Revision control
Copy as Markdown
Other Tools
/*
* (C) Copyright Projet SECRET, INRIA, Rocquencourt
* (C) Bhaskar Biswas and Nicolas Sendrier
*
* (C) 2014 cryptosource GmbH
* (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
*
* Botan is released under the Simplified BSD License (see license.txt)
*
*/
#include <botan/internal/mce_internal.h>
#include <botan/internal/code_based_util.h>
namespace Botan {
namespace {
void matrix_arr_mul(std::vector<uint32_t> matrix,
size_t numo_rows,
size_t words_per_row,
const uint8_t input_vec[],
uint32_t output_vec[],
size_t output_vec_len)
{
for(size_t j = 0; j < numo_rows; j++)
{
if((input_vec[j / 8] >> (j % 8)) & 1)
{
for(size_t i = 0; i < output_vec_len; i++)
{
output_vec[i] ^= matrix[j * (words_per_row) + i];
}
}
}
}
/**
* returns the error vector to the syndrome
*/
secure_vector<gf2m> goppa_decode(const polyn_gf2m & syndrom_polyn,
const polyn_gf2m & g,
const std::vector<polyn_gf2m> & sqrtmod,
const std::vector<gf2m> & Linv)
{
const size_t code_length = Linv.size();
gf2m a;
uint32_t t = g.get_degree();
std::shared_ptr<GF2m_Field> sp_field = g.get_sp_field();
std::pair<polyn_gf2m, polyn_gf2m> h_aux = polyn_gf2m::eea_with_coefficients( syndrom_polyn, g, 1);
polyn_gf2m & h = h_aux.first;
polyn_gf2m & aux = h_aux.second;
a = sp_field->gf_inv(aux.get_coef(0));
gf2m log_a = sp_field->gf_log(a);
for(int i = 0; i <= h.get_degree(); ++i)
{
h.set_coef(i,sp_field->gf_mul_zrz(log_a,h.get_coef(i)));
}
// compute h(z) += z
h.add_to_coef( 1, 1);
// compute S square root of h (using sqrtmod)
polyn_gf2m S(t - 1, g.get_sp_field());
for(uint32_t i=0;i<t;i++)
{
a = sp_field->gf_sqrt(h.get_coef(i));
if(i & 1)
{
for(uint32_t j=0;j<t;j++)
{
S.add_to_coef( j, sp_field->gf_mul(a, sqrtmod[i/2].get_coef(j)));
}
}
else
{
S.add_to_coef( i/2, a);
}
} /* end for loop (i) */
S.get_degree();
std::pair<polyn_gf2m, polyn_gf2m> v_u = polyn_gf2m::eea_with_coefficients(S, g, t/2+1);
polyn_gf2m & u = v_u.second;
polyn_gf2m & v = v_u.first;
// sigma = u^2+z*v^2
polyn_gf2m sigma ( t , g.get_sp_field());
const int u_deg = u.get_degree();
BOTAN_ASSERT(u_deg >= 0, "Valid degree");
for(int i = 0; i <= u_deg; ++i)
{
sigma.set_coef(2*i, sp_field->gf_square(u.get_coef(i)));
}
const int v_deg = v.get_degree();
BOTAN_ASSERT(v_deg >= 0, "Valid degree");
for(int i = 0; i <= v_deg; ++i)
{
sigma.set_coef(2*i+1, sp_field->gf_square(v.get_coef(i)));
}
secure_vector<gf2m> res = find_roots_gf2m_decomp(sigma, code_length);
size_t d = res.size();
secure_vector<gf2m> result(d);
for(uint32_t i = 0; i < d; ++i)
{
gf2m current = res[i];
gf2m tmp;
tmp = gray_to_lex(current);
/// XXX double assignment, possible bug?
if(tmp >= code_length) /* invalid root */
{
result[i] = static_cast<gf2m>(i);
}
result[i] = Linv[tmp];
}
return result;
}
}
void mceliece_decrypt(secure_vector<uint8_t>& plaintext_out,
secure_vector<uint8_t>& error_mask_out,
const secure_vector<uint8_t>& ciphertext,
const McEliece_PrivateKey& key)
{
mceliece_decrypt(plaintext_out, error_mask_out, ciphertext.data(), ciphertext.size(), key);
}
void mceliece_decrypt(
secure_vector<uint8_t>& plaintext,
secure_vector<uint8_t> & error_mask,
const uint8_t ciphertext[],
size_t ciphertext_len,
const McEliece_PrivateKey & key)
{
secure_vector<gf2m> error_pos;
plaintext = mceliece_decrypt(error_pos, ciphertext, ciphertext_len, key);
const size_t code_length = key.get_code_length();
secure_vector<uint8_t> result((code_length+7)/8);
for(auto&& pos : error_pos)
{
if(pos > code_length)
{
throw Invalid_Argument("error position larger than code size");
}
result[pos / 8] |= (1 << (pos % 8));
}
error_mask = result;
}
/**
* @p p_err_pos_len must point to the available length of @p error_pos on input, the
* function will set it to the actual number of errors returned in the @p error_pos
* array */
secure_vector<uint8_t> mceliece_decrypt(
secure_vector<gf2m> & error_pos,
const uint8_t *ciphertext, size_t ciphertext_len,
const McEliece_PrivateKey & key)
{
const size_t dimension = key.get_dimension();
const size_t codimension = key.get_codimension();
const uint32_t t = key.get_goppa_polyn().get_degree();
polyn_gf2m syndrome_polyn(key.get_goppa_polyn().get_sp_field()); // init as zero polyn
const unsigned unused_pt_bits = dimension % 8;
const uint8_t unused_pt_bits_mask = (1 << unused_pt_bits) - 1;
if(ciphertext_len != (key.get_code_length()+7)/8)
{
throw Invalid_Argument("wrong size of McEliece ciphertext");
}
const size_t cleartext_len = (key.get_message_word_bit_length()+7)/8;
if(cleartext_len != bit_size_to_byte_size(dimension))
{
throw Invalid_Argument("mce-decryption: wrong length of cleartext buffer");
}
secure_vector<uint32_t> syndrome_vec(bit_size_to_32bit_size(codimension));
matrix_arr_mul(key.get_H_coeffs(),
key.get_code_length(),
bit_size_to_32bit_size(codimension),
ciphertext,
syndrome_vec.data(), syndrome_vec.size());
secure_vector<uint8_t> syndrome_byte_vec(bit_size_to_byte_size(codimension));
const size_t syndrome_byte_vec_size = syndrome_byte_vec.size();
for(size_t i = 0; i < syndrome_byte_vec_size; i++)
{
syndrome_byte_vec[i] = static_cast<uint8_t>(syndrome_vec[i/4] >> (8 * (i % 4)));
}
syndrome_polyn = polyn_gf2m(t-1, syndrome_byte_vec.data(), bit_size_to_byte_size(codimension), key.get_goppa_polyn().get_sp_field());
syndrome_polyn.get_degree();
error_pos = goppa_decode(syndrome_polyn, key.get_goppa_polyn(), key.get_sqrtmod(), key.get_Linv());
const size_t nb_err = error_pos.size();
secure_vector<uint8_t> cleartext(cleartext_len);
copy_mem(cleartext.data(), ciphertext, cleartext_len);
for(size_t i = 0; i < nb_err; i++)
{
gf2m current = error_pos[i];
if(current >= cleartext_len * 8)
{
// an invalid position, this shouldn't happen
continue;
}
cleartext[current / 8] ^= (1 << (current % 8));
}
if(unused_pt_bits)
{
cleartext[cleartext_len - 1] &= unused_pt_bits_mask;
}
return cleartext;
}
}