftest_cfb_128 ()) )
return r;
return NULL;
}
static gcry_cipher_oid_spec_t serpent128_oids[] =
{
{"1.3.6.1.4.1.11591.13.2.1", GCRY_CIPHER_MODE_ECB },
{"1.3.6.1.4.1.11591.13.2.2", GCRY_CIPHER_MODE_CBC },
{"1.3.6.1.4.1.11591.13.2.3", GCRY_CIPHER_MODE_OFB },
{"1.3.6.1.4.1.11591.13.2.4", GCRY_CIPHER_MODE_CFB },
{ NULL }
};
static gcry_cipher_oid_spec_t serpent192_oids[] =
{
{"1.3.6.1.4.1.11591.13.2.21", GCRY_CIPHER_MODE_ECB },
{"1.3.6.1.4.1.11591.13.2.22", GCRY_CIPHER_MODE_CBC },
{"1.3.6.1.4.1.11591.13.2.23", GCRY_CIPHER_MODE_OFB },
{"1.3.6.1.4.1.11591.13.2.24", GCRY_CIPHER_MODE_CFB },
{ NULL }
};
static gcry_cipher_oid_spec_t serpent256_oids[] =
{
{"1.3.6.1.4.1.11591.13.2.41", GCRY_CIPHER_MODE_ECB },
{"1.3.6.1.4.1.11591.13.2.42", GCRY_CIPHER_MODE_CBC },
{"1.3.6.1.4.1.11591.13.2.43", GCRY_CIPHER_MODE_OFB },
{"1.3.6.1.4.1.11591.13.2.44", GCRY_CIPHER_MODE_CFB },
{ NULL }
};
static const char *serpent128_aliases[] =
{
"SERPENT",
"SERPENT-128",
NULL
};
static const char *serpent192_aliases[] =
{
"SERPENT-192",
NULL
};
static const char *serpent256_aliases[] =
{
"SERPENT-256",
NULL
};
gcry_cipher_spec_t _gcry_cipher_spec_serpent128 =
{
GCRY_CIPHER_SERPENT128, {0, 0},
"SERPENT128", serpent128_aliases, serpent128_oids, 16, 128,
sizeof (serpent_context_t),
serpent_setkey, serpent_encrypt, serpent_decrypt
};
gcry_cipher_spec_t _gcry_cipher_spec_serpent192 =
{
GCRY_CIPHER_SERPENT192, {0, 0},
"SERPENT192", serpent192_aliases, serpent192_oids, 16, 192,
sizeof (serpent_context_t),
serpent_setkey, serpent_encrypt, serpent_decrypt
};
gcry_cipher_spec_t _gcry_cipher_spec_serpent256 =
{
GCRY_CIPHER_SERPENT256, {0, 0},
"SERPENT256", serpent256_aliases, serpent256_oids, 16, 256,
sizeof (serpent_context_t),
serpent_setkey, serpent_encrypt, serpent_decrypt
};