Source code

Revision control

Copy as Markdown

Other Tools

/*
* XMSS Private Key
* An XMSS: Extended Hash-Based Siganture private key.
* The XMSS private key does not support the X509 and PKCS7 standard. Instead
* the raw format described in [1] is used.
*
* [1] XMSS: Extended Hash-Based Signatures,
* Request for Comments: 8391
* Release: May 2018.
*
* (C) 2016,2017,2018 Matthias Gierlings
* (C) 2019 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
**/
#include <botan/xmss.h>
#include <botan/internal/xmss_signature_operation.h>
#include <botan/internal/xmss_index_registry.h>
#include <botan/internal/xmss_common_ops.h>
#include <botan/ber_dec.h>
#include <botan/der_enc.h>
#include <iterator>
#if defined(BOTAN_HAS_THREAD_UTILS)
#include <botan/internal/thread_pool.h>
#endif
namespace Botan {
namespace {
// fall back to raw decoding for previous versions, which did not encode an OCTET STRING
secure_vector<uint8_t> extract_raw_key(const secure_vector<uint8_t>& key_bits)
{
secure_vector<uint8_t> raw_key;
try
{
BER_Decoder(key_bits).decode(raw_key, OCTET_STRING);
}
catch(Decoding_Error&)
{
raw_key = key_bits;
}
return raw_key;
}
}
XMSS_PrivateKey::XMSS_PrivateKey(const secure_vector<uint8_t>& key_bits)
: XMSS_PublicKey(unlock(key_bits)),
m_wots_priv_key(m_wots_params.oid(), m_public_seed),
m_hash(xmss_hash_function()),
m_index_reg(XMSS_Index_Registry::get_instance())
{
/*
The code requires sizeof(size_t) >= ceil(tree_height / 8)
Maximum supported tree height is 20, ceil(20/8) == 3, so 4 byte
size_t is sufficient for all defined parameters, or even a
(hypothetical) tree height 32, which would be extremely slow to
compute.
*/
static_assert(sizeof(size_t) >= 4, "size_t is big enough to support leaf index");
secure_vector<uint8_t> raw_key = extract_raw_key(key_bits);
if(raw_key.size() != XMSS_PrivateKey::size())
{
throw Decoding_Error("Invalid XMSS private key size");
}
// extract & copy unused leaf index from raw_key
uint64_t unused_leaf = 0;
auto begin = (raw_key.begin() + XMSS_PublicKey::size());
auto end = raw_key.begin() + XMSS_PublicKey::size() + sizeof(uint32_t);
for(auto& i = begin; i != end; i++)
{
unused_leaf = ((unused_leaf << 8) | *i);
}
if(unused_leaf >= (1ull << XMSS_PublicKey::m_xmss_params.tree_height()))
{
throw Decoding_Error("XMSS private key leaf index out of bounds");
}
begin = end;
end = begin + XMSS_PublicKey::m_xmss_params.element_size();
m_prf.clear();
m_prf.reserve(XMSS_PublicKey::m_xmss_params.element_size());
std::copy(begin, end, std::back_inserter(m_prf));
begin = end;
end = begin + m_wots_params.element_size();
m_wots_priv_key.set_private_seed(secure_vector<uint8_t>(begin, end));
set_unused_leaf_index(static_cast<size_t>(unused_leaf));
}
XMSS_PrivateKey::XMSS_PrivateKey(
XMSS_Parameters::xmss_algorithm_t xmss_algo_id,
RandomNumberGenerator& rng)
: XMSS_PublicKey(xmss_algo_id, rng),
m_wots_priv_key(XMSS_PublicKey::m_xmss_params.ots_oid(),
public_seed(),
rng),
m_hash(xmss_hash_function()),
m_prf(rng.random_vec(XMSS_PublicKey::m_xmss_params.element_size())),
m_index_reg(XMSS_Index_Registry::get_instance())
{
XMSS_Address adrs;
set_root(tree_hash(0,
XMSS_PublicKey::m_xmss_params.tree_height(),
adrs));
}
XMSS_PrivateKey::XMSS_PrivateKey(XMSS_Parameters::xmss_algorithm_t xmss_algo_id,
size_t idx_leaf,
const secure_vector<uint8_t>& wots_priv_seed,
const secure_vector<uint8_t>& prf,
const secure_vector<uint8_t>& root,
const secure_vector<uint8_t>& public_seed)
: XMSS_PublicKey(xmss_algo_id, root, public_seed),
m_wots_priv_key(XMSS_PublicKey::m_xmss_params.ots_oid(),
public_seed,
wots_priv_seed),
m_hash(XMSS_PublicKey::m_xmss_params.hash_function_name()),
m_prf(prf),
m_index_reg(XMSS_Index_Registry::get_instance())
{
set_unused_leaf_index(idx_leaf);
}
secure_vector<uint8_t>
XMSS_PrivateKey::tree_hash(size_t start_idx,
size_t target_node_height,
XMSS_Address& adrs)
{
BOTAN_ASSERT_NOMSG(target_node_height <= 30);
BOTAN_ASSERT((start_idx % (static_cast<size_t>(1) << target_node_height)) == 0,
"Start index must be divisible by 2^{target node height}.");
#if defined(BOTAN_HAS_THREAD_UTILS)
// dertermine number of parallel tasks to split the tree_hashing into.
Thread_Pool& thread_pool = Thread_Pool::global_instance();
const size_t split_level = std::min(target_node_height, thread_pool.worker_count());
// skip parallelization overhead for leaf nodes.
if(split_level == 0)
{
secure_vector<uint8_t> result;
tree_hash_subtree(result, start_idx, target_node_height, adrs);
return result;
}
const size_t subtrees = static_cast<size_t>(1) << split_level;
const size_t last_idx = (static_cast<size_t>(1) << (target_node_height)) + start_idx;
const size_t offs = (last_idx - start_idx) / subtrees;
// this cast cannot overflow because target_node_height is limited
uint8_t level = static_cast<uint8_t>(split_level); // current level in the tree
BOTAN_ASSERT((last_idx - start_idx) % subtrees == 0,
"Number of worker threads in tree_hash need to divide range "
"of calculated nodes.");
std::vector<secure_vector<uint8_t>> nodes(
subtrees,
secure_vector<uint8_t>(XMSS_PublicKey::m_xmss_params.element_size()));
std::vector<XMSS_Address> node_addresses(subtrees, adrs);
std::vector<XMSS_Hash> xmss_hash(subtrees, m_hash);
std::vector<std::future<void>> work;
// Calculate multiple subtrees in parallel.
for(size_t i = 0; i < subtrees; i++)
{
using tree_hash_subtree_fn_t =
void (XMSS_PrivateKey::*)(secure_vector<uint8_t>&,
size_t,
size_t,
XMSS_Address&,
XMSS_Hash&);
tree_hash_subtree_fn_t work_fn = &XMSS_PrivateKey::tree_hash_subtree;
work.push_back(thread_pool.run(
work_fn,
this,
std::ref(nodes[i]),
start_idx + i * offs,
target_node_height - split_level,
std::ref(node_addresses[i]),
std::ref(xmss_hash[i])));
}
for(auto& w : work)
{
w.get();
}
work.clear();
// Parallelize the top tree levels horizontally
while(level-- > 1)
{
std::vector<secure_vector<uint8_t>> ro_nodes(
nodes.begin(), nodes.begin() + (static_cast<size_t>(1) << (level+1)));
for(size_t i = 0; i < (static_cast<size_t>(1) << level); i++)
{
BOTAN_ASSERT_NOMSG(xmss_hash.size() > i);
node_addresses[i].set_tree_height(static_cast<uint32_t>(target_node_height - (level + 1)));
node_addresses[i].set_tree_index(
(node_addresses[2 * i + 1].get_tree_index() - 1) >> 1);
work.push_back(thread_pool.run(
&XMSS_Common_Ops::randomize_tree_hash,
std::ref(nodes[i]),
std::cref(ro_nodes[2 * i]),
std::cref(ro_nodes[2 * i + 1]),
std::ref(node_addresses[i]),
std::cref(this->public_seed()),
std::ref(xmss_hash[i]),
std::cref(m_xmss_params)));
}
for(auto &w : work)
{
w.get();
}
work.clear();
}
// Avoid creation an extra thread to calculate root node.
node_addresses[0].set_tree_height(static_cast<uint32_t>(target_node_height - 1));
node_addresses[0].set_tree_index(
(node_addresses[1].get_tree_index() - 1) >> 1);
XMSS_Common_Ops::randomize_tree_hash(nodes[0],
nodes[0],
nodes[1],
node_addresses[0],
this->public_seed(),
m_hash,
m_xmss_params);
return nodes[0];
#else
secure_vector<uint8_t> result;
tree_hash_subtree(result, start_idx, target_node_height, adrs, m_hash);
return result;
#endif
}
void
XMSS_PrivateKey::tree_hash_subtree(secure_vector<uint8_t>& result,
size_t start_idx,
size_t target_node_height,
XMSS_Address& adrs,
XMSS_Hash& hash)
{
const secure_vector<uint8_t>& seed = this->public_seed();
std::vector<secure_vector<uint8_t>> nodes(
target_node_height + 1,
secure_vector<uint8_t>(XMSS_PublicKey::m_xmss_params.element_size()));
// node stack, holds all nodes on stack and one extra "pending" node. This
// temporary node referred to as "node" in the XMSS standard document stays
// a pending element, meaning it is not regarded as element on the stack
// until level is increased.
std::vector<uint8_t> node_levels(target_node_height + 1);
uint8_t level = 0; // current level on the node stack.
XMSS_WOTS_PublicKey pk(m_wots_priv_key.wots_parameters().oid(), seed);
const size_t last_idx = (static_cast<size_t>(1) << target_node_height) + start_idx;
for(size_t i = start_idx; i < last_idx; i++)
{
adrs.set_type(XMSS_Address::Type::OTS_Hash_Address);
adrs.set_ots_address(static_cast<uint32_t>(i));
this->wots_private_key().generate_public_key(
pk,
// getWOTS_SK(SK, s + i), reference implementation uses adrs
// instead of zero padded index s + i.
this->wots_private_key().at(adrs, hash),
adrs,
hash);
adrs.set_type(XMSS_Address::Type::LTree_Address);
adrs.set_ltree_address(static_cast<uint32_t>(i));
XMSS_Common_Ops::create_l_tree(nodes[level], pk, adrs, seed, hash, m_xmss_params);
node_levels[level] = 0;
adrs.set_type(XMSS_Address::Type::Hash_Tree_Address);
adrs.set_tree_height(0);
adrs.set_tree_index(static_cast<uint32_t>(i));
while(level > 0 && node_levels[level] ==
node_levels[level - 1])
{
adrs.set_tree_index(((adrs.get_tree_index() - 1) >> 1));
XMSS_Common_Ops::randomize_tree_hash(nodes[level - 1],
nodes[level - 1],
nodes[level],
adrs,
seed,
hash,
m_xmss_params);
node_levels[level - 1]++;
level--; //Pop stack top element
adrs.set_tree_height(adrs.get_tree_height() + 1);
}
level++; //push temporary node to stack
}
result = nodes[level - 1];
}
secure_vector<uint8_t> XMSS_PrivateKey::private_key_bits() const
{
return DER_Encoder().encode(raw_private_key(), OCTET_STRING).get_contents();
}
std::shared_ptr<Atomic<size_t>>
XMSS_PrivateKey::recover_global_leaf_index() const
{
BOTAN_ASSERT(m_wots_priv_key.private_seed().size() ==
XMSS_PublicKey::m_xmss_params.element_size() &&
m_prf.size() == XMSS_PublicKey::m_xmss_params.element_size(),
"Trying to retrieve index for partially initialized key");
return m_index_reg.get(m_wots_priv_key.private_seed(), m_prf);
}
void XMSS_PrivateKey::set_unused_leaf_index(size_t idx)
{
if(idx >= (1ull << XMSS_PublicKey::m_xmss_params.tree_height()))
{
throw Decoding_Error("XMSS private key leaf index out of bounds");
}
else
{
std::atomic<size_t>& index =
static_cast<std::atomic<size_t>&>(*recover_global_leaf_index());
size_t current = 0;
do
{
current = index.load();
if(current > idx)
{ return; }
}
while(!index.compare_exchange_strong(current, idx));
}
}
size_t XMSS_PrivateKey::reserve_unused_leaf_index()
{
size_t idx = (static_cast<std::atomic<size_t>&>(
*recover_global_leaf_index())).fetch_add(1);
if(idx >= (1ull << XMSS_PublicKey::m_xmss_params.tree_height()))
{
throw Decoding_Error("XMSS private key, one time signatures exhaused");
}
return idx;
}
size_t XMSS_PrivateKey::unused_leaf_index() const
{
return *recover_global_leaf_index();
}
secure_vector<uint8_t> XMSS_PrivateKey::raw_private_key() const
{
std::vector<uint8_t> pk { raw_public_key() };
secure_vector<uint8_t> result(pk.begin(), pk.end());
result.reserve(size());
for(int i = 3; i >= 0; i--)
{
result.push_back(
static_cast<uint8_t>(
static_cast<uint64_t>(unused_leaf_index()) >> 8 * i));
}
std::copy(m_prf.begin(), m_prf.end(), std::back_inserter(result));
std::copy(m_wots_priv_key.private_seed().begin(),
m_wots_priv_key.private_seed().end(),
std::back_inserter(result));
return result;
}
std::unique_ptr<PK_Ops::Signature>
XMSS_PrivateKey::create_signature_op(RandomNumberGenerator&,
const std::string&,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Signature>(
new XMSS_Signature_Operation(*this));
throw Provider_Not_Found(algo_name(), provider);
}
}