Revision control

Copy as Markdown

Other Tools

/*
* (C) 2009,2010,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include "cli.h"
#if defined(BOTAN_HAS_NUMBERTHEORY)
#include <botan/numthry.h>
#include <botan/monty.h>
#include <iterator>
namespace Botan_CLI {
class Modular_Inverse final : public Command
{
public:
Modular_Inverse() : Command("mod_inverse n mod") {}
std::string group() const override
{
return "numtheory";
}
std::string description() const override
{
return "Calculates a modular inverse";
}
void go() override
{
const Botan::BigInt n(get_arg("n"));
const Botan::BigInt mod(get_arg("mod"));
output() << Botan::inverse_mod(n, mod) << "\n";
}
};
BOTAN_REGISTER_COMMAND("mod_inverse", Modular_Inverse);
class Gen_Prime final : public Command
{
public:
Gen_Prime() : Command("gen_prime --count=1 bits") {}
std::string group() const override
{
return "numtheory";
}
std::string description() const override
{
return "Samples one or more primes";
}
void go() override
{
const size_t bits = get_arg_sz("bits");
const size_t cnt = get_arg_sz("count");
for(size_t i = 0; i != cnt; ++i)
{
const Botan::BigInt p = Botan::random_prime(rng(), bits);
output() << p << "\n";
}
}
};
BOTAN_REGISTER_COMMAND("gen_prime", Gen_Prime);
class Is_Prime final : public Command
{
public:
Is_Prime() : Command("is_prime --prob=56 n") {}
std::string group() const override
{
return "numtheory";
}
std::string description() const override
{
return "Test if the integer n is composite or prime";
}
void go() override
{
Botan::BigInt n(get_arg("n"));
const size_t prob = get_arg_sz("prob");
const bool prime = Botan::is_prime(n, rng(), prob);
output() << n << " is " << (prime ? "probably prime" : "composite") << "\n";
}
};
BOTAN_REGISTER_COMMAND("is_prime", Is_Prime);
/*
* Factor integers using a combination of trial division by small
* primes, and Pollard's Rho algorithm
*/
class Factor final : public Command
{
public:
Factor() : Command("factor n") {}
std::string group() const override
{
return "numtheory";
}
std::string description() const override
{
return "Factor a given integer";
}
void go() override
{
Botan::BigInt n(get_arg("n"));
std::vector<Botan::BigInt> factors = factorize(n, rng());
std::sort(factors.begin(), factors.end());
output() << n << ": ";
std::copy(factors.begin(), factors.end(), std::ostream_iterator<Botan::BigInt>(output(), " "));
output() << std::endl;
}
private:
std::vector<Botan::BigInt> factorize(const Botan::BigInt& n_in,
Botan::RandomNumberGenerator& rng)
{
Botan::BigInt n = n_in;
std::vector<Botan::BigInt> factors = remove_small_factors(n);
while(n != 1)
{
if(Botan::is_prime(n, rng))
{
factors.push_back(n);
break;
}
Botan::BigInt a_factor = 0;
while(a_factor == 0)
{
a_factor = rho(n, rng);
}
std::vector<Botan::BigInt> rho_factored = factorize(a_factor, rng);
for(size_t j = 0; j != rho_factored.size(); j++)
{
factors.push_back(rho_factored[j]);
}
n /= a_factor;
}
return factors;
}
/*
* Pollard's Rho algorithm, as described in the MIT algorithms book.
* Uses Brent's cycle finding
*/
Botan::BigInt rho(const Botan::BigInt& n, Botan::RandomNumberGenerator& rng)
{
auto monty_n = std::make_shared<Botan::Montgomery_Params>(n);
const Botan::Montgomery_Int one(monty_n, monty_n->R1(), false);
Botan::Montgomery_Int x(monty_n, Botan::BigInt::random_integer(rng, 2, n - 3), false);
Botan::Montgomery_Int y = x;
Botan::Montgomery_Int z = one;
Botan::Montgomery_Int t(monty_n);
Botan::BigInt d;
Botan::secure_vector<Botan::word> ws;
size_t i = 1, k = 2;
while(true)
{
i++;
if(i >= 0xFFFF0000) // bad seed? too slow? bail out
{
break;
}
x.square_this(ws); // x = x^2
x.add(one, ws);
t = y;
t.sub(x, ws);
z.mul_by(t, ws);
if(i == k || i % 128 == 0)
{
d = Botan::gcd(z.value(), n);
z = one;
if(d == n)
{
// TODO Should rewind here
break;
}
if(d != 1)
return d;
}
if(i == k)
{
y = x;
k = 2 * k;
}
}
// failed
return 0;
}
// Remove (and return) any small (< 2^16) factors
std::vector<Botan::BigInt> remove_small_factors(Botan::BigInt& n)
{
std::vector<Botan::BigInt> factors;
while(n.is_even())
{
factors.push_back(2);
n /= 2;
}
for(size_t j = 0; j != Botan::PRIME_TABLE_SIZE; j++)
{
uint16_t prime = Botan::PRIMES[j];
if(n < prime)
{
break;
}
Botan::BigInt x = Botan::gcd(n, prime);
if(x != 1)
{
n /= x;
while(x != 1)
{
x /= prime;
factors.push_back(prime);
}
}
}
return factors;
}
};
BOTAN_REGISTER_COMMAND("factor", Factor);
}
#endif