Source code

Revision control

Copy as Markdown

Other Tools

/*
* SHA-{224,256}
* (C) 1999-2010,2017 Jack Lloyd
* 2007 FlexSecure GmbH
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/sha2_32.h>
#include <botan/loadstor.h>
#include <botan/rotate.h>
#include <botan/cpuid.h>
namespace Botan {
namespace {
std::string sha256_provider()
{
#if defined(BOTAN_HAS_SHA2_32_X86)
if(CPUID::has_intel_sha())
{
return "shani";
}
#endif
#if defined(BOTAN_HAS_SHA2_32_X86_BMI2)
if(CPUID::has_bmi2())
{
return "bmi2";
}
#endif
#if defined(BOTAN_HAS_SHA2_32_ARMV8)
if(CPUID::has_arm_sha2())
{
return "armv8";
}
#endif
return "base";
}
}
std::unique_ptr<HashFunction> SHA_224::copy_state() const
{
return std::unique_ptr<HashFunction>(new SHA_224(*this));
}
std::unique_ptr<HashFunction> SHA_256::copy_state() const
{
return std::unique_ptr<HashFunction>(new SHA_256(*this));
}
/*
* SHA-256 F1 Function
*
* Use a macro as many compilers won't inline a function this big,
* even though it is much faster if inlined.
*/
#define SHA2_32_F(A, B, C, D, E, F, G, H, M1, M2, M3, M4, magic) do { \
uint32_t A_rho = rotr<2>(A) ^ rotr<13>(A) ^ rotr<22>(A); \
uint32_t E_rho = rotr<6>(E) ^ rotr<11>(E) ^ rotr<25>(E); \
uint32_t M2_sigma = rotr<17>(M2) ^ rotr<19>(M2) ^ (M2 >> 10); \
uint32_t M4_sigma = rotr<7>(M4) ^ rotr<18>(M4) ^ (M4 >> 3); \
H += magic + E_rho + ((E & F) ^ (~E & G)) + M1; \
D += H; \
H += A_rho + ((A & B) | ((A | B) & C)); \
M1 += M2_sigma + M3 + M4_sigma; \
} while(0);
/*
* SHA-224 / SHA-256 compression function
*/
void SHA_256::compress_digest(secure_vector<uint32_t>& digest,
const uint8_t input[], size_t blocks)
{
#if defined(BOTAN_HAS_SHA2_32_X86)
if(CPUID::has_intel_sha())
{
return SHA_256::compress_digest_x86(digest, input, blocks);
}
#endif
#if defined(BOTAN_HAS_SHA2_32_X86_BMI2)
if(CPUID::has_bmi2())
{
return SHA_256::compress_digest_x86_bmi2(digest, input, blocks);
}
#endif
#if defined(BOTAN_HAS_SHA2_32_ARMV8)
if(CPUID::has_arm_sha2())
{
return SHA_256::compress_digest_armv8(digest, input, blocks);
}
#endif
uint32_t A = digest[0], B = digest[1], C = digest[2],
D = digest[3], E = digest[4], F = digest[5],
G = digest[6], H = digest[7];
for(size_t i = 0; i != blocks; ++i)
{
uint32_t W00 = load_be<uint32_t>(input, 0);
uint32_t W01 = load_be<uint32_t>(input, 1);
uint32_t W02 = load_be<uint32_t>(input, 2);
uint32_t W03 = load_be<uint32_t>(input, 3);
uint32_t W04 = load_be<uint32_t>(input, 4);
uint32_t W05 = load_be<uint32_t>(input, 5);
uint32_t W06 = load_be<uint32_t>(input, 6);
uint32_t W07 = load_be<uint32_t>(input, 7);
uint32_t W08 = load_be<uint32_t>(input, 8);
uint32_t W09 = load_be<uint32_t>(input, 9);
uint32_t W10 = load_be<uint32_t>(input, 10);
uint32_t W11 = load_be<uint32_t>(input, 11);
uint32_t W12 = load_be<uint32_t>(input, 12);
uint32_t W13 = load_be<uint32_t>(input, 13);
uint32_t W14 = load_be<uint32_t>(input, 14);
uint32_t W15 = load_be<uint32_t>(input, 15);
SHA2_32_F(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x428A2F98);
SHA2_32_F(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x71374491);
SHA2_32_F(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0xB5C0FBCF);
SHA2_32_F(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0xE9B5DBA5);
SHA2_32_F(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x3956C25B);
SHA2_32_F(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x59F111F1);
SHA2_32_F(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x923F82A4);
SHA2_32_F(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0xAB1C5ED5);
SHA2_32_F(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xD807AA98);
SHA2_32_F(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x12835B01);
SHA2_32_F(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x243185BE);
SHA2_32_F(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x550C7DC3);
SHA2_32_F(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x72BE5D74);
SHA2_32_F(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0x80DEB1FE);
SHA2_32_F(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x9BDC06A7);
SHA2_32_F(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC19BF174);
SHA2_32_F(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0xE49B69C1);
SHA2_32_F(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0xEFBE4786);
SHA2_32_F(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x0FC19DC6);
SHA2_32_F(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x240CA1CC);
SHA2_32_F(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x2DE92C6F);
SHA2_32_F(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4A7484AA);
SHA2_32_F(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5CB0A9DC);
SHA2_32_F(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x76F988DA);
SHA2_32_F(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x983E5152);
SHA2_32_F(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA831C66D);
SHA2_32_F(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xB00327C8);
SHA2_32_F(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xBF597FC7);
SHA2_32_F(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xC6E00BF3);
SHA2_32_F(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD5A79147);
SHA2_32_F(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x06CA6351);
SHA2_32_F(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x14292967);
SHA2_32_F(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x27B70A85);
SHA2_32_F(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x2E1B2138);
SHA2_32_F(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x4D2C6DFC);
SHA2_32_F(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x53380D13);
SHA2_32_F(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x650A7354);
SHA2_32_F(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x766A0ABB);
SHA2_32_F(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x81C2C92E);
SHA2_32_F(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x92722C85);
SHA2_32_F(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xA2BFE8A1);
SHA2_32_F(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA81A664B);
SHA2_32_F(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xC24B8B70);
SHA2_32_F(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xC76C51A3);
SHA2_32_F(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xD192E819);
SHA2_32_F(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD6990624);
SHA2_32_F(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xF40E3585);
SHA2_32_F(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x106AA070);
SHA2_32_F(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x19A4C116);
SHA2_32_F(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x1E376C08);
SHA2_32_F(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x2748774C);
SHA2_32_F(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x34B0BCB5);
SHA2_32_F(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x391C0CB3);
SHA2_32_F(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4ED8AA4A);
SHA2_32_F(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5B9CCA4F);
SHA2_32_F(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x682E6FF3);
SHA2_32_F(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x748F82EE);
SHA2_32_F(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x78A5636F);
SHA2_32_F(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x84C87814);
SHA2_32_F(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x8CC70208);
SHA2_32_F(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x90BEFFFA);
SHA2_32_F(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xA4506CEB);
SHA2_32_F(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xBEF9A3F7);
SHA2_32_F(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC67178F2);
A = (digest[0] += A);
B = (digest[1] += B);
C = (digest[2] += C);
D = (digest[3] += D);
E = (digest[4] += E);
F = (digest[5] += F);
G = (digest[6] += G);
H = (digest[7] += H);
input += 64;
}
}
std::string SHA_224::provider() const
{
return sha256_provider();
}
std::string SHA_256::provider() const
{
return sha256_provider();
}
/*
* SHA-224 compression function
*/
void SHA_224::compress_n(const uint8_t input[], size_t blocks)
{
SHA_256::compress_digest(m_digest, input, blocks);
}
/*
* Copy out the digest
*/
void SHA_224::copy_out(uint8_t output[])
{
copy_out_vec_be(output, output_length(), m_digest);
}
/*
* Clear memory of sensitive data
*/
void SHA_224::clear()
{
MDx_HashFunction::clear();
m_digest[0] = 0xC1059ED8;
m_digest[1] = 0x367CD507;
m_digest[2] = 0x3070DD17;
m_digest[3] = 0xF70E5939;
m_digest[4] = 0xFFC00B31;
m_digest[5] = 0x68581511;
m_digest[6] = 0x64F98FA7;
m_digest[7] = 0xBEFA4FA4;
}
/*
* SHA-256 compression function
*/
void SHA_256::compress_n(const uint8_t input[], size_t blocks)
{
SHA_256::compress_digest(m_digest, input, blocks);
}
/*
* Copy out the digest
*/
void SHA_256::copy_out(uint8_t output[])
{
copy_out_vec_be(output, output_length(), m_digest);
}
/*
* Clear memory of sensitive data
*/
void SHA_256::clear()
{
MDx_HashFunction::clear();
m_digest[0] = 0x6A09E667;
m_digest[1] = 0xBB67AE85;
m_digest[2] = 0x3C6EF372;
m_digest[3] = 0xA54FF53A;
m_digest[4] = 0x510E527F;
m_digest[5] = 0x9B05688C;
m_digest[6] = 0x1F83D9AB;
m_digest[7] = 0x5BE0CD19;
}
}