Source code

Revision control

Copy as Markdown

Other Tools

/*
* DSA
* (C) 1999-2010,2014,2016 Jack Lloyd
* (C) 2016 René Korthaus
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/dsa.h>
#include <botan/keypair.h>
#include <botan/reducer.h>
#include <botan/rng.h>
#include <botan/divide.h>
#include <botan/internal/pk_ops_impl.h>
#if defined(BOTAN_HAS_RFC6979_GENERATOR)
#include <botan/emsa.h>
#include <botan/rfc6979.h>
#endif
namespace Botan {
/*
* DSA_PublicKey Constructor
*/
DSA_PublicKey::DSA_PublicKey(const DL_Group& grp, const BigInt& y1)
{
m_group = grp;
m_y = y1;
}
/*
* Create a DSA private key
*/
DSA_PrivateKey::DSA_PrivateKey(RandomNumberGenerator& rng,
const DL_Group& grp,
const BigInt& x_arg)
{
m_group = grp;
if(x_arg == 0)
m_x = BigInt::random_integer(rng, 2, group_q());
else
m_x = x_arg;
m_y = m_group.power_g_p(m_x, m_group.q_bits());
}
DSA_PrivateKey::DSA_PrivateKey(const AlgorithmIdentifier& alg_id,
const secure_vector<uint8_t>& key_bits) :
DL_Scheme_PrivateKey(alg_id, key_bits, DL_Group::ANSI_X9_57)
{
m_y = m_group.power_g_p(m_x, m_group.q_bits());
}
/*
* Check Private DSA Parameters
*/
bool DSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const
{
if(!DL_Scheme_PrivateKey::check_key(rng, strong) || m_x >= group_q())
return false;
if(!strong)
return true;
return KeyPair::signature_consistency_check(rng, *this, "EMSA1(SHA-256)");
}
namespace {
/**
* Object that can create a DSA signature
*/
class DSA_Signature_Operation final : public PK_Ops::Signature_with_EMSA
{
public:
DSA_Signature_Operation(const DSA_PrivateKey& dsa,
const std::string& emsa,
RandomNumberGenerator& rng) :
PK_Ops::Signature_with_EMSA(emsa),
m_group(dsa.get_group()),
m_x(dsa.get_x())
{
#if defined(BOTAN_HAS_RFC6979_GENERATOR)
m_rfc6979_hash = hash_for_emsa(emsa);
#endif
m_b = BigInt::random_integer(rng, 2, dsa.group_q());
m_b_inv = m_group.inverse_mod_q(m_b);
}
size_t signature_length() const override { return 2*m_group.q_bytes(); }
size_t max_input_bits() const override { return m_group.q_bits(); }
secure_vector<uint8_t> raw_sign(const uint8_t msg[], size_t msg_len,
RandomNumberGenerator& rng) override;
private:
const DL_Group m_group;
const BigInt& m_x;
#if defined(BOTAN_HAS_RFC6979_GENERATOR)
std::string m_rfc6979_hash;
#endif
BigInt m_b, m_b_inv;
};
secure_vector<uint8_t>
DSA_Signature_Operation::raw_sign(const uint8_t msg[], size_t msg_len,
RandomNumberGenerator& rng)
{
const BigInt& q = m_group.get_q();
BigInt m(msg, msg_len, m_group.q_bits());
while(m >= q)
m -= q;
#if defined(BOTAN_HAS_RFC6979_GENERATOR)
BOTAN_UNUSED(rng);
const BigInt k = generate_rfc6979_nonce(m_x, q, m, m_rfc6979_hash);
#else
const BigInt k = BigInt::random_integer(rng, 1, q);
#endif
const BigInt k_inv = m_group.inverse_mod_q(k);
/*
* It may not be strictly necessary for the reduction (g^k mod p) mod q to be
* const time, since r is published as part of the signature, and deriving
* anything useful about k from g^k mod p would seem to require computing a
* discrete logarithm.
*
* However it only increases the cost of signatures by about 7-10%, and DSA is
* only for legacy use anyway so we don't care about the performance so much.
*/
const BigInt r = ct_modulo(m_group.power_g_p(k, m_group.q_bits()), m_group.get_q());
/*
* Blind the input message and compute x*r+m as (x*r*b + m*b)/b
*/
m_b = m_group.square_mod_q(m_b);
m_b_inv = m_group.square_mod_q(m_b_inv);
m = m_group.multiply_mod_q(m_b, m);
const BigInt xr = m_group.multiply_mod_q(m_b, m_x, r);
const BigInt s = m_group.multiply_mod_q(m_b_inv, k_inv, m_group.mod_q(xr+m));
// With overwhelming probability, a bug rather than actual zero r/s
if(r.is_zero() || s.is_zero())
throw Internal_Error("Computed zero r/s during DSA signature");
return BigInt::encode_fixed_length_int_pair(r, s, q.bytes());
}
/**
* Object that can verify a DSA signature
*/
class DSA_Verification_Operation final : public PK_Ops::Verification_with_EMSA
{
public:
DSA_Verification_Operation(const DSA_PublicKey& dsa,
const std::string& emsa) :
PK_Ops::Verification_with_EMSA(emsa),
m_group(dsa.get_group()),
m_y(dsa.get_y())
{
}
size_t max_input_bits() const override { return m_group.q_bits(); }
bool with_recovery() const override { return false; }
bool verify(const uint8_t msg[], size_t msg_len,
const uint8_t sig[], size_t sig_len) override;
private:
const DL_Group m_group;
const BigInt& m_y;
};
bool DSA_Verification_Operation::verify(const uint8_t msg[], size_t msg_len,
const uint8_t sig[], size_t sig_len)
{
const BigInt& q = m_group.get_q();
const size_t q_bytes = q.bytes();
if(sig_len != 2*q_bytes || msg_len > q_bytes)
return false;
BigInt r(sig, q_bytes);
BigInt s(sig + q_bytes, q_bytes);
BigInt i(msg, msg_len, q.bits());
if(r <= 0 || r >= q || s <= 0 || s >= q)
return false;
s = inverse_mod(s, q);
const BigInt sr = m_group.multiply_mod_q(s, r);
const BigInt si = m_group.multiply_mod_q(s, i);
s = m_group.multi_exponentiate(si, m_y, sr);
// s is too big for Barrett, and verification doesn't need to be const-time
return (s % m_group.get_q() == r);
}
}
std::unique_ptr<PK_Ops::Verification>
DSA_PublicKey::create_verification_op(const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Verification>(new DSA_Verification_Operation(*this, params));
throw Provider_Not_Found(algo_name(), provider);
}
std::unique_ptr<PK_Ops::Signature>
DSA_PrivateKey::create_signature_op(RandomNumberGenerator& rng,
const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Signature>(new DSA_Signature_Operation(*this, params, rng));
throw Provider_Not_Found(algo_name(), provider);
}
}