Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ARIAMap.h"
#include "CachedTableAccessible.h"
#include "RemoteAccessible.h"
#include "mozilla/a11y/DocAccessibleParent.h"
#include "mozilla/a11y/DocManager.h"
#include "mozilla/a11y/Platform.h"
#include "mozilla/a11y/TableAccessible.h"
#include "mozilla/a11y/TableCellAccessible.h"
#include "mozilla/dom/Element.h"
#include "mozilla/dom/BrowserParent.h"
#include "mozilla/dom/CanonicalBrowsingContext.h"
#include "mozilla/gfx/Matrix.h"
#include "nsAccessibilityService.h"
#include "mozilla/Unused.h"
#include "nsAccUtils.h"
#include "nsTextEquivUtils.h"
#include "Pivot.h"
#include "Relation.h"
#include "mozilla/a11y/RelationType.h"
#include "xpcAccessibleDocument.h"
#ifdef A11Y_LOG
# include "Logging.h"
# define VERIFY_CACHE(domain) \
if (logging::IsEnabled(logging::eCache)) { \
Unused << mDoc->SendVerifyCache(mID, domain, mCachedFields); \
}
#else
# define VERIFY_CACHE(domain) \
do { \
} while (0)
#endif
namespace mozilla {
namespace a11y {
void RemoteAccessible::Shutdown() {
MOZ_DIAGNOSTIC_ASSERT(!IsDoc());
xpcAccessibleDocument* xpcDoc =
GetAccService()->GetCachedXPCDocument(Document());
if (xpcDoc) {
xpcDoc->NotifyOfShutdown(static_cast<RemoteAccessible*>(this));
}
if (IsTable() || IsTableCell()) {
CachedTableAccessible::Invalidate(this);
}
// Remove this acc's relation map from the doc's map of
// reverse relations. Prune forward relations associated with this
// acc's reverse relations. This also removes the acc's map of reverse
// rels from the mDoc's mReverseRelations.
PruneRelationsOnShutdown();
// XXX Ideally this wouldn't be necessary, but it seems OuterDoc
// accessibles can be destroyed before the doc they own.
uint32_t childCount = mChildren.Length();
if (!IsOuterDoc()) {
for (uint32_t idx = 0; idx < childCount; idx++) mChildren[idx]->Shutdown();
} else {
if (childCount > 1) {
MOZ_CRASH("outer doc has too many documents!");
} else if (childCount == 1) {
mChildren[0]->AsDoc()->Unbind();
}
}
mChildren.Clear();
ProxyDestroyed(static_cast<RemoteAccessible*>(this));
mDoc->RemoveAccessible(static_cast<RemoteAccessible*>(this));
}
void RemoteAccessible::SetChildDoc(DocAccessibleParent* aChildDoc) {
MOZ_ASSERT(aChildDoc);
MOZ_ASSERT(mChildren.Length() == 0);
mChildren.AppendElement(aChildDoc);
}
void RemoteAccessible::ClearChildDoc(DocAccessibleParent* aChildDoc) {
MOZ_ASSERT(aChildDoc);
// This is possible if we're replacing one document with another: Doc 1
// has not had a chance to remove itself, but was already replaced by Doc 2
// in SetChildDoc(). This could result in two subsequent calls to
// ClearChildDoc() even though mChildren.Length() == 1.
MOZ_ASSERT(mChildren.Length() <= 1);
mChildren.RemoveElement(aChildDoc);
}
uint32_t RemoteAccessible::EmbeddedChildCount() {
size_t count = 0, kids = mChildren.Length();
for (size_t i = 0; i < kids; i++) {
if (mChildren[i]->IsEmbeddedObject()) {
count++;
}
}
return count;
}
int32_t RemoteAccessible::IndexOfEmbeddedChild(Accessible* aChild) {
size_t index = 0, kids = mChildren.Length();
for (size_t i = 0; i < kids; i++) {
if (mChildren[i]->IsEmbeddedObject()) {
if (mChildren[i] == aChild) {
return index;
}
index++;
}
}
return -1;
}
Accessible* RemoteAccessible::EmbeddedChildAt(uint32_t aChildIdx) {
size_t index = 0, kids = mChildren.Length();
for (size_t i = 0; i < kids; i++) {
if (!mChildren[i]->IsEmbeddedObject()) {
continue;
}
if (index == aChildIdx) {
return mChildren[i];
}
index++;
}
return nullptr;
}
LocalAccessible* RemoteAccessible::OuterDocOfRemoteBrowser() const {
auto tab = static_cast<dom::BrowserParent*>(mDoc->Manager());
dom::Element* frame = tab->GetOwnerElement();
NS_ASSERTION(frame, "why isn't the tab in a frame!");
if (!frame) return nullptr;
DocAccessible* chromeDoc = GetExistingDocAccessible(frame->OwnerDoc());
return chromeDoc ? chromeDoc->GetAccessible(frame) : nullptr;
}
void RemoteAccessible::SetParent(RemoteAccessible* aParent) {
if (!aParent) {
mParent = kNoParent;
} else {
MOZ_ASSERT(!IsDoc() || !aParent->IsDoc());
mParent = aParent->ID();
}
}
RemoteAccessible* RemoteAccessible::RemoteParent() const {
if (mParent == kNoParent) {
return nullptr;
}
// if we are not a document then are parent is another proxy in the same
// document. That means we can just ask our document for the proxy with our
// parent id.
if (!IsDoc()) {
return Document()->GetAccessible(mParent);
}
// If we are a top level document then our parent is not a proxy.
if (AsDoc()->IsTopLevel()) {
return nullptr;
}
// Finally if we are a non top level document then our parent id is for a
// proxy in our parent document so get the proxy from there.
DocAccessibleParent* parentDoc = AsDoc()->ParentDoc();
MOZ_ASSERT(parentDoc);
MOZ_ASSERT(mParent);
return parentDoc->GetAccessible(mParent);
}
void RemoteAccessible::ApplyCache(CacheUpdateType aUpdateType,
AccAttributes* aFields) {
if (!aFields) {
MOZ_ASSERT_UNREACHABLE("ApplyCache called with aFields == null");
return;
}
const nsTArray<bool> relUpdatesNeeded = PreProcessRelations(aFields);
if (auto maybeViewportCache =
aFields->GetAttribute<nsTArray<uint64_t>>(CacheKey::Viewport)) {
// Updating the viewport cache means the offscreen state of this
// document's accessibles has changed. Update the HashSet we use for
// checking offscreen state here.
MOZ_ASSERT(IsDoc(),
"Fetched the viewport cache from a non-doc accessible?");
AsDoc()->mOnScreenAccessibles.Clear();
for (auto id : *maybeViewportCache) {
AsDoc()->mOnScreenAccessibles.Insert(id);
}
}
if (aUpdateType == CacheUpdateType::Initial) {
mCachedFields = aFields;
} else {
if (!mCachedFields) {
// The fields cache can be uninitialized if there were no cache-worthy
// fields in the initial cache push.
// We don't do a simple assign because we don't want to store the
// DeleteEntry entries.
mCachedFields = new AccAttributes();
}
mCachedFields->Update(aFields);
}
if (IsTextLeaf()) {
RemoteAccessible* parent = RemoteParent();
if (parent && parent->IsHyperText()) {
parent->InvalidateCachedHyperTextOffsets();
}
}
PostProcessRelations(relUpdatesNeeded);
}
ENameValueFlag RemoteAccessible::Name(nsString& aName) const {
ENameValueFlag nameFlag = eNameOK;
if (mCachedFields) {
if (IsText()) {
mCachedFields->GetAttribute(CacheKey::Text, aName);
return eNameOK;
}
auto cachedNameFlag =
mCachedFields->GetAttribute<int32_t>(CacheKey::NameValueFlag);
if (cachedNameFlag) {
nameFlag = static_cast<ENameValueFlag>(*cachedNameFlag);
}
if (mCachedFields->GetAttribute(CacheKey::Name, aName)) {
VERIFY_CACHE(CacheDomain::NameAndDescription);
return nameFlag;
}
}
MOZ_ASSERT(aName.IsEmpty());
aName.SetIsVoid(true);
return nameFlag;
}
void RemoteAccessible::Description(nsString& aDescription) const {
if (mCachedFields) {
mCachedFields->GetAttribute(CacheKey::Description, aDescription);
VERIFY_CACHE(CacheDomain::NameAndDescription);
}
}
void RemoteAccessible::Value(nsString& aValue) const {
if (mCachedFields) {
if (mCachedFields->HasAttribute(CacheKey::TextValue)) {
mCachedFields->GetAttribute(CacheKey::TextValue, aValue);
VERIFY_CACHE(CacheDomain::Value);
return;
}
if (HasNumericValue()) {
double checkValue = CurValue();
if (!std::isnan(checkValue)) {
aValue.AppendFloat(checkValue);
}
return;
}
const nsRoleMapEntry* roleMapEntry = ARIARoleMap();
// Value of textbox is a textified subtree.
if (roleMapEntry && roleMapEntry->Is(nsGkAtoms::textbox)) {
nsTextEquivUtils::GetTextEquivFromSubtree(this, aValue);
return;
}
if (IsCombobox()) {
// For combo boxes, rely on selection state to determine the value.
const Accessible* option =
const_cast<RemoteAccessible*>(this)->GetSelectedItem(0);
if (option) {
option->Name(aValue);
} else {
// If no selected item, determine the value from descendant elements.
nsTextEquivUtils::GetTextEquivFromSubtree(this, aValue);
}
return;
}
if (IsTextLeaf() || IsImage()) {
if (const Accessible* actionAcc = ActionAncestor()) {
if (const_cast<Accessible*>(actionAcc)->State() & states::LINKED) {
// Text and image descendants of links expose the link URL as the
// value.
return actionAcc->Value(aValue);
}
}
}
}
}
double RemoteAccessible::CurValue() const {
if (mCachedFields) {
if (auto value =
mCachedFields->GetAttribute<double>(CacheKey::NumericValue)) {
VERIFY_CACHE(CacheDomain::Value);
return *value;
}
}
return UnspecifiedNaN<double>();
}
double RemoteAccessible::MinValue() const {
if (mCachedFields) {
if (auto min = mCachedFields->GetAttribute<double>(CacheKey::MinValue)) {
VERIFY_CACHE(CacheDomain::Value);
return *min;
}
}
return UnspecifiedNaN<double>();
}
double RemoteAccessible::MaxValue() const {
if (mCachedFields) {
if (auto max = mCachedFields->GetAttribute<double>(CacheKey::MaxValue)) {
VERIFY_CACHE(CacheDomain::Value);
return *max;
}
}
return UnspecifiedNaN<double>();
}
double RemoteAccessible::Step() const {
if (mCachedFields) {
if (auto step = mCachedFields->GetAttribute<double>(CacheKey::Step)) {
VERIFY_CACHE(CacheDomain::Value);
return *step;
}
}
return UnspecifiedNaN<double>();
}
bool RemoteAccessible::SetCurValue(double aValue) {
if (!HasNumericValue() || IsProgress()) {
return false;
}
const uint32_t kValueCannotChange = states::READONLY | states::UNAVAILABLE;
if (State() & kValueCannotChange) {
return false;
}
double checkValue = MinValue();
if (!std::isnan(checkValue) && aValue < checkValue) {
return false;
}
checkValue = MaxValue();
if (!std::isnan(checkValue) && aValue > checkValue) {
return false;
}
Unused << mDoc->SendSetCurValue(mID, aValue);
return true;
}
bool RemoteAccessible::ContainsPoint(int32_t aX, int32_t aY) {
if (!BoundsWithOffset(Nothing(), true).Contains(aX, aY)) {
return false;
}
if (!IsTextLeaf()) {
if (IsImage() || IsImageMap() || !HasChildren() ||
RefPtr{DisplayStyle()} != nsGkAtoms::inlinevalue) {
// This isn't an inline element that might contain text, so we don't need
// to walk lines. It's enough that our rect contains the point.
return true;
}
// Non-image inline elements with children can wrap across lines just like
// text leaves; see below.
// Walk the children, which will walk the lines of text in any text leaves.
uint32_t count = ChildCount();
for (uint32_t c = 0; c < count; ++c) {
RemoteAccessible* child = RemoteChildAt(c);
if (child->Role() == roles::TEXT_CONTAINER && child->IsClipped()) {
// There is a clipped child. This is a candidate for fuzzy hit testing.
// See RemoteAccessible::DoFuzzyHittesting.
return true;
}
if (child->ContainsPoint(aX, aY)) {
return true;
}
}
// None of our descendants contain the point, so nor do we.
return false;
}
// This is a text leaf. The text might wrap across lines, which means our
// rect might cover a wider area than the actual text. For example, if the
// text begins in the middle of the first line and wraps on to the second,
// the rect will cover the start of the first line and the end of the second.
auto lines = GetCachedTextLines();
if (!lines) {
// This means the text is empty or occupies a single line (but does not
// begin the line). In that case, the Bounds check above is sufficient,
// since there's only one rect.
return true;
}
uint32_t length = lines->Length();
MOZ_ASSERT(length > 0,
"Line starts shouldn't be in cache if there aren't any");
if (length == 0 || (length == 1 && (*lines)[0] == 0)) {
// This means the text begins and occupies a single line. Again, the Bounds
// check above is sufficient.
return true;
}
// Walk the lines of the text. Even if this text doesn't start at the
// beginning of a line (i.e. lines[0] > 0), we always want to consider its
// first line.
int32_t lineStart = 0;
for (uint32_t index = 0; index <= length; ++index) {
int32_t lineEnd;
if (index < length) {
int32_t nextLineStart = (*lines)[index];
if (nextLineStart == 0) {
// This Accessible starts at the beginning of a line. Here, we always
// treat 0 as the first line start anyway.
MOZ_ASSERT(index == 0);
continue;
}
lineEnd = nextLineStart - 1;
} else {
// This is the last line.
lineEnd = static_cast<int32_t>(nsAccUtils::TextLength(this)) - 1;
}
MOZ_ASSERT(lineEnd >= lineStart);
nsRect lineRect = GetCachedCharRect(lineStart);
if (lineEnd > lineStart) {
lineRect.UnionRect(lineRect, GetCachedCharRect(lineEnd));
}
if (BoundsWithOffset(Some(lineRect), true).Contains(aX, aY)) {
return true;
}
lineStart = lineEnd + 1;
}
return false;
}
RemoteAccessible* RemoteAccessible::DoFuzzyHittesting() {
uint32_t childCount = ChildCount();
if (!childCount) {
return nullptr;
}
// Check if this match has a clipped child.
// This usually indicates invisible text, and we're
// interested in returning the inner text content
// even if it doesn't contain the point we're hittesting.
RemoteAccessible* clippedContainer = nullptr;
for (uint32_t i = 0; i < childCount; i++) {
RemoteAccessible* child = RemoteChildAt(i);
if (child->Role() == roles::TEXT_CONTAINER) {
if (child->IsClipped()) {
clippedContainer = child;
break;
}
}
}
// If we found a clipped container, descend it in search of
// meaningful text leaves. Ignore non-text-leaf/text-container
// siblings.
RemoteAccessible* container = clippedContainer;
while (container) {
RemoteAccessible* textLeaf = nullptr;
bool continueSearch = false;
childCount = container->ChildCount();
for (uint32_t i = 0; i < childCount; i++) {
RemoteAccessible* child = container->RemoteChildAt(i);
if (child->Role() == roles::TEXT_CONTAINER) {
container = child;
continueSearch = true;
break;
}
if (child->IsTextLeaf()) {
textLeaf = child;
// Don't break here -- it's possible a text container
// exists as another sibling, and we should descend as
// deep as possible.
}
}
if (textLeaf) {
return textLeaf;
}
if (!continueSearch) {
// We didn't find anything useful in this set of siblings.
// Don't keep searching
break;
}
}
return nullptr;
}
Accessible* RemoteAccessible::ChildAtPoint(
int32_t aX, int32_t aY, LocalAccessible::EWhichChildAtPoint aWhichChild) {
// Elements that are partially on-screen should have their bounds masked by
// their containing scroll area so hittesting yields results that are
// consistent with the content's visual representation. Pass this value to
// bounds calculation functions to indicate that we're hittesting.
const bool hitTesting = true;
if (IsOuterDoc() && aWhichChild == EWhichChildAtPoint::DirectChild) {
// This is an iframe, which is as deep as the viewport cache goes. The
// caller wants a direct child, which can only be the embedded document.
if (BoundsWithOffset(Nothing(), hitTesting).Contains(aX, aY)) {
return RemoteFirstChild();
}
return nullptr;
}
RemoteAccessible* lastMatch = nullptr;
// If `this` is a document, use its viewport cache instead of
// the cache of its parent document.
if (DocAccessibleParent* doc = IsDoc() ? AsDoc() : mDoc) {
if (!doc->mCachedFields) {
// A client call might arrive after we've constructed doc but before we
// get a cache push for it.
return nullptr;
}
if (auto maybeViewportCache =
doc->mCachedFields->GetAttribute<nsTArray<uint64_t>>(
CacheKey::Viewport)) {
// The retrieved viewport cache contains acc IDs in hittesting order.
// That is, items earlier in the list have z-indexes that are larger than
// those later in the list. If you were to build a tree by z-index, where
// chilren have larger z indices than their parents, iterating this list
// is essentially a postorder tree traversal.
const nsTArray<uint64_t>& viewportCache = *maybeViewportCache;
for (auto id : viewportCache) {
RemoteAccessible* acc = doc->GetAccessible(id);
if (!acc) {
// This can happen if the acc died in between
// pushing the viewport cache and doing this hittest
continue;
}
if (acc->IsOuterDoc() &&
aWhichChild == EWhichChildAtPoint::DeepestChild &&
acc->BoundsWithOffset(Nothing(), hitTesting).Contains(aX, aY)) {
// acc is an iframe, which is as deep as the viewport cache goes. This
// iframe contains the requested point.
RemoteAccessible* innerDoc = acc->RemoteFirstChild();
if (innerDoc) {
MOZ_ASSERT(innerDoc->IsDoc());
// Search the embedded document's viewport cache so we return the
// deepest descendant in that embedded document.
Accessible* deepestAcc = innerDoc->ChildAtPoint(
aX, aY, EWhichChildAtPoint::DeepestChild);
MOZ_ASSERT(!deepestAcc || deepestAcc->IsRemote());
lastMatch = deepestAcc ? deepestAcc->AsRemote() : nullptr;
break;
}
// If there is no embedded document, the iframe itself is the deepest
// descendant.
lastMatch = acc;
break;
}
if (acc == this) {
MOZ_ASSERT(!acc->IsOuterDoc());
// Even though we're searching from the doc's cache
// this call shouldn't pass the boundary defined by
// the acc this call originated on. If we hit `this`,
// return our most recent match.
if (!lastMatch &&
BoundsWithOffset(Nothing(), hitTesting).Contains(aX, aY)) {
// If we haven't found a match, but `this` contains the point we're
// looking for, set it as our temp last match so we can
// (potentially) do fuzzy hittesting on it below.
lastMatch = acc;
}
break;
}
if (acc->ContainsPoint(aX, aY)) {
// Because our rects are in hittesting order, the
// first match we encounter is guaranteed to be the
// deepest match.
lastMatch = acc;
break;
}
}
if (lastMatch) {
RemoteAccessible* fuzzyMatch = lastMatch->DoFuzzyHittesting();
lastMatch = fuzzyMatch ? fuzzyMatch : lastMatch;
}
}
}
if (aWhichChild == EWhichChildAtPoint::DirectChild && lastMatch) {
// lastMatch is the deepest match. Walk up to the direct child of this.
RemoteAccessible* parent = lastMatch->RemoteParent();
for (;;) {
if (parent == this) {
break;
}
if (!parent || parent->IsDoc()) {
// `this` is not an ancestor of lastMatch. Ignore lastMatch.
lastMatch = nullptr;
break;
}
lastMatch = parent;
parent = parent->RemoteParent();
}
} else if (aWhichChild == EWhichChildAtPoint::DeepestChild && lastMatch &&
!IsDoc() && !IsAncestorOf(lastMatch)) {
// If we end up with a match that is not in the ancestor chain
// of the accessible this call originated on, we should ignore it.
// This can happen when the aX, aY given are outside `this`.
lastMatch = nullptr;
}
if (!lastMatch && BoundsWithOffset(Nothing(), hitTesting).Contains(aX, aY)) {
// Even though the hit target isn't inside `this`, the point is still
// within our bounds, so fall back to `this`.
return this;
}
return lastMatch;
}
Maybe<nsRect> RemoteAccessible::RetrieveCachedBounds() const {
if (!mCachedFields) {
return Nothing();
}
Maybe<const nsTArray<int32_t>&> maybeArray =
mCachedFields->GetAttribute<nsTArray<int32_t>>(
CacheKey::ParentRelativeBounds);
if (maybeArray) {
const nsTArray<int32_t>& relativeBoundsArr = *maybeArray;
MOZ_ASSERT(relativeBoundsArr.Length() == 4,
"Incorrectly sized bounds array");
nsRect relativeBoundsRect(relativeBoundsArr[0], relativeBoundsArr[1],
relativeBoundsArr[2], relativeBoundsArr[3]);
return Some(relativeBoundsRect);
}
return Nothing();
}
void RemoteAccessible::ApplyCrossDocOffset(nsRect& aBounds) const {
if (!IsDoc()) {
// We should only apply cross-doc offsets to documents. If we're anything
// else, return early here.
return;
}
RemoteAccessible* parentAcc = RemoteParent();
if (!parentAcc || !parentAcc->IsOuterDoc()) {
return;
}
Maybe<const nsTArray<int32_t>&> maybeOffset =
parentAcc->mCachedFields->GetAttribute<nsTArray<int32_t>>(
CacheKey::CrossDocOffset);
if (!maybeOffset) {
return;
}
MOZ_ASSERT(maybeOffset->Length() == 2);
const nsTArray<int32_t>& offset = *maybeOffset;
// Our retrieved value is in app units, so we don't need to do any
// unit conversion here.
aBounds.MoveBy(offset[0], offset[1]);
}
bool RemoteAccessible::ApplyTransform(nsRect& aCumulativeBounds) const {
// First, attempt to retrieve the transform from the cache.
Maybe<const UniquePtr<gfx::Matrix4x4>&> maybeTransform =
mCachedFields->GetAttribute<UniquePtr<gfx::Matrix4x4>>(
CacheKey::TransformMatrix);
if (!maybeTransform) {
return false;
}
auto mtxInPixels = gfx::Matrix4x4Typed<CSSPixel, CSSPixel>::FromUnknownMatrix(
*(*maybeTransform));
// Our matrix is in CSS Pixels, so we need our rect to be in CSS
// Pixels too. Convert before applying.
auto boundsInPixels = CSSRect::FromAppUnits(aCumulativeBounds);
boundsInPixels = mtxInPixels.TransformBounds(boundsInPixels);
aCumulativeBounds = CSSRect::ToAppUnits(boundsInPixels);
return true;
}
bool RemoteAccessible::ApplyScrollOffset(nsRect& aBounds) const {
Maybe<const nsTArray<int32_t>&> maybeScrollPosition =
mCachedFields->GetAttribute<nsTArray<int32_t>>(CacheKey::ScrollPosition);
if (!maybeScrollPosition || maybeScrollPosition->Length() != 2) {
return false;
}
// Our retrieved value is in app units, so we don't need to do any
// unit conversion here.
const nsTArray<int32_t>& scrollPosition = *maybeScrollPosition;
// Scroll position is an inverse representation of scroll offset (since the
// further the scroll bar moves down the page, the further the page content
// moves up/closer to the origin).
nsPoint scrollOffset(-scrollPosition[0], -scrollPosition[1]);
aBounds.MoveBy(scrollOffset.x, scrollOffset.y);
// Return true here even if the scroll offset was 0,0 because the RV is used
// as a scroll container indicator. Non-scroll containers won't have cached
// scroll position.
return true;
}
nsRect RemoteAccessible::BoundsInAppUnits() const {
if (dom::CanonicalBrowsingContext* cbc = mDoc->GetBrowsingContext()->Top()) {
if (dom::BrowserParent* bp = cbc->GetBrowserParent()) {
DocAccessibleParent* topDoc = bp->GetTopLevelDocAccessible();
if (topDoc && topDoc->mCachedFields) {
auto appUnitsPerDevPixel = topDoc->mCachedFields->GetAttribute<int32_t>(
CacheKey::AppUnitsPerDevPixel);
MOZ_ASSERT(appUnitsPerDevPixel);
return LayoutDeviceIntRect::ToAppUnits(Bounds(), *appUnitsPerDevPixel);
}
}
}
return LayoutDeviceIntRect::ToAppUnits(Bounds(), AppUnitsPerCSSPixel());
}
bool RemoteAccessible::IsFixedPos() const {
MOZ_ASSERT(mCachedFields);
if (auto maybePosition =
mCachedFields->GetAttribute<RefPtr<nsAtom>>(CacheKey::CssPosition)) {
return *maybePosition == nsGkAtoms::fixed;
}
return false;
}
bool RemoteAccessible::IsOverflowHidden() const {
MOZ_ASSERT(mCachedFields);
if (auto maybeOverflow =
mCachedFields->GetAttribute<RefPtr<nsAtom>>(CacheKey::CSSOverflow)) {
return *maybeOverflow == nsGkAtoms::hidden;
}
return false;
}
bool RemoteAccessible::IsClipped() const {
MOZ_ASSERT(mCachedFields);
if (mCachedFields->GetAttribute<bool>(CacheKey::IsClipped)) {
return true;
}
return false;
}
LayoutDeviceIntRect RemoteAccessible::BoundsWithOffset(
Maybe<nsRect> aOffset, bool aBoundsAreForHittesting) const {
Maybe<nsRect> maybeBounds = RetrieveCachedBounds();
if (maybeBounds) {
nsRect bounds = *maybeBounds;
// maybeBounds is parent-relative. However, the transform matrix we cache
// (if any) is meant to operate on self-relative rects. Therefore, make
// bounds self-relative until after we transform.
bounds.MoveTo(0, 0);
const DocAccessibleParent* topDoc = IsDoc() ? AsDoc() : nullptr;
if (aOffset.isSome()) {
// The rect we've passed in is in app units, so no conversion needed.
nsRect internalRect = *aOffset;
bounds.SetRectX(bounds.x + internalRect.x, internalRect.width);
bounds.SetRectY(bounds.y + internalRect.y, internalRect.height);
}
Unused << ApplyTransform(bounds);
// Now apply the parent-relative offset.
bounds.MoveBy(maybeBounds->TopLeft());
ApplyCrossDocOffset(bounds);
LayoutDeviceIntRect devPxBounds;
const Accessible* acc = Parent();
bool encounteredFixedContainer = IsFixedPos();
while (acc && acc->IsRemote()) {
// Return early if we're hit testing and our cumulative bounds are empty,
// since walking the ancestor chain won't produce any hits.
if (aBoundsAreForHittesting && bounds.IsEmpty()) {
return LayoutDeviceIntRect{};
}
RemoteAccessible* remoteAcc = const_cast<Accessible*>(acc)->AsRemote();
if (Maybe<nsRect> maybeRemoteBounds = remoteAcc->RetrieveCachedBounds()) {
nsRect remoteBounds = *maybeRemoteBounds;
// We need to take into account a non-1 resolution set on the
// presshell. This happens with async pinch zooming, among other
// things. We can't reliably query this value in the parent process,
// so we retrieve it from the document's cache.
if (remoteAcc->IsDoc()) {
// Apply the document's resolution to the bounds we've gathered
// thus far. We do this before applying the document's offset
// because document accs should not have their bounds scaled by
// their own resolution. They should be scaled by the resolution
// of their containing document (if any).
Maybe<float> res =
remoteAcc->AsDoc()->mCachedFields->GetAttribute<float>(
CacheKey::Resolution);
MOZ_ASSERT(res, "No cached document resolution found.");
bounds.ScaleRoundOut(res.valueOr(1.0f));
topDoc = remoteAcc->AsDoc();
}
// We don't account for the document offset of iframes when
// computing parent-relative bounds. Instead, we store this value
// separately on all iframes and apply it here. See the comments in
// LocalAccessible::BundleFieldsForCache where we set the
// nsGkAtoms::crossorigin attribute.
remoteAcc->ApplyCrossDocOffset(remoteBounds);
if (!encounteredFixedContainer) {
// Apply scroll offset, if applicable. Only the contents of an
// element are affected by its scroll offset, which is why this call
// happens in this loop instead of both inside and outside of
// the loop (like ApplyTransform).
// Never apply scroll offsets past a fixed container.
const bool hasScrollArea = remoteAcc->ApplyScrollOffset(bounds);
// If we are hit testing and the Accessible has a scroll area, ensure
// that the bounds we've calculated so far are constrained to the
// bounds of the scroll area. Without this, we'll "hit" the off-screen
// portions of accs that are are partially (but not fully) within the
// scroll area. This is also a problem for accs with overflow:hidden;
if (aBoundsAreForHittesting &&
(hasScrollArea || remoteAcc->IsOverflowHidden())) {
nsRect selfRelativeVisibleBounds(0, 0, remoteBounds.width,
remoteBounds.height);
bounds = bounds.SafeIntersect(selfRelativeVisibleBounds);
}
}
if (remoteAcc->IsDoc()) {
// Fixed elements are document relative, so if we've hit a
// document we're now subject to that document's styling
// (including scroll offsets that operate on it).
// This ordering is important, we don't want to apply scroll
// offsets on this doc's content.
encounteredFixedContainer = false;
}
if (!encounteredFixedContainer) {
// The transform matrix we cache (if any) is meant to operate on
// self-relative rects. Therefore, we must apply the transform before
// we make bounds parent-relative.
Unused << remoteAcc->ApplyTransform(bounds);
// Regardless of whether this is a doc, we should offset `bounds`
// by the bounds retrieved here. This is how we build screen
// coordinates from relative coordinates.
bounds.MoveBy(remoteBounds.X(), remoteBounds.Y());
}
if (remoteAcc->IsFixedPos()) {
encounteredFixedContainer = true;
}
// we can't just break here if we're scroll suppressed because we still
// need to find the top doc.
}
acc = acc->Parent();
}
MOZ_ASSERT(topDoc);
if (topDoc) {
// We use the top documents app-units-per-dev-pixel even though
// theoretically nested docs can have different values. Practically,
// that isn't likely since we only offer zoom controls for the top
// document and all subdocuments inherit from it.
auto appUnitsPerDevPixel = topDoc->mCachedFields->GetAttribute<int32_t>(
CacheKey::AppUnitsPerDevPixel);
MOZ_ASSERT(appUnitsPerDevPixel);
if (appUnitsPerDevPixel) {
// Convert our existing `bounds` rect from app units to dev pixels
devPxBounds = LayoutDeviceIntRect::FromAppUnitsToNearest(
bounds, *appUnitsPerDevPixel);
}
}
#if !defined(ANDROID)
// This block is not thread safe because it queries a LocalAccessible.
// It is also not needed in Android since the only local accessible is
// the outer doc browser that has an offset of 0.
// acc could be null if the OuterDocAccessible died before the top level
// DocAccessibleParent.
if (LocalAccessible* localAcc =
acc ? const_cast<Accessible*>(acc)->AsLocal() : nullptr) {
// LocalAccessible::Bounds returns screen-relative bounds in
// dev pixels.
LayoutDeviceIntRect localBounds = localAcc->Bounds();
// The root document will always have an APZ resolution of 1,
// so we don't factor in its scale here. We also don't scale
// by GetFullZoom because LocalAccessible::Bounds already does
// that.
devPxBounds.MoveBy(localBounds.X(), localBounds.Y());
}
#endif
return devPxBounds;
}
return LayoutDeviceIntRect();
}
LayoutDeviceIntRect RemoteAccessible::Bounds() const {
return BoundsWithOffset(Nothing());
}
Relation RemoteAccessible::RelationByType(RelationType aType) const {
// We are able to handle some relations completely in the
// parent process, without the help of the cache. Those
// relations are enumerated here. Other relations, whose
// types are stored in kRelationTypeAtoms, are processed
// below using the cache.
if (aType == RelationType::CONTAINING_TAB_PANE) {
if (dom::CanonicalBrowsingContext* cbc = mDoc->GetBrowsingContext()) {
if (dom::CanonicalBrowsingContext* topCbc = cbc->Top()) {
if (dom::BrowserParent* bp = topCbc->GetBrowserParent()) {
return Relation(bp->GetTopLevelDocAccessible());
}
}
}
return Relation();
}
if (aType == RelationType::LINKS_TO && Role() == roles::LINK) {
Pivot p = Pivot(mDoc);
nsString href;
Value(href);
int32_t i = href.FindChar('#');
int32_t len = static_cast<int32_t>(href.Length());
if (i != -1 && i < (len - 1)) {
nsDependentSubstring anchorName = Substring(href, i + 1, len);
MustPruneSameDocRule rule;
Accessible* nameMatch = nullptr;
for (Accessible* match = p.Next(mDoc, rule); match;
match = p.Next(match, rule)) {
nsString currID;
match->DOMNodeID(currID);
MOZ_ASSERT(match->IsRemote());
if (anchorName.Equals(currID)) {
return Relation(match->AsRemote());
}
if (!nameMatch) {
nsString currName = match->AsRemote()->GetCachedHTMLNameAttribute();
if (match->TagName() == nsGkAtoms::a && anchorName.Equals(currName)) {
// If we find an element with a matching ID, we should return
// that, but if we don't we should return the first anchor with
// a matching name. To avoid doing two traversals, store the first
// name match here.
nameMatch = match;
}
}
}
return nameMatch ? Relation(nameMatch->AsRemote()) : Relation();
}
return Relation();
}
// Handle ARIA tree, treegrid parent/child relations. Each of these cases
// relies on cached group info. To find the parent of an accessible, use the
// unified conceptual parent.
if (aType == RelationType::NODE_CHILD_OF) {
const nsRoleMapEntry* roleMapEntry = ARIARoleMap();
if (roleMapEntry && (roleMapEntry->role == roles::OUTLINEITEM ||
roleMapEntry->role == roles::LISTITEM ||
roleMapEntry->role == roles::ROW)) {
if (const AccGroupInfo* groupInfo =
const_cast<RemoteAccessible*>(this)->GetOrCreateGroupInfo()) {
return Relation(groupInfo->ConceptualParent());
}
}
return Relation();
}
// To find the children of a parent, provide an iterator through its items.
if (aType == RelationType::NODE_PARENT_OF) {
const nsRoleMapEntry* roleMapEntry = ARIARoleMap();
if (roleMapEntry && (roleMapEntry->role == roles::OUTLINEITEM ||
roleMapEntry->role == roles::LISTITEM ||
roleMapEntry->role == roles::ROW ||
roleMapEntry->role == roles::OUTLINE ||
roleMapEntry->role == roles::LIST ||
roleMapEntry->role == roles::TREE_TABLE)) {
return Relation(new ItemIterator(this));
}
return Relation();
}
if (aType == RelationType::MEMBER_OF) {
Relation rel = Relation();
// HTML radio buttons with cached names should be grouped.
if (IsHTMLRadioButton()) {
nsString name = GetCachedHTMLNameAttribute();
if (name.IsEmpty()) {
return rel;
}
RemoteAccessible* ancestor = RemoteParent();
while (ancestor && ancestor->Role() != roles::FORM && ancestor != mDoc) {
ancestor = ancestor->RemoteParent();
}
if (ancestor) {
// Sometimes we end up with an unparented acc here, potentially
// because the acc is being moved. See bug 1807639.
// Pivot expects to be created with a non-null mRoot.
Pivot p = Pivot(ancestor);
PivotRadioNameRule rule(name);
Accessible* match = p.Next(ancestor, rule);
while (match) {
rel.AppendTarget(match->AsRemote());
match = p.Next(match, rule);
}
}
return rel;
}
if (IsARIARole(nsGkAtoms::radio)) {
// ARIA radio buttons should be grouped by their radio group
// parent, if one exists.
RemoteAccessible* currParent = RemoteParent();
while (currParent && currParent->Role() != roles::RADIO_GROUP) {
currParent = currParent->RemoteParent();
}
if (currParent && currParent->Role() == roles::RADIO_GROUP) {
// If we found a radiogroup parent, search for all
// roles::RADIOBUTTON children and add them to our relation.
// This search will include the radio button this method
// was called from, which is expected.
Pivot p = Pivot(currParent);
PivotRoleRule rule(roles::RADIOBUTTON);
Accessible* match = p.Next(currParent, rule);
while (match) {
MOZ_ASSERT(match->IsRemote(),
"We should only be traversing the remote tree.");
rel.AppendTarget(match->AsRemote());
match = p.Next(match, rule);
}
}
}
// By webkit's standard, aria radio buttons do not get grouped
// if they lack a group parent, so we return an empty
// relation here if the above check fails.
return rel;
}
Relation rel;
if (!mCachedFields) {
return rel;
}
for (const auto& data : kRelationTypeAtoms) {
if (data.mType != aType ||
(data.mValidTag && TagName() != data.mValidTag)) {
continue;
}
if (auto maybeIds =
mCachedFields->GetAttribute<nsTArray<uint64_t>>(data.mAtom)) {
rel.AppendIter(new RemoteAccIterator(*maybeIds, Document()));
}
// Each relation type has only one relevant cached attribute,
// so break after we've handled the attr for this type,
// even if we didn't find any targets.
break;
}
if (auto accRelMapEntry = mDoc->mReverseRelations.Lookup(ID())) {
if (auto reverseIdsEntry = accRelMapEntry.Data().Lookup(aType)) {
rel.AppendIter(new RemoteAccIterator(reverseIdsEntry.Data(), Document()));
}
}
// We handle these relations here rather than before cached relations because
// the cached relations need to take precedence. For example, a <figure> with
// both aria-labelledby and a <figcaption> must return two LABELLED_BY
// targets: the aria-labelledby and then the <figcaption>.
if (aType == RelationType::LABELLED_BY && TagName() == nsGkAtoms::figure) {
uint32_t count = ChildCount();
for (uint32_t c = 0; c < count; ++c) {
RemoteAccessible* child = RemoteChildAt(c);
MOZ_ASSERT(child);
if (child->TagName() == nsGkAtoms::figcaption) {
rel.AppendTarget(child);
}
}
} else if (aType == RelationType::LABEL_FOR &&
TagName() == nsGkAtoms::figcaption) {
if (RemoteAccessible* parent = RemoteParent()) {
if (parent->TagName() == nsGkAtoms::figure) {
rel.AppendTarget(parent);
}
}
}
return rel;
}
void RemoteAccessible::AppendTextTo(nsAString& aText, uint32_t aStartOffset,
uint32_t aLength) {
if (IsText()) {
if (mCachedFields) {
if (auto text = mCachedFields->GetAttribute<nsString>(CacheKey::Text)) {
aText.Append(Substring(*text, aStartOffset, aLength));
}
VERIFY_CACHE(CacheDomain::Text);
}
return;
}
if (aStartOffset != 0 || aLength == 0) {
return;
}
if (IsHTMLBr()) {
aText += kForcedNewLineChar;
} else if (RemoteParent() && nsAccUtils::MustPrune(RemoteParent())) {
// Expose the embedded object accessible as imaginary embedded object
// character if its parent hypertext accessible doesn't expose children to
// AT.
aText += kImaginaryEmbeddedObjectChar;
} else {
aText += kEmbeddedObjectChar;
}
}
nsTArray<bool> RemoteAccessible::PreProcessRelations(AccAttributes* aFields) {
nsTArray<bool> updateTracker(ArrayLength(kRelationTypeAtoms));
for (auto const& data : kRelationTypeAtoms) {
if (data.mValidTag) {
// The relation we're currently processing only applies to particular
// elements. Check to see if we're one of them.
nsAtom* tag = TagName();
if (!tag) {
// TagName() returns null on an initial cache push -- check aFields
// for a tag name instead.
if (auto maybeTag =
aFields->GetAttribute<RefPtr<nsAtom>>(CacheKey::TagName)) {
tag = *maybeTag;
}
}
MOZ_ASSERT(
tag || IsTextLeaf() || IsDoc(),
"Could not fetch tag via TagName() or from initial cache push!");
if (tag != data.mValidTag) {
// If this rel doesn't apply to us, do no pre-processing. Also,
// note in our updateTracker that we should do no post-processing.
updateTracker.AppendElement(false);
continue;
}
}
nsStaticAtom* const relAtom = data.mAtom;
auto newRelationTargets =
aFields->GetAttribute<nsTArray<uint64_t>>(relAtom);
bool shouldAddNewImplicitRels =
newRelationTargets && newRelationTargets->Length();
// Remove existing implicit relations if we need to perform an update, or
// if we've received a DeleteEntry(). Only do this if mCachedFields is
// initialized. If mCachedFields is not initialized, we still need to
// construct the update array so we correctly handle reverse rels in
// PostProcessRelations.
if ((shouldAddNewImplicitRels ||
aFields->GetAttribute<DeleteEntry>(relAtom)) &&
mCachedFields) {
if (auto maybeOldIDs =
mCachedFields->GetAttribute<nsTArray<uint64_t>>(relAtom)) {
for (uint64_t id : *maybeOldIDs) {
// For each target, fetch its reverse relation map
// We need to call `Lookup` here instead of `LookupOrInsert` because
// it's possible the ID we're querying is from an acc that has since
// been Shutdown(), and so has intentionally removed its reverse rels
// from the doc's reverse rel cache.
if (auto reverseRels = Document()->mReverseRelations.Lookup(id)) {
// Then fetch its reverse relation's ID list. This should be safe
// to do via LookupOrInsert because by the time we've gotten here,
// we know the acc and `this` are still alive in the doc. If we hit
// the following assert, we don't have parity on implicit/explicit
// rels and something is wrong.
nsTArray<uint64_t>& reverseRelIDs =
reverseRels->LookupOrInsert(data.mReverseType);
// There might be other reverse relations stored for this acc, so
// remove our ID instead of deleting the array entirely.
DebugOnly<bool> removed = reverseRelIDs.RemoveElement(ID());
MOZ_ASSERT(removed, "Can't find old reverse relation");
}
}
}
}
updateTracker.AppendElement(shouldAddNewImplicitRels);
}
return updateTracker;
}
void RemoteAccessible::PostProcessRelations(const nsTArray<bool>& aToUpdate) {
size_t updateCount = aToUpdate.Length();
MOZ_ASSERT(updateCount == ArrayLength(kRelationTypeAtoms),
"Did not note update status for every relation type!");
for (size_t i = 0; i < updateCount; i++) {
if (aToUpdate.ElementAt(i)) {
// Since kRelationTypeAtoms was used to generate aToUpdate, we
// know the ith entry of aToUpdate corresponds to the relation type in
// the ith entry of kRelationTypeAtoms. Fetch the related data here.
auto const& data = kRelationTypeAtoms[i];
const nsTArray<uint64_t>& newIDs =
*mCachedFields->GetAttribute<nsTArray<uint64_t>>(data.mAtom);
for (uint64_t id : newIDs) {
nsTHashMap<RelationType, nsTArray<uint64_t>>& relations =
Document()->mReverseRelations.LookupOrInsert(id);
nsTArray<uint64_t>& ids = relations.LookupOrInsert(data.mReverseType);
ids.AppendElement(ID());
}
}
}
}
void RemoteAccessible::PruneRelationsOnShutdown() {
auto reverseRels = mDoc->mReverseRelations.Lookup(ID());
if (!reverseRels) {
return;
}
for (auto const& data : kRelationTypeAtoms) {
// Fetch the list of targets for this reverse relation
auto reverseTargetList = reverseRels->Lookup(data.mReverseType);
if (!reverseTargetList) {
continue;
}
for (uint64_t id : *reverseTargetList) {
// For each target, retrieve its corresponding forward relation target
// list
RemoteAccessible* affectedAcc = mDoc->GetAccessible(id);
if (!affectedAcc) {
// It's possible the affect acc also shut down, in which case
// we don't have anything to update.
continue;
}
if (auto forwardTargetList =
affectedAcc->mCachedFields
->GetMutableAttribute<nsTArray<uint64_t>>(data.mAtom)) {
forwardTargetList->RemoveElement(ID());
if (!forwardTargetList->Length()) {
// The ID we removed was the only thing in the list, so remove the
// entry from the cache entirely -- don't leave an empty array.
affectedAcc->mCachedFields->Remove(data.mAtom);
}
}
}
}
// Remove this ID from the document's map of reverse relations.
reverseRels.Remove();
}
uint32_t RemoteAccessible::GetCachedTextLength() {
MOZ_ASSERT(!HasChildren());
if (!mCachedFields) {
return 0;
}
VERIFY_CACHE(CacheDomain::Text);
auto text = mCachedFields->GetAttribute<nsString>(CacheKey::Text);
if (!text) {
return 0;
}
return text->Length();
}
Maybe<const nsTArray<int32_t>&> RemoteAccessible::GetCachedTextLines() {
MOZ_ASSERT(!HasChildren());
if (!mCachedFields) {
return Nothing();
}
VERIFY_CACHE(CacheDomain::Text);
return mCachedFields->GetAttribute<nsTArray<int32_t>>(
CacheKey::TextLineStarts);
}
nsRect RemoteAccessible::GetCachedCharRect(int32_t aOffset) {
MOZ_ASSERT(IsText());
if (!mCachedFields) {
return nsRect();
}
if (Maybe<const nsTArray<int32_t>&> maybeCharData =
mCachedFields->GetAttribute<nsTArray<int32_t>>(
CacheKey::TextBounds)) {
const nsTArray<int32_t>& charData = *maybeCharData;
const int32_t index = aOffset * kNumbersInRect;
if (index < static_cast<int32_t>(charData.Length())) {
return nsRect(charData[index], charData[index + 1], charData[index + 2],
charData[index + 3]);
}
// It is valid for a client to call this with an offset 1 after the last
// character because of the insertion point at the end of text boxes.
MOZ_ASSERT(index == static_cast<int32_t>(charData.Length()));
}
return nsRect();
}
void RemoteAccessible::DOMNodeID(nsString& aID) const {
if (mCachedFields) {
mCachedFields->GetAttribute(CacheKey::DOMNodeID, aID);
VERIFY_CACHE(CacheDomain::DOMNodeIDAndClass);
}
}
void RemoteAccessible::DOMNodeClass(nsString& aClass) const {
if (mCachedFields) {
mCachedFields->GetAttribute(CacheKey::DOMNodeClass, aClass);
VERIFY_CACHE(CacheDomain::DOMNodeIDAndClass);
}
}
void RemoteAccessible::ScrollToPoint(uint32_t aScrollType, int32_t aX,
int32_t aY) {
Unused << mDoc->SendScrollToPoint(mID, aScrollType, aX, aY);
}
#if !defined(XP_WIN)
void RemoteAccessible::Announce(const nsString& aAnnouncement,
uint16_t aPriority) {
Unused << mDoc->SendAnnounce(mID, aAnnouncement, aPriority);
}
#endif // !defined(XP_WIN)
void RemoteAccessible::ScrollSubstringToPoint(int32_t aStartOffset,
int32_t aEndOffset,
uint32_t aCoordinateType,
int32_t aX, int32_t aY) {
Unused << mDoc->SendScrollSubstringToPoint(mID, aStartOffset, aEndOffset,
aCoordinateType, aX, aY);
}
RefPtr<const AccAttributes> RemoteAccessible::GetCachedTextAttributes() {
MOZ_ASSERT(IsText() || IsHyperText());
if (mCachedFields) {
auto attrs = mCachedFields->GetAttributeRefPtr<AccAttributes>(
CacheKey::TextAttributes);
VERIFY_CACHE(CacheDomain::Text);
return attrs;
}
return nullptr;
}
already_AddRefed<AccAttributes> RemoteAccessible::DefaultTextAttributes() {
RefPtr<const AccAttributes> attrs = GetCachedTextAttributes();
RefPtr<AccAttributes> result = new AccAttributes();
if (attrs) {
attrs->CopyTo(result);
}
return result.forget();
}
RefPtr<const AccAttributes> RemoteAccessible::GetCachedARIAAttributes() const {
if (mCachedFields) {
auto attrs = mCachedFields->GetAttributeRefPtr<AccAttributes>(
CacheKey::ARIAAttributes);
VERIFY_CACHE(CacheDomain::ARIA);
return attrs;
}
return nullptr;
}
nsString RemoteAccessible::GetCachedHTMLNameAttribute() const {
if (mCachedFields) {
if (auto maybeName =
mCachedFields->GetAttribute<nsString>(CacheKey::DOMName)) {
return *maybeName;
}
}
return nsString();
}
uint64_t RemoteAccessible::State() {
uint64_t state = 0;
if (mCachedFields) {
if (auto rawState =
mCachedFields->GetAttribute<uint64_t>(CacheKey::State)) {
VERIFY_CACHE(CacheDomain::State);
state = *rawState;
// Handle states that are derived from other states.
if (!(state & states::UNAVAILABLE)) {
state |= states::ENABLED | states::SENSITIVE;
}
if (state & states::EXPANDABLE && !(state & states::EXPANDED)) {
state |= states::COLLAPSED;
}
}
ApplyImplicitState(state);
auto* cbc = mDoc->GetBrowsingContext();
if (cbc && !cbc->IsActive()) {
// If our browsing context is _not_ active, we're in a background tab
// and inherently offscreen.
state |= states::OFFSCREEN;
} else {
// If we're in an active browsing context, there are a few scenarios we
// need to address:
// - We are an iframe document in the visual viewport
// - We are an iframe document out of the visual viewport
// - We are non-iframe content in the visual viewport
// - We are non-iframe content out of the visual viewport
// We assume top level tab docs are on screen if their BC is active, so
// we don't need additional handling for them here.
if (!mDoc->IsTopLevel()) {
// Here we handle iframes and iframe content.
// We use an iframe's outer doc's position in the embedding document's
// viewport to determine if the iframe has been scrolled offscreen.
Accessible* docParent = mDoc->Parent();
// In rare cases, we might not have an outer doc yet. Return if that's
// the case.
if (NS_WARN_IF(!docParent || !docParent->IsRemote())) {
return state;
}
RemoteAccessible* outerDoc = docParent->AsRemote();
DocAccessibleParent* embeddingDocument = outerDoc->Document();
if (embeddingDocument &&
!embeddingDocument->mOnScreenAccessibles.Contains(outerDoc->ID())) {
// Our embedding document's viewport cache doesn't contain the ID of
// our outer doc, so this iframe (and any of its content) is
// offscreen.
state |= states::OFFSCREEN;
} else if (this != mDoc && !mDoc->mOnScreenAccessibles.Contains(ID())) {
// Our embedding document's viewport cache contains the ID of our
// outer doc, but the iframe's viewport cache doesn't contain our ID.
// We are offscreen.
state |= states::OFFSCREEN;
}
} else if (this != mDoc && !mDoc->mOnScreenAccessibles.Contains(ID())) {
// We are top level tab content (but not a top level tab doc).
// If our tab doc's viewport cache doesn't contain our ID, we're
// offscreen.
state |= states::OFFSCREEN;
}
}
}
return state;
}
already_AddRefed<AccAttributes> RemoteAccessible::Attributes() {
RefPtr<AccAttributes> attributes = new AccAttributes();
nsAccessibilityService* accService = GetAccService();
if (!accService) {
// The service can be shut down before RemoteAccessibles. If it is shut
// down, we can't calculate some attributes. We're about to die anyway.
return attributes.forget();
}
if (mCachedFields) {
// We use GetAttribute instead of GetAttributeRefPtr because we need
// nsAtom, not const nsAtom.
if (auto tag =
mCachedFields->GetAttribute<RefPtr<nsAtom>>(CacheKey::TagName)) {
attributes->SetAttribute(nsGkAtoms::tag, *tag);
}
GroupPos groupPos = GroupPosition();
nsAccUtils::SetAccGroupAttrs(attributes, groupPos.level, groupPos.setSize,
groupPos.posInSet);
bool hierarchical = false;
uint32_t itemCount = AccGroupInfo::TotalItemCount(this, &hierarchical);
if (itemCount) {
attributes->SetAttribute(nsGkAtoms::child_item_count,
static_cast<int32_t>(itemCount));
}
if (hierarchical) {
attributes->SetAttribute(nsGkAtoms::tree, true);
}
if (auto inputType =
mCachedFields->GetAttribute<RefPtr<nsAtom>>(CacheKey::InputType)) {
attributes->SetAttribute(nsGkAtoms::textInputType, *inputType);
}
if (RefPtr<nsAtom> display = DisplayStyle()) {
attributes->SetAttribute(nsGkAtoms::display, display);
}
if (TableCellAccessible* cell = AsTableCell()) {
TableAccessible* table = cell->Table();
uint32_t row = cell->RowIdx();
uint32_t col = cell->ColIdx();
int32_t cellIdx = table->CellIndexAt(row, col);
if (cellIdx != -1) {
attributes->SetAttribute(nsGkAtoms::tableCellIndex, cellIdx);
}
}
if (bool layoutGuess = TableIsProbablyForLayout()) {
attributes->SetAttribute(nsGkAtoms::layout_guess, layoutGuess);
}
accService->MarkupAttributes(this, attributes);
const nsRoleMapEntry* roleMap = ARIARoleMap();
nsAutoString role;
mCachedFields->GetAttribute(CacheKey::ARIARole, role);
if (role.IsEmpty()) {
if (roleMap && roleMap->roleAtom != nsGkAtoms::_empty) {
// Single, known role.
attributes->SetAttribute(nsGkAtoms::xmlroles, roleMap->roleAtom);
} else if (nsAtom* landmark = LandmarkRole()) {
// Landmark role from markup; e.g. HTML <main>.
attributes->SetAttribute(nsGkAtoms::xmlroles, landmark);
}
} else {
// Unknown role or multiple roles.
attributes->SetAttribute(nsGkAtoms::xmlroles, std::move(role));
}
if (roleMap) {
nsAutoString live;
if (nsAccUtils::GetLiveAttrValue(roleMap->liveAttRule, live)) {
attributes->SetAttribute(nsGkAtoms::aria_live, std::move(live));
}
}
if (auto ariaAttrs = GetCachedARIAAttributes()) {
ariaAttrs->CopyTo(attributes);
}
nsAccUtils::SetLiveContainerAttributes(attributes, this);
nsString id;
DOMNodeID(id);
if (!id.IsEmpty()) {
attributes->SetAttribute(nsGkAtoms::id, std::move(id));
}
nsString className;
DOMNodeClass(className);
if (!className.IsEmpty()) {
attributes->SetAttribute(nsGkAtoms::_class, std::move(className));
}
if (IsImage()) {
nsString src;
mCachedFields->GetAttribute(CacheKey::SrcURL, src);
if (!src.IsEmpty()) {
attributes->SetAttribute(nsGkAtoms::src, std::move(src));
}
}
if (IsTextField()) {
nsString placeholder;
mCachedFields->GetAttribute(CacheKey::HTMLPlaceholder, placeholder);
if (!placeholder.IsEmpty()) {
attributes->SetAttribute(nsGkAtoms::placeholder,
std::move(placeholder));
attributes->Remove(nsGkAtoms::aria_placeholder);
}
}
nsString popupType;
mCachedFields->GetAttribute(CacheKey::PopupType, popupType);
if (!popupType.IsEmpty()) {
attributes->SetAttribute(nsGkAtoms::ispopup, std::move(popupType));
}
}
nsAutoString name;
if (Name(name) != eNameFromSubtree && !name.IsVoid()) {
attributes->SetAttribute(nsGkAtoms::explicit_name, true);
}
// Expose the string value via the valuetext attribute. We test for the value
// interface because we don't want to expose traditional Value() information
// such as URLs on links and documents, or text in an input.
// XXX This is only needed for ATK, since other APIs have native ways to
// retrieve value text. We should probably move this into ATK specific code.
// For now, we do this because LocalAccessible does it.
if (HasNumericValue()) {
nsString valuetext;
Value(valuetext);
attributes->SetAttribute(nsGkAtoms::aria_valuetext, std::move(valuetext));
}
return attributes.forget();
}
nsAtom* RemoteAccessible::TagName() const {
if (mCachedFields) {
if (auto tag =
mCachedFields->GetAttribute<RefPtr<nsAtom>>(CacheKey::TagName)) {
return *tag;
}
}
return nullptr;
}
already_AddRefed<nsAtom> RemoteAccessible::InputType() const {
if (mCachedFields) {
if (auto inputType =
mCachedFields->GetAttribute<RefPtr<nsAtom>>(CacheKey::InputType)) {
RefPtr<nsAtom> result = *inputType;
return result.forget();
}
}
return nullptr;
}
already_AddRefed<nsAtom> RemoteAccessible::DisplayStyle() const {
if (mCachedFields) {
if (auto display =
mCachedFields->GetAttribute<RefPtr<nsAtom>>(CacheKey::CSSDisplay)) {
RefPtr<nsAtom> result = *display;
return result.forget();
}
}
return nullptr;
}
float RemoteAccessible::Opacity() const {
if (mCachedFields) {
if (auto opacity = mCachedFields->GetAttribute<float>(CacheKey::Opacity)) {
return *opacity;
}
}
return 1.0f;
}
void RemoteAccessible::LiveRegionAttributes(nsAString* aLive,
nsAString* aRelevant,
Maybe<bool>* aAtomic,
nsAString* aBusy) const {
if (!mCachedFields) {
return;
}
RefPtr<const AccAttributes> attrs = GetCachedARIAAttributes();
if (!attrs) {
return;
}
if (aLive) {
attrs->GetAttribute(nsGkAtoms::aria_live, *aLive);
}
if (aRelevant) {
attrs->GetAttribute(nsGkAtoms::aria_relevant, *aRelevant);
}
if (aAtomic) {
if (auto value =
attrs->GetAttribute<RefPtr<nsAtom>>(nsGkAtoms::aria_atomic)) {
*aAtomic = Some(*value == nsGkAtoms::_true);
}
}
if (aBusy) {
attrs->GetAttribute(nsGkAtoms::aria_busy, *aBusy);
}
}
Maybe<bool> RemoteAccessible::ARIASelected() const {
if (mCachedFields) {
return mCachedFields->GetAttribute<bool>(CacheKey::ARIASelected);
}
return Nothing();
}
nsAtom* RemoteAccessible::GetPrimaryAction() const {
if (mCachedFields) {
if (auto action = mCachedFields->GetAttribute<RefPtr<nsAtom>>(
CacheKey::PrimaryAction)) {
return *action;
}
}
return nullptr;
}
uint8_t RemoteAccessible::ActionCount() const {
uint8_t actionCount = 0;
if (mCachedFields) {
if (HasPrimaryAction() || ActionAncestor()) {
actionCount++;
}
if (mCachedFields->HasAttribute(CacheKey::HasLongdesc)) {
actionCount++;
}
VERIFY_CACHE(CacheDomain::Actions);
}
return actionCount;
}
void RemoteAccessible::ActionNameAt(uint8_t aIndex, nsAString& aName) {
if (mCachedFields) {
aName.Truncate();
nsAtom* action = GetPrimaryAction();
bool hasActionAncestor = !action && ActionAncestor();
switch (aIndex) {
case 0:
if (action) {
action->ToString(aName);
} else if (hasActionAncestor) {
aName.AssignLiteral("click ancestor");
} else if (mCachedFields->HasAttribute(CacheKey::HasLongdesc)) {
aName.AssignLiteral("showlongdesc");
}
break;
case 1:
if ((action || hasActionAncestor) &&
mCachedFields->HasAttribute(CacheKey::HasLongdesc)) {
aName.AssignLiteral("showlongdesc");
}
break;
default:
break;
}
}
VERIFY_CACHE(CacheDomain::Actions);
}
bool RemoteAccessible::DoAction(uint8_t aIndex) const {
if (ActionCount() < aIndex + 1) {
return false;
}
Unused << mDoc->SendDoActionAsync(mID, aIndex);
return true;
}
KeyBinding RemoteAccessible::AccessKey() const {
if (mCachedFields) {
if (auto value =
mCachedFields->GetAttribute<uint64_t>(CacheKey::AccessKey)) {
return KeyBinding(*value);
}
}
return KeyBinding();
}
void RemoteAccessible::SelectionRanges(nsTArray<TextRange>* aRanges) const {
Document()->SelectionRanges(aRanges);
}
bool RemoteAccessible::RemoveFromSelection(int32_t aSelectionNum) {
MOZ_ASSERT(IsHyperText());
if (SelectionCount() <= aSelectionNum) {
return false;
}
Unused << mDoc->SendRemoveTextSelection(mID, aSelectionNum);
return true;
}
void RemoteAccessible::ARIAGroupPosition(int32_t* aLevel, int32_t* aSetSize,
int32_t* aPosInSet) const {
if (!mCachedFields) {
return;
}
if (aLevel) {
if (auto level =
mCachedFields->GetAttribute<int32_t>(nsGkAtoms::aria_level)) {
*aLevel = *level;
}
}
if (aSetSize) {
if (auto setsize =
mCachedFields->GetAttribute<int32_t>(nsGkAtoms::aria_setsize)) {
*aSetSize = *setsize;
}
}
if (aPosInSet) {
if (auto posinset =
mCachedFields->GetAttribute<int32_t>(nsGkAtoms::aria_posinset)) {
*aPosInSet = *posinset;
}
}
}
AccGroupInfo* RemoteAccessible::GetGroupInfo() const {
if (!mCachedFields) {
return nullptr;
}
if (auto groupInfo = mCachedFields->GetAttribute<UniquePtr<AccGroupInfo>>(
CacheKey::GroupInfo)) {
return groupInfo->get();
}
return nullptr;
}
AccGroupInfo* RemoteAccessible::GetOrCreateGroupInfo() {
AccGroupInfo* groupInfo = GetGroupInfo();
if (groupInfo) {
return groupInfo;
}
groupInfo = AccGroupInfo::CreateGroupInfo(this);
if (groupInfo) {
if (!mCachedFields) {
mCachedFields = new AccAttributes();
}
mCachedFields->SetAttribute(CacheKey::GroupInfo, groupInfo);
}
return groupInfo;
}
void RemoteAccessible::InvalidateGroupInfo() {
if (mCachedFields) {
mCachedFields->Remove(CacheKey::GroupInfo);
}
}
void RemoteAccessible::GetPositionAndSetSize(int32_t* aPosInSet,
int32_t* aSetSize) {
if (IsHTMLRadioButton()) {
*aSetSize = 0;
Relation rel = RelationByType(RelationType::MEMBER_OF);
while (Accessible* radio = rel.Next()) {
++*aSetSize;
if (radio == this) {
*aPosInSet = *aSetSize;
}
}
return;
}
Accessible::GetPositionAndSetSize(aPosInSet, aSetSize);
}
bool RemoteAccessible::HasPrimaryAction() const {
return mCachedFields && mCachedFields->HasAttribute(CacheKey::PrimaryAction);
}
void RemoteAccessible::TakeFocus() const { Unused << mDoc->SendTakeFocus(mID); }
void RemoteAccessible::ScrollTo(uint32_t aHow) const {
Unused << mDoc->SendScrollTo(mID, aHow);
}
////////////////////////////////////////////////////////////////////////////////
// SelectAccessible
void RemoteAccessible::SelectedItems(nsTArray<Accessible*>* aItems) {
Pivot p = Pivot(this);
PivotStateRule rule(states::SELECTED);
for (Accessible* selected = p.First(rule); selected;
selected = p.Next(selected, rule)) {
aItems->AppendElement(selected);
}
}
uint32_t RemoteAccessible::SelectedItemCount() {
uint32_t count = 0;
Pivot p = Pivot(this);
PivotStateRule rule(states::SELECTED);
for (Accessible* selected = p.First(rule); selected;
selected = p.Next(selected, rule)) {
count++;
}
return count;
}
Accessible* RemoteAccessible::GetSelectedItem(uint32_t aIndex) {
uint32_t index = 0;
Accessible* selected = nullptr;
Pivot p = Pivot(this);
PivotStateRule rule(states::SELECTED);
for (selected = p.First(rule); selected && index < aIndex;
selected = p.Next(selected, rule)) {
index++;
}
return selected;
}
bool RemoteAccessible::IsItemSelected(uint32_t aIndex) {
uint32_t index = 0;
Accessible* selectable = nullptr;
Pivot p = Pivot(this);
PivotStateRule rule(states::SELECTABLE);
for (selectable = p.First(rule); selectable && index < aIndex;
selectable = p.Next(selectable, rule)) {
index++;
}
return selectable && selectable->State() & states::SELECTED;
}
bool RemoteAccessible::AddItemToSelection(uint32_t aIndex) {
uint32_t index = 0;
Accessible* selectable = nullptr;
Pivot p = Pivot(this);
PivotStateRule rule(states::SELECTABLE);
for (selectable = p.First(rule); selectable && index < aIndex;
selectable = p.Next(selectable, rule)) {
index++;
}
if (selectable) selectable->SetSelected(true);
return static_cast<bool>(selectable);
}
bool RemoteAccessible::RemoveItemFromSelection(uint32_t aIndex) {
uint32_t index = 0;
Accessible* selectable = nullptr;
Pivot p = Pivot(this);
PivotStateRule rule(states::SELECTABLE);
for (selectable = p.First(rule); selectable && index < aIndex;
selectable = p.Next(selectable, rule)) {
index++;
}
if (selectable) selectable->SetSelected(false);
return static_cast<bool>(selectable);
}
bool RemoteAccessible::SelectAll() {
if ((State() & states::MULTISELECTABLE) == 0) {
return false;
}
bool success = false;
Accessible* selectable = nullptr;
Pivot p = Pivot(this);
PivotStateRule rule(states::SELECTABLE);
for (selectable = p.First(rule); selectable;
selectable = p.Next(selectable, rule)) {
success = true;
selectable->SetSelected(true);
}
return success;
}
bool RemoteAccessible::UnselectAll() {
if ((State() & states::MULTISELECTABLE) == 0) {
return false;
}
bool success = false;
Accessible* selectable = nullptr;
Pivot p = Pivot(this);
PivotStateRule rule(states::SELECTABLE);
for (selectable = p.First(rule); selectable;
selectable = p.Next(selectable, rule)) {
success = true;
selectable->SetSelected(false);
}
return success;
}
void RemoteAccessible::TakeSelection() {
Unused << mDoc->SendTakeSelection(mID);
}
void RemoteAccessible::SetSelected(bool aSelect) {
Unused << mDoc->SendSetSelected(mID, aSelect);
}
TableAccessible* RemoteAccessible::AsTable() {
if (IsTable()) {
return CachedTableAccessible::GetFrom(this);
}
return nullptr;
}
TableCellAccessible* RemoteAccessible::AsTableCell() {
if (IsTableCell()) {
return CachedTableCellAccessible::GetFrom(this);
}
return nullptr;
}
bool RemoteAccessible::TableIsProbablyForLayout() {
if (mCachedFields) {
if (auto layoutGuess =
mCachedFields->GetAttribute<bool>(CacheKey::TableLayoutGuess)) {
return *layoutGuess;
}
}
return false;
}
nsTArray<int32_t>& RemoteAccessible::GetCachedHyperTextOffsets() {
if (mCachedFields) {
if (auto offsets = mCachedFields->GetMutableAttribute<nsTArray<int32_t>>(
CacheKey::HyperTextOffsets)) {
return *offsets;
}
}
nsTArray<int32_t> newOffsets;
if (!mCachedFields) {
mCachedFields = new AccAttributes();
}
mCachedFields->SetAttribute(CacheKey::HyperTextOffsets,
std::move(newOffsets));
return *mCachedFields->GetMutableAttribute<nsTArray<int32_t>>(
CacheKey::HyperTextOffsets);
}
void RemoteAccessible::SetCaretOffset(int32_t aOffset) {
Unused << mDoc->SendSetCaretOffset(mID, aOffset);
}
Maybe<int32_t> RemoteAccessible::GetIntARIAAttr(nsAtom* aAttrName) const {
if (RefPtr<const AccAttributes> attrs = GetCachedARIAAttributes()) {
if (auto val = attrs->GetAttribute<int32_t>(aAttrName)) {
return val;
}
}
return Nothing();
}
void RemoteAccessible::Language(nsAString& aLocale) {
if (!IsHyperText()) {
return;
}
if (auto attrs = GetCachedTextAttributes()) {
attrs->GetAttribute(nsGkAtoms::language, aLocale);
}
}
void RemoteAccessible::ReplaceText(const nsAString& aText) {
Unused << mDoc->SendReplaceText(mID, aText);
}
void RemoteAccessible::InsertText(const nsAString& aText, int32_t aPosition) {
Unused << mDoc->SendInsertText(mID, aText, aPosition);
}
void RemoteAccessible::CopyText(int32_t aStartPos, int32_t aEndPos) {
Unused << mDoc->SendCopyText(mID, aStartPos, aEndPos);
}
void RemoteAccessible::CutText(int32_t aStartPos, int32_t aEndPos) {
Unused << mDoc->SendCutText(mID, aStartPos, aEndPos);
}
void RemoteAccessible::DeleteText(int32_t aStartPos, int32_t aEndPos) {
Unused << mDoc->SendDeleteText(mID, aStartPos, aEndPos);
}
void RemoteAccessible::PasteText(int32_t aPosition) {
Unused << mDoc->SendPasteText(mID, aPosition);
}
size_t RemoteAccessible::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
size_t RemoteAccessible::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) {
size_t size = 0;
// Count attributes.
if (mCachedFields) {
size += mCachedFields->SizeOfIncludingThis(aMallocSizeOf);
}
// We don't recurse into mChildren because they're already counted in their
// document's mAccessibles.
size += mChildren.ShallowSizeOfExcludingThis(aMallocSizeOf);
return size;
}
} // namespace a11y
} // namespace mozilla