Revision control

Line Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif

#include "prerror.h"
#include "secerr.h"

#include "prtypes.h"
#include "prinit.h"
#include "blapi.h"
#include "blapii.h"
#include "nssilock.h"
#include "secitem.h"
#include "sha_fast.h"
#include "sha256.h"
#include "secrng.h" /* for RNG_SystemRNG() */
#include "secmpi.h"

/* PRNG_SEEDLEN defined in NIST SP 800-90 section 10.1
 * for SHA-1, SHA-224, and SHA-256 it's 440 bits.
 * for SHA-384 and SHA-512 it's 888 bits */
#define PRNG_SEEDLEN (440 / PR_BITS_PER_BYTE)
#define PRNG_MAX_ADDITIONAL_BYTES PR_INT64(0x100000000)
/* 2^35 bits or 2^32 bytes */
#define PRNG_MAX_REQUEST_SIZE 0x10000             /* 2^19 bits or 2^16 bytes */
#define PRNG_ADDITONAL_DATA_CACHE_SIZE (8 * 1024) /* must be less than          \
                                                   *  PRNG_MAX_ADDITIONAL_BYTES \
                                                   */

/* RESEED_COUNT is how many calls to the prng before we need to reseed
 * under normal NIST rules, you must return an error. In the NSS case, we
 * self-reseed with RNG_SystemRNG(). Count can be a large number. For code
 * simplicity, we specify count with 2 components: RESEED_BYTE (which is
 * the same as LOG256(RESEED_COUNT)) and RESEED_VALUE (which is the same as
 * RESEED_COUNT / (256 ^ RESEED_BYTE)). Another way to look at this is
 * RESEED_COUNT = RESEED_VALUE * (256 ^ RESEED_BYTE). For Hash based DRBG
 * we use the maximum count value, 2^48, or RESEED_BYTE=6 and RESEED_VALUE=1
 */
#define RESEED_BYTE 6
#define RESEED_VALUE 1

#define PRNG_RESET_RESEED_COUNT(rng)                                    \
    PORT_Memset((rng)->reseed_counter, 0, sizeof(rng)->reseed_counter); \
    (rng)->reseed_counter[RESEED_BYTE] = 1;

/*
 * The actual values of this enum are specified in SP 800-90, 10.1.1.*
 * The spec does not name the types, it only uses bare values
 */
typedef enum {
    prngCGenerateType = 0,      /* used when creating a new 'C' */
    prngReseedType = 1,         /* used in reseeding */
    prngAdditionalDataType = 2, /* used in mixing additional data */
    prngGenerateByteType = 3    /* used when mixing internal state while
                 * generating bytes */
} prngVTypes;

/*
 * Global RNG context
 */
struct RNGContextStr {
    PZLock *lock; /* Lock to serialize access to global rng */
    /*
     * NOTE, a number of steps in the drbg algorithm need to hash
     * V_type || V. The code, therefore, depends on the V array following
     * immediately after V_type to avoid extra copies. To accomplish this
     * in a way that compiliers can't perturb, we declare V_type and V
     * as a V_Data array and reference them by macros */
    PRUint8 V_Data[PRNG_SEEDLEN + 1]; /* internal state variables */
#define V_type V_Data[0]
#define V(rng) (((rng)->V_Data) + 1)
#define VSize(rng) ((sizeof(rng)->V_Data) - 1)
    PRUint8 C[PRNG_SEEDLEN];           /* internal state variables */
    PRUint8 lastOutput[SHA256_LENGTH]; /* for continuous rng checking */
    /* If we get calls for the PRNG to return less than the length of our
     * hash, we extend the request for a full hash (since we'll be doing
     * the full hash anyway). Future requests for random numbers are fulfilled
     * from the remainder of the bytes we generated. Requests for bytes longer
     * than the hash size are fulfilled directly from the HashGen function
     * of the random number generator. */
    PRUint8 reseed_counter[RESEED_BYTE + 1]; /* number of requests since the
                                              * last reseed. Need only be
                                              * big enough to hold the whole
                                              * reseed count */
    PRUint8 data[SHA256_LENGTH];             /* when we request less than a block
                                              * save the rest of the rng output for
                                              * another partial block */
    PRUint8 dataAvail;                       /* # bytes of output available in our cache,
                                              * [0...SHA256_LENGTH] */
    /* store additional data that has been shovelled off to us by
     * RNG_RandomUpdate. */
    PRUint8 additionalDataCache[PRNG_ADDITONAL_DATA_CACHE_SIZE];
    PRUint32 additionalAvail;
    PRBool isValid;   /* false if RNG reaches an invalid state */
    PRBool isKatTest; /* true if running NIST PRNG KAT tests */
};

typedef struct RNGContextStr RNGContext;
static RNGContext *globalrng = NULL;
static RNGContext theGlobalRng;

/*
 * The next several functions are derived from the NIST SP 800-90
 * spec. In these functions, an attempt was made to use names consistent
 * with the names in the spec, even if they differ from normal NSS usage.
 */

/*
 * Hash Derive function defined in NISP SP 800-90 Section 10.4.1.
 * This function is used in the Instantiate and Reseed functions.
 *
 * NOTE: requested_bytes cannot overlap with input_string_1 or input_string_2.
 * input_string_1 and input_string_2 are logically concatentated.
 * input_string_1 must be supplied.
 * if input_string_2 is not supplied, NULL should be passed for this parameter.
 */
static SECStatus
prng_Hash_df(PRUint8 *requested_bytes, unsigned int no_of_bytes_to_return,
             const PRUint8 *input_string_1, unsigned int input_string_1_len,
             const PRUint8 *input_string_2, unsigned int input_string_2_len)
{
    SHA256Context ctx;
    PRUint32 tmp;
    PRUint8 counter;

    tmp = SHA_HTONL(no_of_bytes_to_return * 8);

    for (counter = 1; no_of_bytes_to_return > 0; counter++) {
        unsigned int hash_return_len;
        SHA256_Begin(&ctx);
        SHA256_Update(&ctx, &counter, 1);
        SHA256_Update(&ctx, (unsigned char *)&tmp, sizeof tmp);
        SHA256_Update(&ctx, input_string_1, input_string_1_len);
        if (input_string_2) {
            SHA256_Update(&ctx, input_string_2, input_string_2_len);
        }
        SHA256_End(&ctx, requested_bytes, &hash_return_len,
                   no_of_bytes_to_return);
        requested_bytes += hash_return_len;
        no_of_bytes_to_return -= hash_return_len;
    }
    return SECSuccess;
}

/*
 * Hash_DRBG Instantiate NIST SP 800-90 10.1.1.2
 *
 * NOTE: bytes & len are entropy || nonce || personalization_string. In
 * normal operation, NSS calculates them all together in a single call.
 */
static SECStatus
prng_instantiate(RNGContext *rng, const PRUint8 *bytes, unsigned int len)
{
    if (!rng->isKatTest && len < PRNG_SEEDLEN) {
        /* If the seedlen is too small, it's probably because we failed to get
         * enough random data.
         * This is stricter than NIST SP800-90A requires. Don't enforce it for
         * tests. */
        PORT_SetError(SEC_ERROR_NEED_RANDOM);
        return SECFailure;
    }
    prng_Hash_df(V(rng), VSize(rng), bytes, len, NULL, 0);
    rng->V_type = prngCGenerateType;
    prng_Hash_df(rng->C, sizeof rng->C, rng->V_Data, sizeof rng->V_Data, NULL, 0);
    PRNG_RESET_RESEED_COUNT(rng)
    return SECSuccess;
}

/*
 * Update the global random number generator with more seeding
 * material. Use the Hash_DRBG reseed algorithm from NIST SP-800-90
 * section 10.1.1.3
 *
 * If entropy is NULL, it is fetched from the noise generator.
 */
static SECStatus
prng_reseed(RNGContext *rng, const PRUint8 *entropy, unsigned int entropy_len,
            const PRUint8 *additional_input, unsigned int additional_input_len)
{
    PRUint8 noiseData[(sizeof rng->V_Data) + PRNG_SEEDLEN];
    PRUint8 *noise = &noiseData[0];

    /* if entropy wasn't supplied, fetch it. (normal operation case) */
    if (entropy == NULL) {
        entropy_len = (unsigned int)RNG_SystemRNG(
            &noiseData[sizeof rng->V_Data], PRNG_SEEDLEN);
    } else {
        /* NOTE: this code is only available for testing, not to applications */
        /* if entropy was too big for the stack variable, get it from malloc */
        if (entropy_len > PRNG_SEEDLEN) {
            noise = PORT_Alloc(entropy_len + (sizeof rng->V_Data));
            if (noise == NULL) {
                return SECFailure;
            }
        }
        PORT_Memcpy(&noise[sizeof rng->V_Data], entropy, entropy_len);
    }

    if (entropy_len < 256 / PR_BITS_PER_BYTE) {
        /* noise == &noiseData[0] at this point, so nothing to free */
        PORT_SetError(SEC_ERROR_NEED_RANDOM);
        return SECFailure;
    }

    rng->V_type = prngReseedType;
    PORT_Memcpy(noise, rng->V_Data, sizeof rng->V_Data);
    prng_Hash_df(V(rng), VSize(rng), noise, (sizeof rng->V_Data) + entropy_len,
                 additional_input, additional_input_len);
    /* clear potential CSP */
    PORT_Memset(noise, 0, (sizeof rng->V_Data) + entropy_len);
    rng->V_type = prngCGenerateType;
    prng_Hash_df(rng->C, sizeof rng->C, rng->V_Data, sizeof rng->V_Data, NULL, 0);
    PRNG_RESET_RESEED_COUNT(rng)

    if (noise != &noiseData[0]) {
        PORT_Free(noise);
    }
    return SECSuccess;
}

/*
 * SP 800-90 requires we rerun our health tests on reseed
 */
static SECStatus
prng_reseed_test(RNGContext *rng, const PRUint8 *entropy,
                 unsigned int entropy_len, const PRUint8 *additional_input,
                 unsigned int additional_input_len)
{
    SECStatus rv;

    /* do health checks in FIPS mode */
    rv = PRNGTEST_RunHealthTests();
    if (rv != SECSuccess) {
        /* error set by PRNGTEST_RunHealTests() */
        rng->isValid = PR_FALSE;
        return SECFailure;
    }
    return prng_reseed(rng, entropy, entropy_len,
                       additional_input, additional_input_len);
}

/*
 * build some fast inline functions for adding.
 */
#define PRNG_ADD_CARRY_ONLY(dest, start, carry)    \
    {                                              \
        int k1;                                    \
        for (k1 = start; carry && k1 >= 0; k1--) { \
            carry = !(++dest[k1]);                 \
        }                                          \
    }

/*
 * NOTE: dest must be an array for the following to work.
 */
#define PRNG_ADD_BITS(dest, dest_len, add, len, carry)               \
    carry = 0;                                                       \
    PORT_Assert((dest_len) >= (len));                                \
    {                                                                \
        int k1, k2;                                                  \
        for (k1 = dest_len - 1, k2 = len - 1; k2 >= 0; --k1, --k2) { \
            carry += dest[k1] + add[k2];                             \
            dest[k1] = (PRUint8)carry;                               \
            carry >>= 8;                                             \
        }                                                            \
    }

#define PRNG_ADD_BITS_AND_CARRY(dest, dest_len, add, len, carry) \
    PRNG_ADD_BITS(dest, dest_len, add, len, carry)               \
    PRNG_ADD_CARRY_ONLY(dest, dest_len - len - 1, carry)

/*
 * This function expands the internal state of the prng to fulfill any number
 * of bytes we need for this request. We only use this call if we need more
 * than can be supplied by a single call to SHA256_HashBuf.
 *
 * This function is specified in NIST SP 800-90 section 10.1.1.4, Hashgen
 */
static void
prng_Hashgen(RNGContext *rng, PRUint8 *returned_bytes,
             unsigned int no_of_returned_bytes)
{
    PRUint8 data[VSize(rng)];
    PRUint8 thisHash[SHA256_LENGTH];
    PRUint8 *lastHash = rng->lastOutput;

    PORT_Memcpy(data, V(rng), VSize(rng));
    while (no_of_returned_bytes) {
        SHA256Context ctx;
        unsigned int len;
        unsigned int carry;

        SHA256_Begin(&ctx);
        SHA256_Update(&ctx, data, sizeof data);
        SHA256_End(&ctx, thisHash, &len, SHA256_LENGTH);
        if (PORT_Memcmp(lastHash, thisHash, len) == 0) {
            rng->isValid = PR_FALSE;
            break;
        }
        if (no_of_returned_bytes < SHA256_LENGTH) {
            len = no_of_returned_bytes;
        }
        PORT_Memcpy(returned_bytes, thisHash, len);
        lastHash = returned_bytes;
        returned_bytes += len;
        no_of_returned_bytes -= len;
        /* The carry parameter is a bool (increment or not).
     * This increments data if no_of_returned_bytes is not zero */
        carry = no_of_returned_bytes;
        PRNG_ADD_CARRY_ONLY(data, (sizeof data) - 1, carry);
    }
    PORT_Memcpy(rng->lastOutput, thisHash, SHA256_LENGTH);
    PORT_Memset(data, 0, sizeof data);
    PORT_Memset(thisHash, 0, sizeof thisHash);
}

/*
 * Generates new random bytes and advances the internal prng state.
 * additional bytes are only used in algorithm testing.
 *
 * This function is specified in NIST SP 800-90 section 10.1.1.4
 */
static SECStatus
prng_generateNewBytes(RNGContext *rng,
                      PRUint8 *returned_bytes, unsigned int no_of_returned_bytes,
                      const PRUint8 *additional_input,
                      unsigned int additional_input_len)
{
    PRUint8 H[SHA256_LENGTH]; /* both H and w since they
                   * aren't used concurrently */
    unsigned int carry;

    if (!rng->isValid) {
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    /* This code only triggers during tests, normal
     * prng operation does not use additional_input */
    if (additional_input) {
        SHA256Context ctx;
/* NIST SP 800-90 defines two temporaries in their calculations,
     * w and H. These temporaries are the same lengths, and used
     * at different times, so we use the following macro to collapse
     * them to the same variable, but keeping their unique names for
     * easy comparison to the spec */
#define w H
        rng->V_type = prngAdditionalDataType;
        SHA256_Begin(&ctx);
        SHA256_Update(&ctx, rng->V_Data, sizeof rng->V_Data);
        SHA256_Update(&ctx, additional_input, additional_input_len);
        SHA256_End(&ctx, w, NULL, sizeof w);
        PRNG_ADD_BITS_AND_CARRY(V(rng), VSize(rng), w, sizeof w, carry)
        PORT_Memset(w, 0, sizeof w);
#undef w
    }

    if (no_of_returned_bytes == SHA256_LENGTH) {
        /* short_cut to hashbuf and a couple of copies and clears */
        SHA256_HashBuf(returned_bytes, V(rng), VSize(rng));
        /* continuous rng check */
        if (memcmp(rng->lastOutput, returned_bytes, SHA256_LENGTH) == 0) {
            rng->isValid = PR_FALSE;
        }
        PORT_Memcpy(rng->lastOutput, returned_bytes, sizeof rng->lastOutput);
    } else {
        prng_Hashgen(rng, returned_bytes, no_of_returned_bytes);
    }
    /* advance our internal state... */
    rng->V_type = prngGenerateByteType;
    SHA256_HashBuf(H, rng->V_Data, sizeof rng->V_Data);
    PRNG_ADD_BITS_AND_CARRY(V(rng), VSize(rng), H, sizeof H, carry)
    PRNG_ADD_BITS(V(rng), VSize(rng), rng->C, sizeof rng->C, carry);
    PRNG_ADD_BITS_AND_CARRY(V(rng), VSize(rng), rng->reseed_counter,
                            sizeof rng->reseed_counter, carry)
    carry = 1;
    PRNG_ADD_CARRY_ONLY(rng->reseed_counter, (sizeof rng->reseed_counter) - 1, carry);

    /* if the prng failed, don't return any output, signal softoken */
    if (!rng->isValid) {
        PORT_Memset(returned_bytes, 0, no_of_returned_bytes);
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    return SECSuccess;
}

/* Use NSPR to prevent RNG_RNGInit from being called from separate
 * threads, creating a race condition.
 */
static const PRCallOnceType pristineCallOnce;
static PRCallOnceType coRNGInit;
static PRStatus
rng_init(void)
{
    PRUint8 bytes[PRNG_SEEDLEN * 2]; /* entropy + nonce */
    unsigned int numBytes;
    SECStatus rv = SECSuccess;

    if (globalrng == NULL) {
        /* bytes needs to have enough space to hold
     * a SHA256 hash value. Blow up at compile time if this isn't true */
        PR_STATIC_ASSERT(sizeof(bytes) >= SHA256_LENGTH);
        /* create a new global RNG context */
        globalrng = &theGlobalRng;
        PORT_Assert(NULL == globalrng->lock);
        /* create a lock for it */
        globalrng->lock = PZ_NewLock(nssILockOther);
        if (globalrng->lock == NULL) {
            globalrng = NULL;
            PORT_SetError(PR_OUT_OF_MEMORY_ERROR);
            return PR_FAILURE;
        }

        /* Try to get some seed data for the RNG */
        numBytes = (unsigned int)RNG_SystemRNG(bytes, sizeof bytes);
        PORT_Assert(numBytes == 0 || numBytes == sizeof bytes);
        if (numBytes != 0) {
            /* if this is our first call,  instantiate, otherwise reseed
             * prng_instantiate gets a new clean state, we want to mix
             * any previous entropy we may have collected */
            if (V(globalrng)[0] == 0) {
                rv = prng_instantiate(globalrng, bytes, numBytes);
            } else {
                rv = prng_reseed_test(globalrng, bytes, numBytes, NULL, 0);
            }
            memset(bytes, 0, numBytes);
        } else {
            PZ_DestroyLock(globalrng->lock);
            globalrng->lock = NULL;
            globalrng = NULL;
            return PR_FAILURE;
        }
        if (rv != SECSuccess) {
            return PR_FAILURE;
        }

        /* the RNG is in a valid state */
        globalrng->isValid = PR_TRUE;
        globalrng->isKatTest = PR_FALSE;

        /* fetch one random value so that we can populate rng->oldV for our
         * continous random number test. */
        prng_generateNewBytes(globalrng, bytes, SHA256_LENGTH, NULL, 0);

        /* Fetch more entropy into the PRNG */
        RNG_SystemInfoForRNG();
    }
    return PR_SUCCESS;
}

/*
 * Clean up the global RNG context
 */
static void
prng_freeRNGContext(RNGContext *rng)
{
    PRUint8 inputhash[VSize(rng) + (sizeof rng->C)];

    /* destroy context lock */
    SKIP_AFTER_FORK(PZ_DestroyLock(globalrng->lock));

    /* zero global RNG context except for C & V to preserve entropy */
    prng_Hash_df(inputhash, sizeof rng->C, rng->C, sizeof rng->C, NULL, 0);
    prng_Hash_df(&inputhash[sizeof rng->C], VSize(rng), V(rng), VSize(rng),
                 NULL, 0);
    memset(rng, 0, sizeof *rng);
    memcpy(rng->C, inputhash, sizeof rng->C);
    memcpy(V(rng), &inputhash[sizeof rng->C], VSize(rng));

    memset(inputhash, 0, sizeof inputhash);
}

/*
 * Public functions
 */

/*
 * Initialize the global RNG context and give it some seed input taken
 * from the system.  This function is thread-safe and will only allow
 * the global context to be initialized once.  The seed input is likely
 * small, so it is imperative that RNG_RandomUpdate() be called with
 * additional seed data before the generator is used.  A good way to
 * provide the generator with additional entropy is to call
 * RNG_SystemInfoForRNG().  Note that C_Initialize() does exactly that.
 */
SECStatus
RNG_RNGInit(void)
{
    /* Allow only one call to initialize the context */
    PR_CallOnce(&coRNGInit, rng_init);
    /* Make sure there is a context */
    return (globalrng != NULL) ? SECSuccess : SECFailure;
}

/*
** Update the global random number generator with more seeding
** material.
*/
SECStatus
RNG_RandomUpdate(const void *data, size_t bytes)
{
    SECStatus rv;

    /* Make sure our assumption that size_t is unsigned is true */
    PR_STATIC_ASSERT(((size_t)-1) > (size_t)1);

#if defined(NS_PTR_GT_32) || (defined(NSS_USE_64) && !defined(NS_PTR_LE_32))
    /*
     * NIST 800-90 requires us to verify our inputs. This value can
     * come from the application, so we need to make sure it's within the
     * spec. The spec says it must be less than 2^32 bytes (2^35 bits).
     * This can only happen if size_t is greater than 32 bits (i.e. on
     * most 64 bit platforms). The 90% case (perhaps 100% case), size_t
     * is less than or equal to 32 bits if the platform is not 64 bits, and
     * greater than 32 bits if it is a 64 bit platform. The corner
     * cases are handled with explicit defines NS_PTR_GT_32 and NS_PTR_LE_32.
     *
     * In general, neither NS_PTR_GT_32 nor NS_PTR_LE_32 will need to be
     * defined. If you trip over the next two size ASSERTS at compile time,
     * you will need to define them for your platform.
     *
     * if 'sizeof(size_t) > 4' is triggered it means that we were expecting
     *   sizeof(size_t) to be greater than 4, but it wasn't. Setting
     *   NS_PTR_LE_32 will correct that mistake.
     *
     * if 'sizeof(size_t) <= 4' is triggered, it means that we were expecting
     *   sizeof(size_t) to be less than or equal to 4, but it wasn't. Setting
     *   NS_PTR_GT_32 will correct that mistake.
     */

    PR_STATIC_ASSERT(sizeof(size_t) > 4);

    if (bytes > (size_t)PRNG_MAX_ADDITIONAL_BYTES) {
        bytes = PRNG_MAX_ADDITIONAL_BYTES;
    }
#else
    PR_STATIC_ASSERT(sizeof(size_t) <= 4);
#endif

    PZ_Lock(globalrng->lock);
    /* if we're passed more than our additionalDataCache, simply
     * call reseed with that data */
    if (bytes > sizeof(globalrng->additionalDataCache)) {
        rv = prng_reseed_test(globalrng, NULL, 0, data, (unsigned int)bytes);
        /* if we aren't going to fill or overflow the buffer, just cache it */
    } else if (bytes < ((sizeof globalrng->additionalDataCache) - globalrng->additionalAvail)) {
        PORT_Memcpy(globalrng->additionalDataCache + globalrng->additionalAvail,
                    data, bytes);
        globalrng->additionalAvail += (PRUint32)bytes;
        rv = SECSuccess;
    } else {
        /* we are going to fill or overflow the buffer. In this case we will
         * fill the entropy buffer, reseed with it, start a new buffer with the
         * remainder. We know the remainder will fit in the buffer because
         * we already handled the case where bytes > the size of the buffer.
         */
        size_t bufRemain = (sizeof globalrng->additionalDataCache) - globalrng->additionalAvail;
        /* fill the rest of the buffer */
        if (bufRemain) {
            PORT_Memcpy(globalrng->additionalDataCache + globalrng->additionalAvail,
                        data, bufRemain);
            data = ((unsigned char *)data) + bufRemain;
            bytes -= bufRemain;
        }
        /* reseed from buffer */
        rv = prng_reseed_test(globalrng, NULL, 0,
                              globalrng->additionalDataCache,
                              sizeof globalrng->additionalDataCache);

        /* copy the rest into the cache */
        PORT_Memcpy(globalrng->additionalDataCache, data, bytes);
        globalrng->additionalAvail = (PRUint32)bytes;
    }

    PZ_Unlock(globalrng->lock);
    return rv;
}

/*
** Generate some random bytes, using the global random number generator
** object.
*/
static SECStatus
prng_GenerateGlobalRandomBytes(RNGContext *rng,
                               void *dest, size_t len)
{
    SECStatus rv = SECSuccess;
    PRUint8 *output = dest;
    /* check for a valid global RNG context */
    PORT_Assert(rng != NULL);
    if (rng == NULL) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    /* FIPS limits the amount of entropy available in a single request */
    if (len > PRNG_MAX_REQUEST_SIZE) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    /* --- LOCKED --- */
    PZ_Lock(rng->lock);
    /* Check the amount of seed data in the generator.  If not enough,
     * don't produce any data.
     */
    if (rng->reseed_counter[0] >= RESEED_VALUE) {
        rv = prng_reseed_test(rng, NULL, 0, NULL, 0);
        PZ_Unlock(rng->lock);
        if (rv != SECSuccess) {
            return rv;
        }
        RNG_SystemInfoForRNG();
        PZ_Lock(rng->lock);
    }
    /*
     * see if we have enough bytes to fulfill the request.
     */
    if (len <= rng->dataAvail) {
        memcpy(output, rng->data + ((sizeof rng->data) - rng->dataAvail), len);
        memset(rng->data + ((sizeof rng->data) - rng->dataAvail), 0, len);
        rng->dataAvail -= len;
        rv = SECSuccess;
        /* if we are asking for a small number of bytes, cache the rest of
     * the bytes */
    } else if (len < sizeof rng->data) {
        rv = prng_generateNewBytes(rng, rng->data, sizeof rng->data,
                                   rng->additionalAvail ? rng->additionalDataCache : NULL,
                                   rng->additionalAvail);
        rng->additionalAvail = 0;
        if (rv == SECSuccess) {
            memcpy(output, rng->data, len);
            memset(rng->data, 0, len);
            rng->dataAvail = (sizeof rng->data) - len;
        }
        /* we are asking for lots of bytes, just ask the generator to pass them */
    } else {
        rv = prng_generateNewBytes(rng, output, len,
                                   rng->additionalAvail ? rng->additionalDataCache : NULL,
                                   rng->additionalAvail);
        rng->additionalAvail = 0;
    }
    PZ_Unlock(rng->lock);
    /* --- UNLOCKED --- */
    return rv;
}

/*
** Generate some random bytes, using the global random number generator
** object.
*/
SECStatus
RNG_GenerateGlobalRandomBytes(void *dest, size_t len)
{
    return prng_GenerateGlobalRandomBytes(globalrng, dest, len);
}

void
RNG_RNGShutdown(void)
{
    /* check for a valid global RNG context */
    PORT_Assert(globalrng != NULL);
    if (globalrng == NULL) {
        /* Should set a "not initialized" error code. */
        PORT_SetError(SEC_ERROR_NO_MEMORY);
        return;
    }
    /* clear */
    prng_freeRNGContext(globalrng);
    globalrng = NULL;
    /* reset the callonce struct to allow a new call to RNG_RNGInit() */
    coRNGInit = pristineCallOnce;
}

/*
 * Test case interface. used by fips testing and power on self test
 */
/* make sure the test context is separate from the global context, This
  * allows us to test the internal random number generator without losing
  * entropy we may have previously collected. */
RNGContext testContext;

SECStatus
PRNGTEST_Instantiate_Kat(const PRUint8 *entropy, unsigned int entropy_len,
                         const PRUint8 *nonce, unsigned int nonce_len,
                         const PRUint8 *personal_string, unsigned int ps_len)
{
    testContext.isKatTest = PR_TRUE;
    return PRNGTEST_Instantiate(entropy, entropy_len,
                                nonce, nonce_len,
                                personal_string, ps_len);
}

/*
 * Test vector API. Use NIST SP 800-90 general interface so one of the
 * other NIST SP 800-90 algorithms may be used in the future.
 */
SECStatus
PRNGTEST_Instantiate(const PRUint8 *entropy, unsigned int entropy_len,
                     const PRUint8 *nonce, unsigned int nonce_len,
                     const PRUint8 *personal_string, unsigned int ps_len)
{
    int bytes_len = entropy_len + nonce_len + ps_len;
    PRUint8 *bytes = NULL;
    SECStatus rv;

    if (entropy_len < 256 / PR_BITS_PER_BYTE) {
        PORT_SetError(SEC_ERROR_NEED_RANDOM);
        return SECFailure;
    }

    bytes = PORT_Alloc(bytes_len);
    if (bytes == NULL) {
        PORT_SetError(SEC_ERROR_NO_MEMORY);
        return SECFailure;
    }
    /* concatenate the various inputs, internally NSS only instantiates with
    * a single long string */
    PORT_Memcpy(bytes, entropy, entropy_len);
    if (nonce) {
        PORT_Memcpy(&bytes[entropy_len], nonce, nonce_len);
    } else {
        PORT_Assert(nonce_len == 0);
    }
    if (personal_string) {
        PORT_Memcpy(&bytes[entropy_len + nonce_len], personal_string, ps_len);
    } else {
        PORT_Assert(ps_len == 0);
    }
    rv = prng_instantiate(&testContext, bytes, bytes_len);
    PORT_ZFree(bytes, bytes_len);
    if (rv == SECFailure) {
        return SECFailure;
    }
    testContext.isValid = PR_TRUE;
    return SECSuccess;
}

SECStatus
PRNGTEST_Reseed(const PRUint8 *entropy, unsigned int entropy_len,
                const PRUint8 *additional, unsigned int additional_len)
{
    if (!testContext.isValid) {
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    /* This magic input tells us to set the reseed count to it's max count,
     * so we can simulate PRNGTEST_Generate reaching max reseed count */
    if ((entropy == NULL) && (entropy_len == 0) &&
        (additional == NULL) && (additional_len == 0)) {
        testContext.reseed_counter[0] = RESEED_VALUE;
        return SECSuccess;
    }
    return prng_reseed(&testContext, entropy, entropy_len, additional,
                       additional_len);
}

SECStatus
PRNGTEST_Generate(PRUint8 *bytes, unsigned int bytes_len,
                  const PRUint8 *additional, unsigned int additional_len)
{
    SECStatus rv;
    if (!testContext.isValid) {
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    /* replicate reseed test from prng_GenerateGlobalRandomBytes */
    if (testContext.reseed_counter[0] >= RESEED_VALUE) {
        rv = prng_reseed(&testContext, NULL, 0, NULL, 0);
        if (rv != SECSuccess) {
            return rv;
        }
    }
    return prng_generateNewBytes(&testContext, bytes, bytes_len,
                                 additional, additional_len);
}

SECStatus
PRNGTEST_Uninstantiate()
{
    if (!testContext.isValid) {
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    PORT_Memset(&testContext, 0, sizeof testContext);
    return SECSuccess;
}

SECStatus
PRNGTEST_RunHealthTests()
{
    static const PRUint8 entropy[] = {
        0x8e, 0x9c, 0x0d, 0x25, 0x75, 0x22, 0x04, 0xf9,
        0xc5, 0x79, 0x10, 0x8b, 0x23, 0x79, 0x37, 0x14,
        0x9f, 0x2c, 0xc7, 0x0b, 0x39, 0xf8, 0xee, 0xef,
        0x95, 0x0c, 0x97, 0x59, 0xfc, 0x0a, 0x85, 0x41,
        0x76, 0x9d, 0x6d, 0x67, 0x00, 0x4e, 0x19, 0x12,
        0x02, 0x16, 0x53, 0xea, 0xf2, 0x73, 0xd7, 0xd6,
        0x7f, 0x7e, 0xc8, 0xae, 0x9c, 0x09, 0x99, 0x7d,
        0xbb, 0x9e, 0x48, 0x7f, 0xbb, 0x96, 0x46, 0xb3,
        0x03, 0x75, 0xf8, 0xc8, 0x69, 0x45, 0x3f, 0x97,
        0x5e, 0x2e, 0x48, 0xe1, 0x5d, 0x58, 0x97, 0x4c
    };
    static const PRUint8 rng_known_result[] = {
        0x16, 0xe1, 0x8c, 0x57, 0x21, 0xd8, 0xf1, 0x7e,
        0x5a, 0xa0, 0x16, 0x0b, 0x7e, 0xa6, 0x25, 0xb4,
        0x24, 0x19, 0xdb, 0x54, 0xfa, 0x35, 0x13, 0x66,
        0xbb, 0xaa, 0x2a, 0x1b, 0x22, 0x33, 0x2e, 0x4a,
        0x14, 0x07, 0x9d, 0x52, 0xfc, 0x73, 0x61, 0x48,
        0xac, 0xc1, 0x22, 0xfc, 0xa4, 0xfc, 0xac, 0xa4,
        0xdb, 0xda, 0x5b, 0x27, 0x33, 0xc4, 0xb3
    };
    static const PRUint8 reseed_entropy[] = {
        0xc6, 0x0b, 0x0a, 0x30, 0x67, 0x07, 0xf4, 0xe2,
        0x24, 0xa7, 0x51, 0x6f, 0x5f, 0x85, 0x3e, 0x5d,
        0x67, 0x97, 0xb8, 0x3b, 0x30, 0x9c, 0x7a, 0xb1,
        0x52, 0xc6, 0x1b, 0xc9, 0x46, 0xa8, 0x62, 0x79
    };
    static const PRUint8 additional_input[] = {
        0x86, 0x82, 0x28, 0x98, 0xe7, 0xcb, 0x01, 0x14,
        0xae, 0x87, 0x4b, 0x1d, 0x99, 0x1b, 0xc7, 0x41,
        0x33, 0xff, 0x33, 0x66, 0x40, 0x95, 0x54, 0xc6,
        0x67, 0x4d, 0x40, 0x2a, 0x1f, 0xf9, 0xeb, 0x65
    };
    static const PRUint8 rng_reseed_result[] = {
        0x02, 0x0c, 0xc6, 0x17, 0x86, 0x49, 0xba, 0xc4,
        0x7b, 0x71, 0x35, 0x05, 0xf0, 0xdb, 0x4a, 0xc2,
        0x2c, 0x38, 0xc1, 0xa4, 0x42, 0xe5, 0x46, 0x4a,
        0x7d, 0xf0, 0xbe, 0x47, 0x88, 0xb8, 0x0e, 0xc6,
        0x25, 0x2b, 0x1d, 0x13, 0xef, 0xa6, 0x87, 0x96,
        0xa3, 0x7d, 0x5b, 0x80, 0xc2, 0x38, 0x76, 0x61,
        0xc7, 0x80, 0x5d, 0x0f, 0x05, 0x76, 0x85
    };
    static const PRUint8 rng_no_reseed_result[] = {
        0xc4, 0x40, 0x41, 0x8c, 0xbf, 0x2f, 0x70, 0x23,
        0x88, 0xf2, 0x7b, 0x30, 0xc3, 0xca, 0x1e, 0xf3,
        0xef, 0x53, 0x81, 0x5d, 0x30, 0xed, 0x4c, 0xf1,
        0xff, 0x89, 0xa5, 0xee, 0x92, 0xf8, 0xc0, 0x0f,
        0x88, 0x53, 0xdf, 0xb6, 0x76, 0xf0, 0xaa, 0xd3,
        0x2e, 0x1d, 0x64, 0x37, 0x3e, 0xe8, 0x4a, 0x02,
        0xff, 0x0a, 0x7f, 0xe5, 0xe9, 0x2b, 0x6d
    };

    SECStatus rng_status = SECSuccess;
    PR_STATIC_ASSERT(sizeof(rng_known_result) >= sizeof(rng_reseed_result));
    PRUint8 result[sizeof(rng_known_result)];

    /********************************************/
    /*   First test instantiate error path.     */
    /*   In this case we supply enough entropy, */
    /*   but not enough seed. This will trigger */
    /*   the code that checks for a entropy     */
    /*   source failure.                        */
    /********************************************/
    rng_status = PRNGTEST_Instantiate(entropy, 256 / PR_BITS_PER_BYTE,
                                      NULL, 0, NULL, 0);
    if (rng_status == SECSuccess) {
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    if (PORT_GetError() != SEC_ERROR_NEED_RANDOM) {
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    /* we failed with the proper error code, we can continue */

    /********************************************/
    /* Generate random bytes with a known seed. */
    /********************************************/
    rng_status = PRNGTEST_Instantiate(entropy, sizeof entropy,
                                      NULL, 0, NULL, 0);
    if (rng_status != SECSuccess) {
        /* Error set by PRNGTEST_Instantiate */
        return SECFailure;
    }
    rng_status = PRNGTEST_Generate(result, sizeof rng_known_result, NULL, 0);
    if ((rng_status != SECSuccess) ||
        (PORT_Memcmp(result, rng_known_result,
                     sizeof rng_known_result) != 0)) {
        PRNGTEST_Uninstantiate();
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    rng_status = PRNGTEST_Reseed(reseed_entropy, sizeof reseed_entropy,
                                 additional_input, sizeof additional_input);
    if (rng_status != SECSuccess) {
        /* Error set by PRNG_Reseed */
        PRNGTEST_Uninstantiate();
        return SECFailure;
    }
    rng_status = PRNGTEST_Generate(result, sizeof rng_reseed_result, NULL, 0);
    if ((rng_status != SECSuccess) ||
        (PORT_Memcmp(result, rng_reseed_result,
                     sizeof rng_reseed_result) != 0)) {
        PRNGTEST_Uninstantiate();
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    /* This magic forces the reseed count to it's max count, so we can see if
     * PRNGTEST_Generate will actually when it reaches it's count */
    rng_status = PRNGTEST_Reseed(NULL, 0, NULL, 0);
    if (rng_status != SECSuccess) {
        PRNGTEST_Uninstantiate();
        /* Error set by PRNG_Reseed */
        return SECFailure;
    }
    /* This generate should now reseed */
    rng_status = PRNGTEST_Generate(result, sizeof rng_reseed_result, NULL, 0);
    if ((rng_status != SECSuccess) ||
        /* NOTE we fail if the result is equal to the no_reseed_result.
         * no_reseed_result is the value we would have gotten if we didn't
         * do an automatic reseed in PRNGTEST_Generate */
        (PORT_Memcmp(result, rng_no_reseed_result,
                     sizeof rng_no_reseed_result) == 0)) {
        PRNGTEST_Uninstantiate();
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    /* make sure reseed fails when we don't supply enough entropy */
    rng_status = PRNGTEST_Reseed(reseed_entropy, 4, NULL, 0);
    if (rng_status == SECSuccess) {
        PRNGTEST_Uninstantiate();
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    if (PORT_GetError() != SEC_ERROR_NEED_RANDOM) {
        PRNGTEST_Uninstantiate();
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    rng_status = PRNGTEST_Uninstantiate();
    if (rng_status != SECSuccess) {
        /* Error set by PRNG_Uninstantiate */
        return rng_status;
    }
    /* make sure uninstantiate fails if the contest is not initiated (also tests
     * if the context was cleared in the previous Uninstantiate) */
    rng_status = PRNGTEST_Uninstantiate();
    if (rng_status == SECSuccess) {
        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
        return SECFailure;
    }
    if (PORT_GetError() != SEC_ERROR_LIBRARY_FAILURE) {
        return rng_status;
    }

    return SECSuccess;
}