Revision control
Copy as Markdown
Other Tools
/* cipher-gcm.c - Generic Galois Counter Mode implementation
* Copyright (C) 2013 Dmitry Eremin-Solenikov
* Copyright (C) 2013, 2018-2019 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser general Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "g10lib.h"
#include "cipher.h"
#include "bufhelp.h"
#include "./cipher-internal.h"
/* Helper macro to force alignment to 16 or 64 bytes. */
#ifdef HAVE_GCC_ATTRIBUTE_ALIGNED
# define ATTR_ALIGNED_64 __attribute__ ((aligned (64)))
#else
# define ATTR_ALIGNED_64
#endif
#ifdef GCM_USE_INTEL_PCLMUL
extern void _gcry_ghash_setup_intel_pclmul (gcry_cipher_hd_t c);
extern unsigned int _gcry_ghash_intel_pclmul (gcry_cipher_hd_t c, byte *result,
const byte *buf, size_t nblocks);
#endif
#ifdef GCM_USE_ARM_PMULL
extern void _gcry_ghash_setup_armv8_ce_pmull (void *gcm_key, void *gcm_table);
extern unsigned int _gcry_ghash_armv8_ce_pmull (void *gcm_key, byte *result,
const byte *buf, size_t nblocks,
void *gcm_table);
static void
ghash_setup_armv8_ce_pmull (gcry_cipher_hd_t c)
{
_gcry_ghash_setup_armv8_ce_pmull(c->u_mode.gcm.u_ghash_key.key,
c->u_mode.gcm.gcm_table);
}
static unsigned int
ghash_armv8_ce_pmull (gcry_cipher_hd_t c, byte *result, const byte *buf,
size_t nblocks)
{
return _gcry_ghash_armv8_ce_pmull(c->u_mode.gcm.u_ghash_key.key, result, buf,
nblocks, c->u_mode.gcm.gcm_table);
}
#endif /* GCM_USE_ARM_PMULL */
#ifdef GCM_USE_ARM_NEON
extern void _gcry_ghash_setup_armv7_neon (void *gcm_key);
extern unsigned int _gcry_ghash_armv7_neon (void *gcm_key, byte *result,
const byte *buf, size_t nblocks);
static void
ghash_setup_armv7_neon (gcry_cipher_hd_t c)
{
_gcry_ghash_setup_armv7_neon(c->u_mode.gcm.u_ghash_key.key);
}
static unsigned int
ghash_armv7_neon (gcry_cipher_hd_t c, byte *result, const byte *buf,
size_t nblocks)
{
return _gcry_ghash_armv7_neon(c->u_mode.gcm.u_ghash_key.key, result, buf,
nblocks);
}
#endif /* GCM_USE_ARM_NEON */
#ifdef GCM_USE_S390X_CRYPTO
#include "asm-inline-s390x.h"
static unsigned int
ghash_s390x_kimd (gcry_cipher_hd_t c, byte *result, const byte *buf,
size_t nblocks)
{
u128_t params[2];
memcpy (¶ms[0], result, 16);
memcpy (¶ms[1], c->u_mode.gcm.u_ghash_key.key, 16);
kimd_execute (KMID_FUNCTION_GHASH, ¶ms, buf, nblocks * 16);
memcpy (result, ¶ms[0], 16);
wipememory (params, sizeof(params));
return 0;
}
#endif /* GCM_USE_S390X_CRYPTO*/
#ifdef GCM_USE_TABLES
static struct
{
volatile u32 counter_head;
u32 cacheline_align[64 / 4 - 1];
u16 R[256];
volatile u32 counter_tail;
} gcm_table ATTR_ALIGNED_64 =
{
0,
{ 0, },
{
0x0000, 0x01c2, 0x0384, 0x0246, 0x0708, 0x06ca, 0x048c, 0x054e,
0x0e10, 0x0fd2, 0x0d94, 0x0c56, 0x0918, 0x08da, 0x0a9c, 0x0b5e,
0x1c20, 0x1de2, 0x1fa4, 0x1e66, 0x1b28, 0x1aea, 0x18ac, 0x196e,
0x1230, 0x13f2, 0x11b4, 0x1076, 0x1538, 0x14fa, 0x16bc, 0x177e,
0x3840, 0x3982, 0x3bc4, 0x3a06, 0x3f48, 0x3e8a, 0x3ccc, 0x3d0e,
0x3650, 0x3792, 0x35d4, 0x3416, 0x3158, 0x309a, 0x32dc, 0x331e,
0x2460, 0x25a2, 0x27e4, 0x2626, 0x2368, 0x22aa, 0x20ec, 0x212e,
0x2a70, 0x2bb2, 0x29f4, 0x2836, 0x2d78, 0x2cba, 0x2efc, 0x2f3e,
0x7080, 0x7142, 0x7304, 0x72c6, 0x7788, 0x764a, 0x740c, 0x75ce,
0x7e90, 0x7f52, 0x7d14, 0x7cd6, 0x7998, 0x785a, 0x7a1c, 0x7bde,
0x6ca0, 0x6d62, 0x6f24, 0x6ee6, 0x6ba8, 0x6a6a, 0x682c, 0x69ee,
0x62b0, 0x6372, 0x6134, 0x60f6, 0x65b8, 0x647a, 0x663c, 0x67fe,
0x48c0, 0x4902, 0x4b44, 0x4a86, 0x4fc8, 0x4e0a, 0x4c4c, 0x4d8e,
0x46d0, 0x4712, 0x4554, 0x4496, 0x41d8, 0x401a, 0x425c, 0x439e,
0x54e0, 0x5522, 0x5764, 0x56a6, 0x53e8, 0x522a, 0x506c, 0x51ae,
0x5af0, 0x5b32, 0x5974, 0x58b6, 0x5df8, 0x5c3a, 0x5e7c, 0x5fbe,
0xe100, 0xe0c2, 0xe284, 0xe346, 0xe608, 0xe7ca, 0xe58c, 0xe44e,
0xef10, 0xeed2, 0xec94, 0xed56, 0xe818, 0xe9da, 0xeb9c, 0xea5e,
0xfd20, 0xfce2, 0xfea4, 0xff66, 0xfa28, 0xfbea, 0xf9ac, 0xf86e,
0xf330, 0xf2f2, 0xf0b4, 0xf176, 0xf438, 0xf5fa, 0xf7bc, 0xf67e,
0xd940, 0xd882, 0xdac4, 0xdb06, 0xde48, 0xdf8a, 0xddcc, 0xdc0e,
0xd750, 0xd692, 0xd4d4, 0xd516, 0xd058, 0xd19a, 0xd3dc, 0xd21e,
0xc560, 0xc4a2, 0xc6e4, 0xc726, 0xc268, 0xc3aa, 0xc1ec, 0xc02e,
0xcb70, 0xcab2, 0xc8f4, 0xc936, 0xcc78, 0xcdba, 0xcffc, 0xce3e,
0x9180, 0x9042, 0x9204, 0x93c6, 0x9688, 0x974a, 0x950c, 0x94ce,
0x9f90, 0x9e52, 0x9c14, 0x9dd6, 0x9898, 0x995a, 0x9b1c, 0x9ade,
0x8da0, 0x8c62, 0x8e24, 0x8fe6, 0x8aa8, 0x8b6a, 0x892c, 0x88ee,
0x83b0, 0x8272, 0x8034, 0x81f6, 0x84b8, 0x857a, 0x873c, 0x86fe,
0xa9c0, 0xa802, 0xaa44, 0xab86, 0xaec8, 0xaf0a, 0xad4c, 0xac8e,
0xa7d0, 0xa612, 0xa454, 0xa596, 0xa0d8, 0xa11a, 0xa35c, 0xa29e,
0xb5e0, 0xb422, 0xb664, 0xb7a6, 0xb2e8, 0xb32a, 0xb16c, 0xb0ae,
0xbbf0, 0xba32, 0xb874, 0xb9b6, 0xbcf8, 0xbd3a, 0xbf7c, 0xbebe,
},
0
};
#define gcmR gcm_table.R
static inline
void prefetch_table(const void *tab, size_t len)
{
const volatile byte *vtab = tab;
size_t i;
for (i = 0; len - i >= 8 * 32; i += 8 * 32)
{
(void)vtab[i + 0 * 32];
(void)vtab[i + 1 * 32];
(void)vtab[i + 2 * 32];
(void)vtab[i + 3 * 32];
(void)vtab[i + 4 * 32];
(void)vtab[i + 5 * 32];
(void)vtab[i + 6 * 32];
(void)vtab[i + 7 * 32];
}
for (; i < len; i += 32)
{
(void)vtab[i];
}
(void)vtab[len - 1];
}
static inline void
do_prefetch_tables (const void *gcmM, size_t gcmM_size)
{
/* Modify counters to trigger copy-on-write and unsharing if physical pages
* of look-up table are shared between processes. Modifying counters also
* causes checksums for pages to change and hint same-page merging algorithm
* that these pages are frequently changing. */
gcm_table.counter_head++;
gcm_table.counter_tail++;
/* Prefetch look-up tables to cache. */
prefetch_table(gcmM, gcmM_size);
prefetch_table(&gcm_table, sizeof(gcm_table));
}
#ifdef GCM_TABLES_USE_U64
static void
bshift (u64 * b0, u64 * b1)
{
u64 t[2], mask;
t[0] = *b0;
t[1] = *b1;
mask = -(t[1] & 1) & 0xe1;
mask <<= 56;
*b1 = (t[1] >> 1) ^ (t[0] << 63);
*b0 = (t[0] >> 1) ^ mask;
}
static void
do_fillM (unsigned char *h, u64 *M)
{
int i, j;
M[0 + 0] = 0;
M[0 + 16] = 0;
M[8 + 0] = buf_get_be64 (h + 0);
M[8 + 16] = buf_get_be64 (h + 8);
for (i = 4; i > 0; i /= 2)
{
M[i + 0] = M[2 * i + 0];
M[i + 16] = M[2 * i + 16];
bshift (&M[i], &M[i + 16]);
}
for (i = 2; i < 16; i *= 2)
for (j = 1; j < i; j++)
{
M[(i + j) + 0] = M[i + 0] ^ M[j + 0];
M[(i + j) + 16] = M[i + 16] ^ M[j + 16];
}
for (i = 0; i < 16; i++)
{
M[i + 32] = (M[i + 0] >> 4) ^ ((u64) gcmR[(M[i + 16] & 0xf) << 4] << 48);
M[i + 48] = (M[i + 16] >> 4) ^ (M[i + 0] << 60);
}
}
static inline unsigned int
do_ghash (unsigned char *result, const unsigned char *buf, const u64 *gcmM)
{
u64 V[2];
u64 tmp[2];
const u64 *M;
u64 T;
u32 A;
int i;
cipher_block_xor (V, result, buf, 16);
V[0] = be_bswap64 (V[0]);
V[1] = be_bswap64 (V[1]);
/* First round can be manually tweaked based on fact that 'tmp' is zero. */
M = &gcmM[(V[1] & 0xf) + 32];
V[1] >>= 4;
tmp[0] = M[0];
tmp[1] = M[16];
tmp[0] ^= gcmM[(V[1] & 0xf) + 0];
tmp[1] ^= gcmM[(V[1] & 0xf) + 16];
V[1] >>= 4;
i = 6;
while (1)
{
M = &gcmM[(V[1] & 0xf) + 32];
V[1] >>= 4;
A = tmp[1] & 0xff;
T = tmp[0];
tmp[0] = (T >> 8) ^ ((u64) gcmR[A] << 48) ^ gcmM[(V[1] & 0xf) + 0];
tmp[1] = (T << 56) ^ (tmp[1] >> 8) ^ gcmM[(V[1] & 0xf) + 16];
tmp[0] ^= M[0];
tmp[1] ^= M[16];
if (i == 0)
break;
V[1] >>= 4;
--i;
}
i = 7;
while (1)
{
M = &gcmM[(V[0] & 0xf) + 32];
V[0] >>= 4;
A = tmp[1] & 0xff;
T = tmp[0];
tmp[0] = (T >> 8) ^ ((u64) gcmR[A] << 48) ^ gcmM[(V[0] & 0xf) + 0];
tmp[1] = (T << 56) ^ (tmp[1] >> 8) ^ gcmM[(V[0] & 0xf) + 16];
tmp[0] ^= M[0];
tmp[1] ^= M[16];
if (i == 0)
break;
V[0] >>= 4;
--i;
}
buf_put_be64 (result + 0, tmp[0]);
buf_put_be64 (result + 8, tmp[1]);
return (sizeof(V) + sizeof(T) + sizeof(tmp) +
sizeof(int)*2 + sizeof(void*)*5);
}
#else /*!GCM_TABLES_USE_U64*/
static void
bshift (u32 * M, int i)
{
u32 t[4], mask;
t[0] = M[i * 4 + 0];
t[1] = M[i * 4 + 1];
t[2] = M[i * 4 + 2];
t[3] = M[i * 4 + 3];
mask = -(t[3] & 1) & 0xe1;
M[i * 4 + 3] = (t[3] >> 1) ^ (t[2] << 31);
M[i * 4 + 2] = (t[2] >> 1) ^ (t[1] << 31);
M[i * 4 + 1] = (t[1] >> 1) ^ (t[0] << 31);
M[i * 4 + 0] = (t[0] >> 1) ^ (mask << 24);
}
static void
do_fillM (unsigned char *h, u32 *M)
{
int i, j;
M[0 * 4 + 0] = 0;
M[0 * 4 + 1] = 0;
M[0 * 4 + 2] = 0;
M[0 * 4 + 3] = 0;
M[8 * 4 + 0] = buf_get_be32 (h + 0);
M[8 * 4 + 1] = buf_get_be32 (h + 4);
M[8 * 4 + 2] = buf_get_be32 (h + 8);
M[8 * 4 + 3] = buf_get_be32 (h + 12);
for (i = 4; i > 0; i /= 2)
{
M[i * 4 + 0] = M[2 * i * 4 + 0];
M[i * 4 + 1] = M[2 * i * 4 + 1];
M[i * 4 + 2] = M[2 * i * 4 + 2];
M[i * 4 + 3] = M[2 * i * 4 + 3];
bshift (M, i);
}
for (i = 2; i < 16; i *= 2)
for (j = 1; j < i; j++)
{
M[(i + j) * 4 + 0] = M[i * 4 + 0] ^ M[j * 4 + 0];
M[(i + j) * 4 + 1] = M[i * 4 + 1] ^ M[j * 4 + 1];
M[(i + j) * 4 + 2] = M[i * 4 + 2] ^ M[j * 4 + 2];
M[(i + j) * 4 + 3] = M[i * 4 + 3] ^ M[j * 4 + 3];
}
for (i = 0; i < 4 * 16; i += 4)
{
M[i + 0 + 64] = (M[i + 0] >> 4)
^ ((u64) gcmR[(M[i + 3] << 4) & 0xf0] << 16);
M[i + 1 + 64] = (M[i + 1] >> 4) ^ (M[i + 0] << 28);
M[i + 2 + 64] = (M[i + 2] >> 4) ^ (M[i + 1] << 28);
M[i + 3 + 64] = (M[i + 3] >> 4) ^ (M[i + 2] << 28);
}
}
static inline unsigned int
do_ghash (unsigned char *result, const unsigned char *buf, const u32 *gcmM)
{
byte V[16];
u32 tmp[4];
u32 v;
const u32 *M, *m;
u32 T[3];
int i;
cipher_block_xor (V, result, buf, 16); /* V is big-endian */
/* First round can be manually tweaked based on fact that 'tmp' is zero. */
i = 15;
v = V[i];
M = &gcmM[(v & 0xf) * 4 + 64];
v = (v & 0xf0) >> 4;
m = &gcmM[v * 4];
v = V[--i];
tmp[0] = M[0] ^ m[0];
tmp[1] = M[1] ^ m[1];
tmp[2] = M[2] ^ m[2];
tmp[3] = M[3] ^ m[3];
while (1)
{
M = &gcmM[(v & 0xf) * 4 + 64];
v = (v & 0xf0) >> 4;
m = &gcmM[v * 4];
T[0] = tmp[0];
T[1] = tmp[1];
T[2] = tmp[2];
tmp[0] = (T[0] >> 8) ^ ((u32) gcmR[tmp[3] & 0xff] << 16) ^ m[0];
tmp[1] = (T[0] << 24) ^ (tmp[1] >> 8) ^ m[1];
tmp[2] = (T[1] << 24) ^ (tmp[2] >> 8) ^ m[2];
tmp[3] = (T[2] << 24) ^ (tmp[3] >> 8) ^ m[3];
tmp[0] ^= M[0];
tmp[1] ^= M[1];
tmp[2] ^= M[2];
tmp[3] ^= M[3];
if (i == 0)
break;
v = V[--i];
}
buf_put_be32 (result + 0, tmp[0]);
buf_put_be32 (result + 4, tmp[1]);
buf_put_be32 (result + 8, tmp[2]);
buf_put_be32 (result + 12, tmp[3]);
return (sizeof(V) + sizeof(T) + sizeof(tmp) +
sizeof(int)*2 + sizeof(void*)*6);
}
#endif /*!GCM_TABLES_USE_U64*/
#define fillM(c) \
do_fillM (c->u_mode.gcm.u_ghash_key.key, c->u_mode.gcm.gcm_table)
#define GHASH(c, result, buf) do_ghash (result, buf, c->u_mode.gcm.gcm_table)
#define prefetch_tables(c) \
do_prefetch_tables(c->u_mode.gcm.gcm_table, sizeof(c->u_mode.gcm.gcm_table))
#else
static unsigned long
bshift (unsigned long *b)
{
unsigned long c;
int i;
c = b[3] & 1;
for (i = 3; i > 0; i--)
{
b[i] = (b[i] >> 1) | (b[i - 1] << 31);
}
b[i] >>= 1;
return c;
}
static unsigned int
do_ghash (unsigned char *hsub, unsigned char *result, const unsigned char *buf)
{
unsigned long V[4];
int i, j;
byte *p;
#ifdef WORDS_BIGENDIAN
p = result;
#else
unsigned long T[4];
cipher_block_xor (V, result, buf, 16);
for (i = 0; i < 4; i++)
{
V[i] = (V[i] & 0x00ff00ff) << 8 | (V[i] & 0xff00ff00) >> 8;
V[i] = (V[i] & 0x0000ffff) << 16 | (V[i] & 0xffff0000) >> 16;
}
p = (byte *) T;
#endif
memset (p, 0, 16);
for (i = 0; i < 16; i++)
{
for (j = 0x80; j; j >>= 1)
{
if (hsub[i] & j)
cipher_block_xor (p, p, V, 16);
if (bshift (V))
V[0] ^= 0xe1000000;
}
}
#ifndef WORDS_BIGENDIAN
for (i = 0, p = (byte *) T; i < 16; i += 4, p += 4)
{
result[i + 0] = p[3];
result[i + 1] = p[2];
result[i + 2] = p[1];
result[i + 3] = p[0];
}
#endif
return (sizeof(V) + sizeof(T) + sizeof(int)*2 + sizeof(void*)*5);
}
#define fillM(c) do { } while (0)
#define GHASH(c, result, buf) do_ghash (c->u_mode.gcm.u_ghash_key.key, result, buf)
#define prefetch_tables(c) do {} while (0)
#endif /* !GCM_USE_TABLES */
static unsigned int
ghash_internal (gcry_cipher_hd_t c, byte *result, const byte *buf,
size_t nblocks)
{
const unsigned int blocksize = GCRY_GCM_BLOCK_LEN;
unsigned int burn = 0;
prefetch_tables (c);
while (nblocks)
{
burn = GHASH (c, result, buf);
buf += blocksize;
nblocks--;
}
return burn + (burn ? 5*sizeof(void*) : 0);
}
static void
setupM (gcry_cipher_hd_t c)
{
#if defined(GCM_USE_INTEL_PCLMUL) || defined(GCM_USE_ARM_PMULL) || \
defined(GCM_USE_S390X_CRYPTO)
unsigned int features = _gcry_get_hw_features ();
#endif
c->u_mode.gcm.ghash_fn = NULL;
if (0)
;
#ifdef GCM_USE_INTEL_PCLMUL
else if (features & HWF_INTEL_PCLMUL)
{
c->u_mode.gcm.ghash_fn = _gcry_ghash_intel_pclmul;
_gcry_ghash_setup_intel_pclmul (c);
}
#endif
#ifdef GCM_USE_ARM_PMULL
else if (features & HWF_ARM_PMULL)
{
c->u_mode.gcm.ghash_fn = ghash_armv8_ce_pmull;
ghash_setup_armv8_ce_pmull (c);
}
#endif
#ifdef GCM_USE_ARM_NEON
else if (features & HWF_ARM_NEON)
{
c->u_mode.gcm.ghash_fn = ghash_armv7_neon;
ghash_setup_armv7_neon (c);
}
#endif
#ifdef GCM_USE_S390X_CRYPTO
else if (features & HWF_S390X_MSA)
{
if (kimd_query () & km_function_to_mask (KMID_FUNCTION_GHASH))
{
c->u_mode.gcm.ghash_fn = ghash_s390x_kimd;
}
}
#endif
if (c->u_mode.gcm.ghash_fn == NULL)
{
c->u_mode.gcm.ghash_fn = ghash_internal;
fillM (c);
}
}
static inline void
gcm_bytecounter_add (u32 ctr[2], size_t add)
{
if (sizeof(add) > sizeof(u32))
{
u32 high_add = ((add >> 31) >> 1) & 0xffffffff;
ctr[1] += high_add;
}
ctr[0] += add;
if (ctr[0] >= add)
return;
++ctr[1];
}
static inline u32
gcm_add32_be128 (byte *ctr, unsigned int add)
{
/* 'ctr' must be aligned to four bytes. */
const unsigned int blocksize = GCRY_GCM_BLOCK_LEN;
u32 *pval = (u32 *)(void *)(ctr + blocksize - sizeof(u32));
u32 val;
val = be_bswap32(*pval) + add;
*pval = be_bswap32(val);
return val; /* return result as host-endian value */
}
static inline int
gcm_check_datalen (u32 ctr[2])
{
/* len(plaintext) <= 2^39-256 bits == 2^36-32 bytes == 2^32-2 blocks */
if (ctr[1] > 0xfU)
return 0;
if (ctr[1] < 0xfU)
return 1;
if (ctr[0] <= 0xffffffe0U)
return 1;
return 0;
}
static inline int
gcm_check_aadlen_or_ivlen (u32 ctr[2])
{
/* len(aad/iv) <= 2^64-1 bits ~= 2^61-1 bytes */
if (ctr[1] > 0x1fffffffU)
return 0;
if (ctr[1] < 0x1fffffffU)
return 1;
if (ctr[0] <= 0xffffffffU)
return 1;
return 0;
}
static void
do_ghash_buf(gcry_cipher_hd_t c, byte *hash, const byte *buf,
size_t buflen, int do_padding)
{
unsigned int blocksize = GCRY_GCM_BLOCK_LEN;
unsigned int unused = c->u_mode.gcm.mac_unused;
ghash_fn_t ghash_fn = c->u_mode.gcm.ghash_fn;
size_t nblocks, n;
unsigned int burn = 0;
if (buflen == 0 && (unused == 0 || !do_padding))
return;
do
{
if (buflen > 0 && (buflen + unused < blocksize || unused > 0))
{
n = blocksize - unused;
n = n < buflen ? n : buflen;
buf_cpy (&c->u_mode.gcm.macbuf[unused], buf, n);
unused += n;
buf += n;
buflen -= n;
}
if (!buflen)
{
if (!do_padding && unused < blocksize)
{
break;
}
n = blocksize - unused;
if (n > 0)
{
memset (&c->u_mode.gcm.macbuf[unused], 0, n);
unused = blocksize;
}
}
if (unused > 0)
{
gcry_assert (unused == blocksize);
/* Process one block from macbuf. */
burn = ghash_fn (c, hash, c->u_mode.gcm.macbuf, 1);
unused = 0;
}
nblocks = buflen / blocksize;
if (nblocks)
{
burn = ghash_fn (c, hash, buf, nblocks);
buf += blocksize * nblocks;
buflen -= blocksize * nblocks;
}
}
while (buflen > 0);
c->u_mode.gcm.mac_unused = unused;
if (burn)
_gcry_burn_stack (burn);
}
static gcry_err_code_t
gcm_ctr_encrypt (gcry_cipher_hd_t c, byte *outbuf, size_t outbuflen,
const byte *inbuf, size_t inbuflen)
{
gcry_err_code_t err = 0;
while (inbuflen)
{
u32 nblocks_to_overflow;
u32 num_ctr_increments;
u32 curr_ctr_low;
size_t currlen = inbuflen;
byte ctr_copy[GCRY_GCM_BLOCK_LEN];
int fix_ctr = 0;
/* GCM CTR increments only least significant 32-bits, without carry
* to upper 96-bits of counter. Using generic CTR implementation
* directly would carry 32-bit overflow to upper 96-bit. Detect
* if input length is long enough to cause overflow, and limit
* input length so that CTR overflow happen but updated CTR value is
* not used to encrypt further input. After overflow, upper 96 bits
* of CTR are restored to cancel out modification done by generic CTR
* encryption. */
if (inbuflen > c->unused)
{
curr_ctr_low = gcm_add32_be128 (c->u_ctr.ctr, 0);
/* Number of CTR increments this inbuflen would cause. */
num_ctr_increments = (inbuflen - c->unused) / GCRY_GCM_BLOCK_LEN +
!!((inbuflen - c->unused) % GCRY_GCM_BLOCK_LEN);
if ((u32)(num_ctr_increments + curr_ctr_low) < curr_ctr_low)
{
nblocks_to_overflow = 0xffffffffU - curr_ctr_low + 1;
currlen = nblocks_to_overflow * GCRY_GCM_BLOCK_LEN + c->unused;
if (currlen > inbuflen)
{
currlen = inbuflen;
}
fix_ctr = 1;
cipher_block_cpy(ctr_copy, c->u_ctr.ctr, GCRY_GCM_BLOCK_LEN);
}
}
err = _gcry_cipher_ctr_encrypt(c, outbuf, outbuflen, inbuf, currlen);
if (err != 0)
return err;
if (fix_ctr)
{
/* Lower 32-bits of CTR should now be zero. */
gcry_assert(gcm_add32_be128 (c->u_ctr.ctr, 0) == 0);
/* Restore upper part of CTR. */
buf_cpy(c->u_ctr.ctr, ctr_copy, GCRY_GCM_BLOCK_LEN - sizeof(u32));
wipememory(ctr_copy, sizeof(ctr_copy));
}
inbuflen -= currlen;
inbuf += currlen;
outbuflen -= currlen;
outbuf += currlen;
}
return err;
}
static gcry_err_code_t
gcm_crypt_inner (gcry_cipher_hd_t c, byte *outbuf, size_t outbuflen,
const byte *inbuf, size_t inbuflen, int encrypt)
{
gcry_err_code_t err;
while (inbuflen)
{
size_t currlen = inbuflen;
/* Use a bulk method if available. */
if (c->bulk.gcm_crypt)
{
/* Bulk method requires that there is no cached data. */
if (inbuflen >= GCRY_GCM_BLOCK_LEN && c->u_mode.gcm.mac_unused == 0)
{
size_t nblks = inbuflen / GCRY_GCM_BLOCK_LEN;
size_t nleft;
size_t ndone;
nleft = c->bulk.gcm_crypt (c, outbuf, inbuf, nblks, encrypt);
ndone = nblks - nleft;
inbuf += ndone * GCRY_GCM_BLOCK_LEN;
outbuf += ndone * GCRY_GCM_BLOCK_LEN;
inbuflen -= ndone * GCRY_GCM_BLOCK_LEN;
outbuflen -= ndone * GCRY_GCM_BLOCK_LEN;
if (inbuflen == 0)
break;
currlen = inbuflen;
}
else if (c->u_mode.gcm.mac_unused > 0
&& inbuflen >= GCRY_GCM_BLOCK_LEN
+ (16 - c->u_mode.gcm.mac_unused))
{
/* Handle just enough data so that cache is depleted, and on
* next loop iteration use bulk method. */
currlen = 16 - c->u_mode.gcm.mac_unused;
gcry_assert(currlen);
}
}
/* Since checksumming is done after/before encryption/decryption,
* process input in 24KiB chunks to keep data loaded in L1 cache for
* checksumming/decryption. */
if (currlen > 24 * 1024)
currlen = 24 * 1024;
if (!encrypt)
do_ghash_buf(c, c->u_mode.gcm.u_tag.tag, inbuf, currlen, 0);
err = gcm_ctr_encrypt(c, outbuf, outbuflen, inbuf, currlen);
if (err != 0)
return err;
if (encrypt)
do_ghash_buf(c, c->u_mode.gcm.u_tag.tag, outbuf, currlen, 0);
outbuf += currlen;
inbuf += currlen;
outbuflen -= currlen;
inbuflen -= currlen;
}
return 0;
}
gcry_err_code_t
_gcry_cipher_gcm_encrypt (gcry_cipher_hd_t c,
byte *outbuf, size_t outbuflen,
const byte *inbuf, size_t inbuflen)
{
static const unsigned char zerobuf[MAX_BLOCKSIZE];
if (c->spec->blocksize != GCRY_GCM_BLOCK_LEN)
return GPG_ERR_CIPHER_ALGO;
if (outbuflen < inbuflen)
return GPG_ERR_BUFFER_TOO_SHORT;
if (c->u_mode.gcm.datalen_over_limits)
return GPG_ERR_INV_LENGTH;
if (c->marks.tag
|| c->u_mode.gcm.ghash_data_finalized
|| !c->u_mode.gcm.ghash_fn)
return GPG_ERR_INV_STATE;
if (!c->marks.iv)
_gcry_cipher_gcm_setiv (c, zerobuf, GCRY_GCM_BLOCK_LEN);
if (c->u_mode.gcm.disallow_encryption_because_of_setiv_in_fips_mode)
return GPG_ERR_INV_STATE;
if (!c->u_mode.gcm.ghash_aad_finalized)
{
/* Start of encryption marks end of AAD stream. */
do_ghash_buf(c, c->u_mode.gcm.u_tag.tag, NULL, 0, 1);
c->u_mode.gcm.ghash_aad_finalized = 1;
}
gcm_bytecounter_add(c->u_mode.gcm.datalen, inbuflen);
if (!gcm_check_datalen(c->u_mode.gcm.datalen))
{
c->u_mode.gcm.datalen_over_limits = 1;
return GPG_ERR_INV_LENGTH;
}
return gcm_crypt_inner (c, outbuf, outbuflen, inbuf, inbuflen, 1);
}
gcry_err_code_t
_gcry_cipher_gcm_decrypt (gcry_cipher_hd_t c,
byte *outbuf, size_t outbuflen,
const byte *inbuf, size_t inbuflen)
{
static const unsigned char zerobuf[MAX_BLOCKSIZE];
if (c->spec->blocksize != GCRY_GCM_BLOCK_LEN)
return GPG_ERR_CIPHER_ALGO;
if (outbuflen < inbuflen)
return GPG_ERR_BUFFER_TOO_SHORT;
if (c->u_mode.gcm.datalen_over_limits)
return GPG_ERR_INV_LENGTH;
if (c->marks.tag
|| c->u_mode.gcm.ghash_data_finalized
|| !c->u_mode.gcm.ghash_fn)
return GPG_ERR_INV_STATE;
if (!c->marks.iv)
_gcry_cipher_gcm_setiv (c, zerobuf, GCRY_GCM_BLOCK_LEN);
if (!c->u_mode.gcm.ghash_aad_finalized)
{
/* Start of decryption marks end of AAD stream. */
do_ghash_buf(c, c->u_mode.gcm.u_tag.tag, NULL, 0, 1);
c->u_mode.gcm.ghash_aad_finalized = 1;
}
gcm_bytecounter_add(c->u_mode.gcm.datalen, inbuflen);
if (!gcm_check_datalen(c->u_mode.gcm.datalen))
{
c->u_mode.gcm.datalen_over_limits = 1;
return GPG_ERR_INV_LENGTH;
}
return gcm_crypt_inner (c, outbuf, outbuflen, inbuf, inbuflen, 0);
}
gcry_err_code_t
_gcry_cipher_gcm_authenticate (gcry_cipher_hd_t c,
const byte * aadbuf, size_t aadbuflen)
{
static const unsigned char zerobuf[MAX_BLOCKSIZE];
if (c->spec->blocksize != GCRY_GCM_BLOCK_LEN)
return GPG_ERR_CIPHER_ALGO;
if (c->u_mode.gcm.datalen_over_limits)
return GPG_ERR_INV_LENGTH;
if (c->marks.tag
|| c->u_mode.gcm.ghash_aad_finalized
|| c->u_mode.gcm.ghash_data_finalized
|| !c->u_mode.gcm.ghash_fn)
return GPG_ERR_INV_STATE;
if (!c->marks.iv)
_gcry_cipher_gcm_setiv (c, zerobuf, GCRY_GCM_BLOCK_LEN);
gcm_bytecounter_add(c->u_mode.gcm.aadlen, aadbuflen);
if (!gcm_check_aadlen_or_ivlen(c->u_mode.gcm.aadlen))
{
c->u_mode.gcm.datalen_over_limits = 1;
return GPG_ERR_INV_LENGTH;
}
do_ghash_buf(c, c->u_mode.gcm.u_tag.tag, aadbuf, aadbuflen, 0);
return 0;
}
void
_gcry_cipher_gcm_setkey (gcry_cipher_hd_t c)
{
memset (c->u_mode.gcm.u_ghash_key.key, 0, GCRY_GCM_BLOCK_LEN);
c->spec->encrypt (&c->context.c, c->u_mode.gcm.u_ghash_key.key,
c->u_mode.gcm.u_ghash_key.key);
setupM (c);
}
static gcry_err_code_t
_gcry_cipher_gcm_initiv (gcry_cipher_hd_t c, const byte *iv, size_t ivlen)
{
memset (c->u_mode.gcm.aadlen, 0, sizeof(c->u_mode.gcm.aadlen));
memset (c->u_mode.gcm.datalen, 0, sizeof(c->u_mode.gcm.datalen));
memset (c->u_mode.gcm.u_tag.tag, 0, GCRY_GCM_BLOCK_LEN);
c->u_mode.gcm.datalen_over_limits = 0;
c->u_mode.gcm.ghash_data_finalized = 0;
c->u_mode.gcm.ghash_aad_finalized = 0;
if (ivlen == 0)
return GPG_ERR_INV_LENGTH;
if (ivlen != GCRY_GCM_BLOCK_LEN - 4)
{
u32 iv_bytes[2] = {0, 0};
u32 bitlengths[2][2];
if (!c->u_mode.gcm.ghash_fn)
return GPG_ERR_INV_STATE;
memset(c->u_ctr.ctr, 0, GCRY_GCM_BLOCK_LEN);
gcm_bytecounter_add(iv_bytes, ivlen);
if (!gcm_check_aadlen_or_ivlen(iv_bytes))
{
c->u_mode.gcm.datalen_over_limits = 1;
return GPG_ERR_INV_LENGTH;
}
do_ghash_buf(c, c->u_ctr.ctr, iv, ivlen, 1);
/* iv length, 64-bit */
bitlengths[1][1] = be_bswap32(iv_bytes[0] << 3);
bitlengths[1][0] = be_bswap32((iv_bytes[0] >> 29) |
(iv_bytes[1] << 3));
/* zeros, 64-bit */
bitlengths[0][1] = 0;
bitlengths[0][0] = 0;
do_ghash_buf(c, c->u_ctr.ctr, (byte*)bitlengths, GCRY_GCM_BLOCK_LEN, 1);
wipememory (iv_bytes, sizeof iv_bytes);
wipememory (bitlengths, sizeof bitlengths);
}
else
{
/* 96-bit IV is handled differently. */
memcpy (c->u_ctr.ctr, iv, ivlen);
c->u_ctr.ctr[12] = c->u_ctr.ctr[13] = c->u_ctr.ctr[14] = 0;
c->u_ctr.ctr[15] = 1;
}
c->spec->encrypt (&c->context.c, c->u_mode.gcm.tagiv, c->u_ctr.ctr);
gcm_add32_be128 (c->u_ctr.ctr, 1);
c->unused = 0;
c->marks.iv = 1;
c->marks.tag = 0;
return 0;
}
gcry_err_code_t
_gcry_cipher_gcm_setiv (gcry_cipher_hd_t c, const byte *iv, size_t ivlen)
{
c->marks.iv = 0;
c->marks.tag = 0;
c->u_mode.gcm.disallow_encryption_because_of_setiv_in_fips_mode = 0;
if (fips_mode ())
{
/* Direct invocation of GCM setiv in FIPS mode disables encryption. */
c->u_mode.gcm.disallow_encryption_because_of_setiv_in_fips_mode = 1;
}
return _gcry_cipher_gcm_initiv (c, iv, ivlen);
}
#if 0 && TODO
void
_gcry_cipher_gcm_geniv (gcry_cipher_hd_t c,
byte *ivout, size_t ivoutlen, const byte *nonce,
size_t noncelen)
{
/* nonce: user provided part (might be null) */
/* noncelen: check if proper length (if nonce not null) */
/* ivout: iv used to initialize gcm, output to user */
/* ivoutlen: check correct size */
byte iv[IVLEN];
if (!ivout)
return GPG_ERR_INV_ARG;
if (ivoutlen != IVLEN)
return GPG_ERR_INV_LENGTH;
if (nonce != NULL && !is_nonce_ok_len(noncelen))
return GPG_ERR_INV_ARG;
gcm_generate_iv(iv, nonce, noncelen);
c->marks.iv = 0;
c->marks.tag = 0;
c->u_mode.gcm.disallow_encryption_because_of_setiv_in_fips_mode = 0;
_gcry_cipher_gcm_initiv (c, iv, IVLEN);
buf_cpy(ivout, iv, IVLEN);
wipememory(iv, sizeof(iv));
}
#endif
static int
is_tag_length_valid(size_t taglen)
{
switch (taglen)
{
/* Allowed tag lengths from NIST SP 800-38D. */
case 128 / 8: /* GCRY_GCM_BLOCK_LEN */
case 120 / 8:
case 112 / 8:
case 104 / 8:
case 96 / 8:
case 64 / 8:
case 32 / 8:
return 1;
default:
return 0;
}
}
static gcry_err_code_t
_gcry_cipher_gcm_tag (gcry_cipher_hd_t c,
byte * outbuf, size_t outbuflen, int check)
{
if (!(is_tag_length_valid (outbuflen) || outbuflen >= GCRY_GCM_BLOCK_LEN))
return GPG_ERR_INV_LENGTH;
if (c->u_mode.gcm.datalen_over_limits)
return GPG_ERR_INV_LENGTH;
if (!c->marks.tag)
{
u32 bitlengths[2][2];
if (!c->u_mode.gcm.ghash_fn)
return GPG_ERR_INV_STATE;
/* aad length */
bitlengths[0][1] = be_bswap32(c->u_mode.gcm.aadlen[0] << 3);
bitlengths[0][0] = be_bswap32((c->u_mode.gcm.aadlen[0] >> 29) |
(c->u_mode.gcm.aadlen[1] << 3));
/* data length */
bitlengths[1][1] = be_bswap32(c->u_mode.gcm.datalen[0] << 3);
bitlengths[1][0] = be_bswap32((c->u_mode.gcm.datalen[0] >> 29) |
(c->u_mode.gcm.datalen[1] << 3));
/* Finalize data-stream. */
do_ghash_buf(c, c->u_mode.gcm.u_tag.tag, NULL, 0, 1);
c->u_mode.gcm.ghash_aad_finalized = 1;
c->u_mode.gcm.ghash_data_finalized = 1;
/* Add bitlengths to tag. */
do_ghash_buf(c, c->u_mode.gcm.u_tag.tag, (byte*)bitlengths,
GCRY_GCM_BLOCK_LEN, 1);
cipher_block_xor (c->u_mode.gcm.u_tag.tag, c->u_mode.gcm.tagiv,
c->u_mode.gcm.u_tag.tag, GCRY_GCM_BLOCK_LEN);
c->marks.tag = 1;
wipememory (bitlengths, sizeof (bitlengths));
wipememory (c->u_mode.gcm.macbuf, GCRY_GCM_BLOCK_LEN);
wipememory (c->u_mode.gcm.tagiv, GCRY_GCM_BLOCK_LEN);
wipememory (c->u_mode.gcm.aadlen, sizeof (c->u_mode.gcm.aadlen));
wipememory (c->u_mode.gcm.datalen, sizeof (c->u_mode.gcm.datalen));
}
if (!check)
{
if (outbuflen > GCRY_GCM_BLOCK_LEN)
outbuflen = GCRY_GCM_BLOCK_LEN;
/* NB: We already checked that OUTBUF is large enough to hold
* the result or has valid truncated length. */
memcpy (outbuf, c->u_mode.gcm.u_tag.tag, outbuflen);
}
else
{
/* OUTBUFLEN gives the length of the user supplied tag in OUTBUF
* and thus we need to compare its length first. */
if (!is_tag_length_valid (outbuflen)
|| !buf_eq_const (outbuf, c->u_mode.gcm.u_tag.tag, outbuflen))
return GPG_ERR_CHECKSUM;
}
return 0;
}
gcry_err_code_t
_gcry_cipher_gcm_get_tag (gcry_cipher_hd_t c, unsigned char *outtag,
size_t taglen)
{
/* Outputting authentication tag is part of encryption. */
if (c->u_mode.gcm.disallow_encryption_because_of_setiv_in_fips_mode)
return GPG_ERR_INV_STATE;
return _gcry_cipher_gcm_tag (c, outtag, taglen, 0);
}
gcry_err_code_t
_gcry_cipher_gcm_check_tag (gcry_cipher_hd_t c, const unsigned char *intag,
size_t taglen)
{
return _gcry_cipher_gcm_tag (c, (unsigned char *) intag, taglen, 1);
}