Source code

Revision control

Copy as Markdown

Other Tools

/*
* X448 Gf Modulo 2^448 - 2^224 - 1
* (C) 2024 Jack Lloyd
* 2024 Fabian Albert - Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_CURVE_448_GF_H_
#define BOTAN_CURVE_448_GF_H_
#include <botan/mem_ops.h>
#include <botan/types.h>
#include <botan/internal/bit_ops.h>
#include <array>
#include <span>
namespace Botan {
constexpr size_t BYTES_448 = ceil_tobytes(448);
/* uint64_t words to store a 448 bit value */
constexpr size_t WORDS_448 = 7;
/**
* This class represents a GF element in the field GF(2^448 - 2^224 - 1). Computations are
* performed using optimized operations as defined in the paper:
* "Reduction Modulo 2^448 - 2^224 - 1" by Kaushik Nath and Palash Sarkar
*
* The representation of the field element is a 448-bit uint, stored in little-endian order
* as 7*64bit words. Note that the internal representation is not necessarily canonical, i.e.
* the value might be larger than the prime modulus. When calling the to_bytes() method, the
* canonical representation is returned.
*/
class Gf448Elem final {
public:
/**
* @brief Construct a GF element from a 448-bit integer gives as 56 bytes @p x in
* little-endian order.
*/
Gf448Elem(std::span<const uint8_t, BYTES_448> x);
/**
* @brief Construct a GF element from a 448-bit integer gives as 7 uint64_t words @p x in
* little-endian order.
*/
Gf448Elem(std::span<const uint64_t, WORDS_448> data) { copy_mem(m_x, data); }
/**
* @brief Construct a GF element by passing the least significant 64 bits as a word.
* All other become zero.
*/
Gf448Elem(uint64_t least_sig_word);
/**
* @brief Store the canonical representation of the GF element as 56 bytes in little-endian
* order.
*
* @param out The 56 byte output buffer.
*/
void to_bytes(std::span<uint8_t, BYTES_448> out) const;
/**
* @brief Return the canonical representation of the GF element as 56 bytes in little-endian
* order.
*/
std::array<uint8_t, BYTES_448> to_bytes() const;
/**
* @brief Swap this and other if b == true. Constant time for any b.
*/
void ct_cond_swap(bool b, Gf448Elem& other);
/**
* @brief Set this to @p other if b is true. Constant time for any b.
*/
void ct_cond_assign(bool b, const Gf448Elem& other);
Gf448Elem operator+(const Gf448Elem& other) const;
Gf448Elem operator-(const Gf448Elem& other) const;
Gf448Elem operator-() const;
Gf448Elem operator*(const Gf448Elem& other) const;
Gf448Elem operator/(const Gf448Elem& other) const;
bool operator==(const Gf448Elem& other) const;
bool operator!=(const Gf448Elem& other) const = default;
/**
* @brief Return true iff this element is zero. Constant time.
*/
bool is_zero() const;
/**
* @brief Return true iff this element is odd. Constant time.
*/
bool is_odd() const;
/**
* @brief Accessor to the internal words of the GF element.
*
* Note that the internal representation is not necessarily canonical, i.e.
* the value might be larger than the prime modulus.
*/
std::span<uint64_t, WORDS_448> words() { return m_x; }
/**
* @brief Constant accessor to the internal words of the GF element.
*
* Note that the internal representation is not necessarily canonical, i.e.
* the value might be larger than the prime modulus.
*/
std::span<const uint64_t, WORDS_448> words() const { return m_x; }
/**
* @brief Given 56 bytes, checks that the (little endian) number from this
* bytes is a valid GF element, i.e. is smaller than the prime modulus.
*/
static bool bytes_are_canonical_representation(std::span<const uint8_t, BYTES_448> x);
private:
std::array<uint64_t, WORDS_448> m_x;
};
/**
* @brief Computes elem^2. Faster than operator*.
*/
Gf448Elem square(const Gf448Elem& elem);
/**
* @brief Compute the root of @p elem in the field.
*
* The root of a in GF(p) is computed as r = a^((p+1)/4) mod p.
* Note that the root is not unique, i.e. r and p-r are both roots.
*
* @return GfPElem The root of this element.
*/
Gf448Elem root(const Gf448Elem& elem);
} // namespace Botan
#endif // BOTAN_CURVE_448_GF_H_