Source code

Revision control

Copy as Markdown

Other Tools

/*
* Number Theory Functions
* (C) 1999-2011,2016,2018,2019 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/numthry.h>
#include <botan/reducer.h>
#include <botan/monty.h>
#include <botan/divide.h>
#include <botan/rng.h>
#include <botan/internal/ct_utils.h>
#include <botan/internal/mp_core.h>
#include <botan/internal/monty_exp.h>
#include <botan/internal/primality.h>
#include <algorithm>
namespace Botan {
namespace {
void sub_abs(BigInt& z, const BigInt& x, const BigInt& y)
{
const size_t x_sw = x.sig_words();
const size_t y_sw = y.sig_words();
z.resize(std::max(x_sw, y_sw));
bigint_sub_abs(z.mutable_data(),
x.data(), x_sw,
y.data(), y_sw);
}
}
/*
* Return the number of 0 bits at the end of n
*/
size_t low_zero_bits(const BigInt& n)
{
size_t low_zero = 0;
auto seen_nonempty_word = CT::Mask<word>::cleared();
for(size_t i = 0; i != n.size(); ++i)
{
const word x = n.word_at(i);
// ctz(0) will return sizeof(word)
const size_t tz_x = ctz(x);
// if x > 0 we want to count tz_x in total but not any
// further words, so set the mask after the addition
low_zero += seen_nonempty_word.if_not_set_return(tz_x);
seen_nonempty_word |= CT::Mask<word>::expand(x);
}
// if we saw no words with x > 0 then n == 0 and the value we have
// computed is meaningless. Instead return 0 in that case.
return seen_nonempty_word.if_set_return(low_zero);
}
namespace {
size_t safegcd_loop_bound(size_t f_bits, size_t g_bits)
{
const size_t d = std::max(f_bits, g_bits);
if(d < 46)
return (49*d + 80) / 17;
else
return (49*d + 57) / 17;
}
}
/*
* Calculate the GCD
*/
BigInt gcd(const BigInt& a, const BigInt& b)
{
if(a.is_zero())
return abs(b);
if(b.is_zero())
return abs(a);
if(a == 1 || b == 1)
return 1;
BigInt f = a;
BigInt g = b;
f.const_time_poison();
g.const_time_poison();
f.set_sign(BigInt::Positive);
g.set_sign(BigInt::Positive);
const size_t common2s = std::min(low_zero_bits(f), low_zero_bits(g));
CT::unpoison(common2s);
f >>= common2s;
g >>= common2s;
f.ct_cond_swap(f.is_even(), g);
int32_t delta = 1;
const size_t loop_cnt = safegcd_loop_bound(f.bits(), g.bits());
BigInt newg, t;
for(size_t i = 0; i != loop_cnt; ++i)
{
sub_abs(newg, f, g);
const bool need_swap = (g.is_odd() && delta > 0);
// if(need_swap) { delta *= -1 } else { delta *= 1 }
delta *= CT::Mask<uint8_t>::expand(need_swap).if_not_set_return(2) - 1;
f.ct_cond_swap(need_swap, g);
g.ct_cond_swap(need_swap, newg);
delta += 1;
g.ct_cond_add(g.is_odd(), f);
g >>= 1;
}
f <<= common2s;
f.const_time_unpoison();
g.const_time_unpoison();
BOTAN_ASSERT_NOMSG(g.is_zero());
return f;
}
/*
* Calculate the LCM
*/
BigInt lcm(const BigInt& a, const BigInt& b)
{
return ct_divide(a * b, gcd(a, b));
}
/*
* Modular Exponentiation
*/
BigInt power_mod(const BigInt& base, const BigInt& exp, const BigInt& mod)
{
if(mod.is_negative() || mod == 1)
{
return 0;
}
if(base.is_zero() || mod.is_zero())
{
if(exp.is_zero())
return 1;
return 0;
}
Modular_Reducer reduce_mod(mod);
const size_t exp_bits = exp.bits();
if(mod.is_odd())
{
const size_t powm_window = 4;
auto monty_mod = std::make_shared<Montgomery_Params>(mod, reduce_mod);
auto powm_base_mod = monty_precompute(monty_mod, reduce_mod.reduce(base), powm_window);
return monty_execute(*powm_base_mod, exp, exp_bits);
}
/*
Support for even modulus is just a convenience and not considered
cryptographically important, so this implementation is slow ...
*/
BigInt accum = 1;
BigInt g = reduce_mod.reduce(base);
BigInt t;
for(size_t i = 0; i != exp_bits; ++i)
{
t = reduce_mod.multiply(g, accum);
g = reduce_mod.square(g);
accum.ct_cond_assign(exp.get_bit(i), t);
}
return accum;
}
BigInt is_perfect_square(const BigInt& C)
{
if(C < 1)
throw Invalid_Argument("is_perfect_square requires C >= 1");
if(C == 1)
return 1;
const size_t n = C.bits();
const size_t m = (n + 1) / 2;
const BigInt B = C + BigInt::power_of_2(m);
BigInt X = BigInt::power_of_2(m) - 1;
BigInt X2 = (X*X);
for(;;)
{
X = (X2 + C) / (2*X);
X2 = (X*X);
if(X2 < B)
break;
}
if(X2 == C)
return X;
else
return 0;
}
/*
* Test for primality using Miller-Rabin
*/
bool is_prime(const BigInt& n,
RandomNumberGenerator& rng,
size_t prob,
bool is_random)
{
if(n == 2)
return true;
if(n <= 1 || n.is_even())
return false;
const size_t n_bits = n.bits();
// Fast path testing for small numbers (<= 65521)
if(n_bits <= 16)
{
const uint16_t num = static_cast<uint16_t>(n.word_at(0));
return std::binary_search(PRIMES, PRIMES + PRIME_TABLE_SIZE, num);
}
Modular_Reducer mod_n(n);
if(rng.is_seeded())
{
const size_t t = miller_rabin_test_iterations(n_bits, prob, is_random);
if(is_miller_rabin_probable_prime(n, mod_n, rng, t) == false)
return false;
if(is_random)
return true;
else
return is_lucas_probable_prime(n, mod_n);
}
else
{
return is_bailie_psw_probable_prime(n, mod_n);
}
}
}