Source code

Revision control

Other Tools

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "imgFrame.h"
#include "ImageRegion.h"
#include "ShutdownTracker.h"
#include "SurfaceCache.h"

#include "prenv.h"

#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "gfxPrefs.h"
#include "gfxUtils.h"

#include "GeckoProfiler.h"
#include "MainThreadUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/gfx/gfxVars.h"
#include "mozilla/gfx/Tools.h"
#include "mozilla/gfx/SourceSurfaceRawData.h"
#include "mozilla/image/RecyclingSourceSurface.h"
#include "mozilla/layers/SourceSurfaceSharedData.h"
#include "mozilla/layers/SourceSurfaceVolatileData.h"
#include "mozilla/Likely.h"
#include "mozilla/MemoryReporting.h"
#include "nsMargin.h"
#include "nsRefreshDriver.h"
#include "nsThreadUtils.h"

namespace mozilla {

using namespace gfx;

namespace image {

static void ScopedMapRelease(void* aMap) {
  delete static_cast<DataSourceSurface::ScopedMap*>(aMap);
}

static int32_t VolatileSurfaceStride(const IntSize& size,
                                     SurfaceFormat format) {
  // Stride must be a multiple of four or cairo will complain.
  return (size.width * BytesPerPixel(format) + 0x3) & ~0x3;
}

static already_AddRefed<DataSourceSurface> CreateLockedSurface(
    DataSourceSurface* aSurface, const IntSize& size, SurfaceFormat format) {
  // Shared memory is never released until the surface itself is released
  if (aSurface->GetType() == SurfaceType::DATA_SHARED) {
    RefPtr<DataSourceSurface> surf(aSurface);
    return surf.forget();
  }

  DataSourceSurface::ScopedMap* smap =
      new DataSourceSurface::ScopedMap(aSurface, DataSourceSurface::READ_WRITE);
  if (smap->IsMapped()) {
    // The ScopedMap is held by this DataSourceSurface.
    RefPtr<DataSourceSurface> surf = Factory::CreateWrappingDataSourceSurface(
        smap->GetData(), aSurface->Stride(), size, format, &ScopedMapRelease,
        static_cast<void*>(smap));
    if (surf) {
      return surf.forget();
    }
  }

  delete smap;
  return nullptr;
}

static bool ShouldUseHeap(const IntSize& aSize, int32_t aStride,
                          bool aIsAnimated) {
  // On some platforms (i.e. Android), a volatile buffer actually keeps a file
  // handle active. We would like to avoid too many since we could easily
  // exhaust the pool. However, other platforms we do not have the file handle
  // problem, and additionally we may avoid a superfluous memset since the
  // volatile memory starts out as zero-filled. Hence the knobs below.

  // For as long as an animated image is retained, its frames will never be
  // released to let the OS purge volatile buffers.
  if (aIsAnimated && gfxPrefs::ImageMemAnimatedUseHeap()) {
    return true;
  }

  // Lets us avoid too many small images consuming all of the handles. The
  // actual allocation checks for overflow.
  int32_t bufferSize = (aStride * aSize.width) / 1024;
  if (bufferSize < gfxPrefs::ImageMemVolatileMinThresholdKB()) {
    return true;
  }

  return false;
}

static already_AddRefed<DataSourceSurface> AllocateBufferForImage(
    const IntSize& size, SurfaceFormat format, bool aIsAnimated = false,
    bool aIsFullFrame = true) {
  int32_t stride = VolatileSurfaceStride(size, format);

  if (gfxVars::GetUseWebRenderOrDefault() && gfxPrefs::ImageMemShared() &&
      aIsFullFrame) {
    RefPtr<SourceSurfaceSharedData> newSurf = new SourceSurfaceSharedData();
    if (newSurf->Init(size, stride, format)) {
      return newSurf.forget();
    }
  } else if (ShouldUseHeap(size, stride, aIsAnimated)) {
    RefPtr<SourceSurfaceAlignedRawData> newSurf =
        new SourceSurfaceAlignedRawData();
    if (newSurf->Init(size, format, false, 0, stride)) {
      return newSurf.forget();
    }
  } else {
    RefPtr<SourceSurfaceVolatileData> newSurf = new SourceSurfaceVolatileData();
    if (newSurf->Init(size, stride, format)) {
      return newSurf.forget();
    }
  }
  return nullptr;
}

static bool ClearSurface(DataSourceSurface* aSurface, const IntSize& aSize,
                         SurfaceFormat aFormat) {
  int32_t stride = aSurface->Stride();
  uint8_t* data = aSurface->GetData();
  MOZ_ASSERT(data);

  if (aFormat == SurfaceFormat::B8G8R8X8) {
    // Skia doesn't support RGBX surfaces, so ensure the alpha value is set
    // to opaque white. While it would be nice to only do this for Skia,
    // imgFrame can run off main thread and past shutdown where
    // we might not have gfxPlatform, so just memset everytime instead.
    memset(data, 0xFF, stride * aSize.height);
  } else if (aSurface->OnHeap()) {
    // We only need to memset it if the buffer was allocated on the heap.
    // Otherwise, it's allocated via mmap and refers to a zeroed page and will
    // be COW once it's written to.
    memset(data, 0, stride * aSize.height);
  }

  return true;
}

static bool AllowedImageAndFrameDimensions(const nsIntSize& aImageSize,
                                           const nsIntRect& aFrameRect) {
  if (!SurfaceCache::IsLegalSize(aImageSize)) {
    return false;
  }
  if (!SurfaceCache::IsLegalSize(aFrameRect.Size())) {
    return false;
  }
  nsIntRect imageRect(0, 0, aImageSize.width, aImageSize.height);
  if (!imageRect.Contains(aFrameRect)) {
    NS_WARNING("Animated image frame does not fit inside bounds of image");
  }
  return true;
}

imgFrame::imgFrame()
    : mMonitor("imgFrame"),
      mDecoded(0, 0, 0, 0),
      mLockCount(0),
      mRecycleLockCount(0),
      mAborted(false),
      mFinished(false),
      mOptimizable(false),
      mShouldRecycle(false),
      mTimeout(FrameTimeout::FromRawMilliseconds(100)),
      mDisposalMethod(DisposalMethod::NOT_SPECIFIED),
      mBlendMethod(BlendMethod::OVER),
      mFormat(SurfaceFormat::UNKNOWN),
      mPalettedImageData(nullptr),
      mPaletteDepth(0),
      mNonPremult(false),
      mIsFullFrame(false),
      mCompositingFailed(false) {}

imgFrame::~imgFrame() {
#ifdef DEBUG
  MonitorAutoLock lock(mMonitor);
  MOZ_ASSERT(mAborted || AreAllPixelsWritten());
  MOZ_ASSERT(mAborted || mFinished);
#endif

  free(mPalettedImageData);
  mPalettedImageData = nullptr;
}

nsresult imgFrame::InitForDecoder(const nsIntSize& aImageSize,
                                  const nsIntRect& aRect, SurfaceFormat aFormat,
                                  uint8_t aPaletteDepth, bool aNonPremult,
                                  const Maybe<AnimationParams>& aAnimParams,
                                  bool aIsFullFrame, bool aShouldRecycle) {
  // Assert for properties that should be verified by decoders,
  // warn for properties related to bad content.
  if (!AllowedImageAndFrameDimensions(aImageSize, aRect)) {
    NS_WARNING("Should have legal image size");
    mAborted = true;
    return NS_ERROR_FAILURE;
  }

  mImageSize = aImageSize;
  mFrameRect = aRect;

  // May be updated shortly after InitForDecoder by BlendAnimationFilter
  // because it needs to take into consideration the previous frames to
  // properly calculate. We start with the whole frame as dirty.
  mDirtyRect = aRect;

  if (aAnimParams) {
    mBlendRect = aAnimParams->mBlendRect;
    mTimeout = aAnimParams->mTimeout;
    mBlendMethod = aAnimParams->mBlendMethod;
    mDisposalMethod = aAnimParams->mDisposalMethod;
    mIsFullFrame = aAnimParams->mFrameNum == 0 || aIsFullFrame;
  } else {
    mBlendRect = aRect;
    mIsFullFrame = true;
  }

  // We only allow a non-trivial frame rect (i.e., a frame rect that doesn't
  // cover the entire image) for paletted animation frames. We never draw those
  // frames directly; we just use FrameAnimator to composite them and produce a
  // BGRA surface that we actually draw. We enforce this here to make sure that
  // imgFrame::Draw(), which is responsible for drawing all other kinds of
  // frames, never has to deal with a non-trivial frame rect.
  if (aPaletteDepth == 0 &&
      !mFrameRect.IsEqualEdges(IntRect(IntPoint(), mImageSize))) {
    MOZ_ASSERT_UNREACHABLE(
        "Creating a non-paletted imgFrame with a "
        "non-trivial frame rect");
    return NS_ERROR_FAILURE;
  }

  if (aShouldRecycle) {
    // If we are recycling then we should always use BGRA for the underlying
    // surface because if we use BGRX, the next frame composited into the
    // surface could be BGRA and cause rendering problems.
    MOZ_ASSERT(mIsFullFrame);
    MOZ_ASSERT(aPaletteDepth == 0);
    MOZ_ASSERT(aAnimParams);
    mFormat = SurfaceFormat::B8G8R8A8;
  } else {
    mFormat = aFormat;
  }

  mPaletteDepth = aPaletteDepth;
  mNonPremult = aNonPremult;
  mShouldRecycle = aShouldRecycle;

  if (aPaletteDepth != 0) {
    // We're creating for a paletted image.
    if (aPaletteDepth > 8) {
      NS_WARNING("Should have legal palette depth");
      NS_ERROR("This Depth is not supported");
      mAborted = true;
      return NS_ERROR_FAILURE;
    }

    // Use the fallible allocator here. Paletted images always use 1 byte per
    // pixel, so calculating the amount of memory we need is straightforward.
    size_t dataSize = PaletteDataLength() + mFrameRect.Area();
    mPalettedImageData =
        static_cast<uint8_t*>(calloc(dataSize, sizeof(uint8_t)));
    if (!mPalettedImageData) {
      NS_WARNING("Call to calloc for paletted image data should succeed");
    }
    NS_ENSURE_TRUE(mPalettedImageData, NS_ERROR_OUT_OF_MEMORY);
  } else {
    MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitForDecoder() twice?");

    bool postFirstFrame = aAnimParams && aAnimParams->mFrameNum > 0;
    mRawSurface = AllocateBufferForImage(mFrameRect.Size(), mFormat,
                                         postFirstFrame, mIsFullFrame);
    if (!mRawSurface) {
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }

    mLockedSurface =
        CreateLockedSurface(mRawSurface, mFrameRect.Size(), mFormat);
    if (!mLockedSurface) {
      NS_WARNING("Failed to create LockedSurface");
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }

    if (!ClearSurface(mRawSurface, mFrameRect.Size(), mFormat)) {
      NS_WARNING("Could not clear allocated buffer");
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }
  }

  return NS_OK;
}

nsresult imgFrame::InitForDecoderRecycle(const AnimationParams& aAnimParams) {
  // We want to recycle this frame, but there is no guarantee that consumers are
  // done with it in a timely manner. Let's ensure they are done with it first.
  MonitorAutoLock lock(mMonitor);

  MOZ_ASSERT(mIsFullFrame);
  MOZ_ASSERT(mLockCount > 0);
  MOZ_ASSERT(mLockedSurface);

  if (!mShouldRecycle) {
    // This frame either was never marked as recyclable, or the flag was cleared
    // for a caller which does not support recycling.
    return NS_ERROR_NOT_AVAILABLE;
  }

  if (mRecycleLockCount > 0) {
    if (NS_IsMainThread()) {
      // We should never be both decoding and recycling on the main thread. Sync
      // decoding can only be used to produce the first set of frames. Those
      // either never use recycling because advancing was blocked (main thread
      // is busy) or we were auto-advancing (to seek to a frame) and the frames
      // were never accessed (and thus cannot have recycle locks).
      MOZ_ASSERT_UNREACHABLE("Recycling/decoding on the main thread?");
      return NS_ERROR_NOT_AVAILABLE;
    }

    // We don't want to wait forever to reclaim the frame because we have no
    // idea why it is still held. It is possibly due to OMTP. Since we are off
    // the main thread, and we generally have frames already buffered for the
    // animation, we can afford to wait a short period of time to hopefully
    // complete the transaction and reclaim the buffer.
    //
    // We choose to wait for, at most, the refresh driver interval, so that we
    // won't skip more than one frame. If the frame is still in use due to
    // outstanding transactions, we are already skipping frames. If the frame
    // is still in use for some other purpose, it won't be returned to the pool
    // and its owner can hold onto it forever without additional impact here.
    TimeDuration timeout =
        TimeDuration::FromMilliseconds(nsRefreshDriver::DefaultInterval());
    while (true) {
      TimeStamp start = TimeStamp::Now();
      mMonitor.Wait(timeout);
      if (mRecycleLockCount == 0) {
        break;
      }

      TimeDuration delta = TimeStamp::Now() - start;
      if (delta >= timeout) {
        // We couldn't secure the frame for recycling. It will allocate a new
        // frame instead.
        return NS_ERROR_NOT_AVAILABLE;
      }

      timeout -= delta;
    }
  }

  mBlendRect = aAnimParams.mBlendRect;
  mTimeout = aAnimParams.mTimeout;
  mBlendMethod = aAnimParams.mBlendMethod;
  mDisposalMethod = aAnimParams.mDisposalMethod;
  mDirtyRect = mFrameRect;

  return NS_OK;
}

nsresult imgFrame::InitWithDrawable(
    gfxDrawable* aDrawable, const nsIntSize& aSize, const SurfaceFormat aFormat,
    SamplingFilter aSamplingFilter, uint32_t aImageFlags,
    gfx::BackendType aBackend, DrawTarget* aTargetDT) {
  // Assert for properties that should be verified by decoders,
  // warn for properties related to bad content.
  if (!SurfaceCache::IsLegalSize(aSize)) {
    NS_WARNING("Should have legal image size");
    mAborted = true;
    return NS_ERROR_FAILURE;
  }

  mImageSize = aSize;
  mFrameRect = IntRect(IntPoint(0, 0), aSize);

  mFormat = aFormat;
  mPaletteDepth = 0;

  RefPtr<DrawTarget> target;

  bool canUseDataSurface = Factory::DoesBackendSupportDataDrawtarget(aBackend);
  if (canUseDataSurface) {
    // It's safe to use data surfaces for content on this platform, so we can
    // get away with using volatile buffers.
    MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitWithDrawable() twice?");

    mRawSurface = AllocateBufferForImage(mFrameRect.Size(), mFormat);
    if (!mRawSurface) {
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }

    mLockedSurface =
        CreateLockedSurface(mRawSurface, mFrameRect.Size(), mFormat);
    if (!mLockedSurface) {
      NS_WARNING("Failed to create LockedSurface");
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }

    if (!ClearSurface(mRawSurface, mFrameRect.Size(), mFormat)) {
      NS_WARNING("Could not clear allocated buffer");
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }

    target = gfxPlatform::CreateDrawTargetForData(
        mLockedSurface->GetData(), mFrameRect.Size(), mLockedSurface->Stride(),
        mFormat);
  } else {
    // We can't use data surfaces for content, so we'll create an offscreen
    // surface instead.  This means if someone later calls RawAccessRef(), we
    // may have to do an expensive readback, but we warned callers about that in
    // the documentation for this method.
    MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?");

    if (aTargetDT && !gfxVars::UseWebRender()) {
      target = aTargetDT->CreateSimilarDrawTarget(mFrameRect.Size(), mFormat);
    } else {
      if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(aBackend)) {
        target = gfxPlatform::GetPlatform()->CreateDrawTargetForBackend(
            aBackend, mFrameRect.Size(), mFormat);
      } else {
        target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
            mFrameRect.Size(), mFormat);
      }
    }
  }

  if (!target || !target->IsValid()) {
    mAborted = true;
    return NS_ERROR_OUT_OF_MEMORY;
  }

  // Draw using the drawable the caller provided.
  RefPtr<gfxContext> ctx = gfxContext::CreateOrNull(target);
  MOZ_ASSERT(ctx);  // Already checked the draw target above.
  gfxUtils::DrawPixelSnapped(ctx, aDrawable, SizeDouble(mFrameRect.Size()),
                             ImageRegion::Create(ThebesRect(mFrameRect)),
                             mFormat, aSamplingFilter, aImageFlags);

  if (canUseDataSurface && !mLockedSurface) {
    NS_WARNING("Failed to create VolatileDataSourceSurface");
    mAborted = true;
    return NS_ERROR_OUT_OF_MEMORY;
  }

  if (!canUseDataSurface) {
    // We used an offscreen surface, which is an "optimized" surface from
    // imgFrame's perspective.
    mOptSurface = target->Snapshot();
  } else {
    FinalizeSurface();
  }

  // If we reach this point, we should regard ourselves as complete.
  mDecoded = GetRect();
  mFinished = true;

#ifdef DEBUG
  MonitorAutoLock lock(mMonitor);
  MOZ_ASSERT(AreAllPixelsWritten());
#endif

  return NS_OK;
}

nsresult imgFrame::Optimize(DrawTarget* aTarget) {
  MOZ_ASSERT(NS_IsMainThread());
  mMonitor.AssertCurrentThreadOwns();

  if (mLockCount > 0 || !mOptimizable) {
    // Don't optimize right now.
    return NS_OK;
  }

  // Check whether image optimization is disabled -- not thread safe!
  static bool gDisableOptimize = false;
  static bool hasCheckedOptimize = false;
  if (!hasCheckedOptimize) {
    if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
      gDisableOptimize = true;
    }
    hasCheckedOptimize = true;
  }

  // Don't optimize during shutdown because gfxPlatform may not be available.
  if (ShutdownTracker::ShutdownHasStarted()) {
    return NS_OK;
  }

  if (gDisableOptimize) {
    return NS_OK;
  }

  if (mPalettedImageData || mOptSurface) {
    return NS_OK;
  }

  // XXX(seth): It's currently unclear if there's any reason why we can't
  // optimize non-premult surfaces. We should look into removing this.
  if (mNonPremult) {
    return NS_OK;
  }
  if (!gfxVars::UseWebRender()) {
    mOptSurface = aTarget->OptimizeSourceSurface(mLockedSurface);
  } else {
    mOptSurface = gfxPlatform::GetPlatform()
                      ->ScreenReferenceDrawTarget()
                      ->OptimizeSourceSurface(mLockedSurface);
  }
  if (mOptSurface == mLockedSurface) {
    mOptSurface = nullptr;
  }

  if (mOptSurface) {
    // There's no reason to keep our original surface around if we have an
    // optimized surface. Release our reference to it. This will leave
    // |mLockedSurface| as the only thing keeping it alive, so it'll get freed
    // below.
    mRawSurface = nullptr;
  }

  // Release all strong references to the surface's memory. If the underlying
  // surface is volatile, this will allow the operating system to free the
  // memory if it needs to.
  mLockedSurface = nullptr;
  mOptimizable = false;

  return NS_OK;
}

DrawableFrameRef imgFrame::DrawableRef() { return DrawableFrameRef(this); }

RawAccessFrameRef imgFrame::RawAccessRef(bool aOnlyFinished /*= false*/) {
  return RawAccessFrameRef(this, aOnlyFinished);
}

void imgFrame::SetRawAccessOnly() {
  AssertImageDataLocked();

  // Lock our data and throw away the key.
  LockImageData(false);
}

imgFrame::SurfaceWithFormat imgFrame::SurfaceForDrawing(
    bool aDoPartialDecode, bool aDoTile, ImageRegion& aRegion,
    SourceSurface* aSurface) {
  MOZ_ASSERT(NS_IsMainThread());
  mMonitor.AssertCurrentThreadOwns();

  if (!aDoPartialDecode) {
    return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, mImageSize),
                             mFormat);
  }

  gfxRect available =
      gfxRect(mDecoded.X(), mDecoded.Y(), mDecoded.Width(), mDecoded.Height());

  if (aDoTile) {
    // Create a temporary surface.
    // Give this surface an alpha channel because there are
    // transparent pixels in the padding or undecoded area
    RefPtr<DrawTarget> target =
        gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
            mImageSize, SurfaceFormat::B8G8R8A8);
    if (!target) {
      return SurfaceWithFormat();
    }

    SurfacePattern pattern(aSurface, aRegion.GetExtendMode(),
                           Matrix::Translation(mDecoded.X(), mDecoded.Y()));
    target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern);

    RefPtr<SourceSurface> newsurf = target->Snapshot();
    return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, mImageSize),
                             target->GetFormat());
  }

  // Not tiling, and we have a surface, so we can account for
  // a partial decode just by twiddling parameters.
  aRegion = aRegion.Intersect(available);
  IntSize availableSize(mDecoded.Width(), mDecoded.Height());

  return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
                           mFormat);
}

bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion,
                    SamplingFilter aSamplingFilter, uint32_t aImageFlags,
                    float aOpacity) {
  AUTO_PROFILER_LABEL("imgFrame::Draw", GRAPHICS);

  MOZ_ASSERT(NS_IsMainThread());
  NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!");
  NS_ASSERTION(!aRegion.IsRestricted() ||
                   !aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(),
               "We must be allowed to sample *some* source pixels!");
  MOZ_ASSERT(mFrameRect.IsEqualEdges(IntRect(IntPoint(), mImageSize)),
             "Directly drawing an image with a non-trivial frame rect!");

  if (mPalettedImageData) {
    MOZ_ASSERT_UNREACHABLE("Directly drawing a paletted image!");
    return false;
  }

  // Perform the draw and freeing of the surface outside the lock. We want to
  // avoid contention with the decoder if we can. The surface may also attempt
  // to relock the monitor if it is freed (e.g. RecyclingSourceSurface).
  RefPtr<SourceSurface> surf;
  SurfaceWithFormat surfaceResult;
  ImageRegion region(aRegion);
  gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height);

  {
    MonitorAutoLock lock(mMonitor);

    // Possibly convert this image into a GPU texture, this may also cause our
    // mLockedSurface to be released and the OS to release the underlying
    // memory.
    Optimize(aContext->GetDrawTarget());

    bool doPartialDecode = !AreAllPixelsWritten();

    // Most draw targets will just use the surface only during DrawPixelSnapped
    // but captures/recordings will retain a reference outside this stack
    // context. While in theory a decoder thread could be trying to recycle this
    // frame at this very moment, in practice the only way we can get here is if
    // this frame is the current frame of the animation. Since we can only
    // advance on the main thread, we know nothing else will try to use it.
    DrawTarget* drawTarget = aContext->GetDrawTarget();
    bool recording = drawTarget->GetBackendType() == BackendType::RECORDING;
    bool temporary = !drawTarget->IsCaptureDT() && !recording;
    RefPtr<SourceSurface> surf = GetSourceSurfaceInternal(temporary);
    if (!surf) {
      return false;
    }

    bool doTile = !imageRect.Contains(aRegion.Rect()) &&
                  !(aImageFlags & imgIContainer::FLAG_CLAMP);

    surfaceResult = SurfaceForDrawing(doPartialDecode, doTile, region, surf);

    // If we are recording, then we cannot recycle the surface. The blob
    // rasterizer is not properly synchronized for recycling in the compositor
    // process. The easiest thing to do is just mark the frames it consumes as
    // non-recyclable.
    if (recording && surfaceResult.IsValid()) {
      mShouldRecycle = false;
    }
  }

  if (surfaceResult.IsValid()) {
    gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
                               imageRect.Size(), region, surfaceResult.mFormat,
                               aSamplingFilter, aImageFlags, aOpacity);
  }

  return true;
}

nsresult imgFrame::ImageUpdated(const nsIntRect& aUpdateRect) {
  MonitorAutoLock lock(mMonitor);
  return ImageUpdatedInternal(aUpdateRect);
}

nsresult imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect) {
  mMonitor.AssertCurrentThreadOwns();

  // Clamp to the frame rect to ensure that decoder bugs don't result in a
  // decoded rect that extends outside the bounds of the frame rect.
  IntRect updateRect = mFrameRect.Intersect(aUpdateRect);
  if (updateRect.IsEmpty()) {
    return NS_OK;
  }

  mDecoded.UnionRect(mDecoded, updateRect);

  // Paletted images cannot invalidate.
  if (mPalettedImageData) {
    return NS_OK;
  }

  // Update our invalidation counters for any consumers watching for changes
  // in the surface.
  if (mRawSurface) {
    mRawSurface->Invalidate(updateRect);
  }
  if (mLockedSurface && mRawSurface != mLockedSurface) {
    mLockedSurface->Invalidate(updateRect);
  }
  return NS_OK;
}

void imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */,
                      bool aFinalize /* = true */) {
  MonitorAutoLock lock(mMonitor);
  MOZ_ASSERT(mLockCount > 0, "Image data should be locked");

  if (mPalettedImageData) {
    ImageUpdatedInternal(mFrameRect);
  } else if (!mDecoded.IsEqualEdges(mFrameRect)) {
    // The decoder should have produced rows starting from either the bottom or
    // the top of the image. We need to calculate the region for which we have
    // not yet invalidated.
    IntRect delta(0, 0, mFrameRect.width, 0);
    if (mDecoded.y == 0) {
      delta.y = mDecoded.height;
      delta.height = mFrameRect.height - mDecoded.height;
    } else if (mDecoded.y + mDecoded.height == mFrameRect.height) {
      delta.height = mFrameRect.height - mDecoded.y;
    } else {
      MOZ_ASSERT_UNREACHABLE("Decoder only updated middle of image!");
      delta = mFrameRect;
    }

    ImageUpdatedInternal(delta);
  }

  MOZ_ASSERT(mDecoded.IsEqualEdges(mFrameRect));

  if (aFinalize) {
    FinalizeSurfaceInternal();
  }

  mFinished = true;

  // The image is now complete, wake up anyone who's waiting.
  mMonitor.NotifyAll();
}

uint32_t imgFrame::GetImageBytesPerRow() const {
  mMonitor.AssertCurrentThreadOwns();

  if (mRawSurface) {
    return mFrameRect.Width() * BytesPerPixel(mFormat);
  }

  if (mPaletteDepth) {
    return mFrameRect.Width();
  }

  return 0;
}

uint32_t imgFrame::GetImageDataLength() const {
  return GetImageBytesPerRow() * mFrameRect.Height();
}

void imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const {
  MonitorAutoLock lock(mMonitor);
  GetImageDataInternal(aData, aLength);
}

void imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const {
  mMonitor.AssertCurrentThreadOwns();
  MOZ_ASSERT(mLockCount > 0, "Image data should be locked");

  if (mLockedSurface) {
    // TODO: This is okay for now because we only realloc shared surfaces on
    // the main thread after decoding has finished, but if animations want to
    // read frame data off the main thread, we will need to reconsider this.
    *aData = mLockedSurface->GetData();
    MOZ_ASSERT(
        *aData,
        "mLockedSurface is non-null, but GetData is null in GetImageData");
  } else if (mPalettedImageData) {
    *aData = mPalettedImageData + PaletteDataLength();
    MOZ_ASSERT(
        *aData,
        "mPalettedImageData is non-null, but result is null in GetImageData");
  } else {
    MOZ_ASSERT(
        false,
        "Have neither mLockedSurface nor mPalettedImageData in GetImageData");
    *aData = nullptr;
  }

  *aLength = GetImageDataLength();
}

uint8_t* imgFrame::GetImageData() const {
  uint8_t* data;
  uint32_t length;
  GetImageData(&data, &length);
  return data;
}

bool imgFrame::GetIsPaletted() const { return mPalettedImageData != nullptr; }

void imgFrame::GetPaletteData(uint32_t** aPalette, uint32_t* length) const {
  AssertImageDataLocked();

  if (!mPalettedImageData) {
    *aPalette = nullptr;
    *length = 0;
  } else {
    *aPalette = (uint32_t*)mPalettedImageData;
    *length = PaletteDataLength();
  }
}

uint32_t* imgFrame::GetPaletteData() const {
  uint32_t* data;
  uint32_t length;
  GetPaletteData(&data, &length);
  return data;
}

uint8_t* imgFrame::LockImageData(bool aOnlyFinished) {
  MonitorAutoLock lock(mMonitor);

  MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks");
  if (mLockCount < 0 || (aOnlyFinished && !mFinished)) {
    return nullptr;
  }

  uint8_t* data;
  if (mPalettedImageData) {
    data = mPalettedImageData;
  } else if (mLockedSurface) {
    data = mLockedSurface->GetData();
  } else {
    data = nullptr;
  }

  // If the raw data is still available, we should get a valid pointer for it.
  if (!data) {
    MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame");
    return nullptr;
  }

  ++mLockCount;
  return data;
}

void imgFrame::AssertImageDataLocked() const {
#ifdef DEBUG
  MonitorAutoLock lock(mMonitor);
  MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
#endif
}

nsresult imgFrame::UnlockImageData() {
  MonitorAutoLock lock(mMonitor);

  MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!");
  if (mLockCount <= 0) {
    return NS_ERROR_FAILURE;
  }

  MOZ_ASSERT(mLockCount > 1 || mFinished || mAborted,
             "Should have Finish()'d or aborted before unlocking");

  mLockCount--;

  return NS_OK;
}

void imgFrame::SetOptimizable() {
  AssertImageDataLocked();
  MonitorAutoLock lock(mMonitor);
  mOptimizable = true;
}

void imgFrame::FinalizeSurface() {
  MonitorAutoLock lock(mMonitor);
  FinalizeSurfaceInternal();
}

void imgFrame::FinalizeSurfaceInternal() {
  mMonitor.AssertCurrentThreadOwns();

  // Not all images will have mRawSurface to finalize (i.e. paletted images).
  if (mShouldRecycle || !mRawSurface ||
      mRawSurface->GetType() != SurfaceType::DATA_SHARED) {
    return;
  }

  auto sharedSurf = static_cast<SourceSurfaceSharedData*>(mRawSurface.get());
  sharedSurf->Finalize();
}

already_AddRefed<SourceSurface> imgFrame::GetSourceSurface() {
  MonitorAutoLock lock(mMonitor);
  return GetSourceSurfaceInternal(/* aTemporary */ false);
}

already_AddRefed<SourceSurface> imgFrame::GetSourceSurfaceInternal(
    bool aTemporary) {
  mMonitor.AssertCurrentThreadOwns();

  if (mOptSurface) {
    if (mOptSurface->IsValid()) {
      RefPtr<SourceSurface> surf(mOptSurface);
      return surf.forget();
    } else {
      mOptSurface = nullptr;
    }
  }

  if (mLockedSurface) {
    // We don't need to create recycling wrapper for some callers because they
    // promise to release the surface immediately after.
    if (!aTemporary && mShouldRecycle) {
      RefPtr<SourceSurface> surf =
          new RecyclingSourceSurface(this, mLockedSurface);
      return surf.forget();
    }

    RefPtr<SourceSurface> surf(mLockedSurface);
    return surf.forget();
  }

  MOZ_ASSERT(!mShouldRecycle, "Should recycle but no locked surface!");

  if (!mRawSurface) {
    return nullptr;
  }

  return CreateLockedSurface(mRawSurface, mFrameRect.Size(), mFormat);
}

void imgFrame::Abort() {
  MonitorAutoLock lock(mMonitor);

  mAborted = true;

  // Wake up anyone who's waiting.
  mMonitor.NotifyAll();
}

bool imgFrame::IsAborted() const {
  MonitorAutoLock lock(mMonitor);
  return mAborted;
}

bool imgFrame::IsFinished() const {
  MonitorAutoLock lock(mMonitor);
  return mFinished;
}

void imgFrame::WaitUntilFinished() const {
  MonitorAutoLock lock(mMonitor);

  while (true) {
    // Return if we're aborted or complete.
    if (mAborted || mFinished) {
      return;
    }

    // Not complete yet, so we'll have to wait.
    mMonitor.Wait();
  }
}

bool imgFrame::AreAllPixelsWritten() const {
  mMonitor.AssertCurrentThreadOwns();
  return mDecoded.IsEqualInterior(mFrameRect);
}

bool imgFrame::GetCompositingFailed() const {
  MOZ_ASSERT(NS_IsMainThread());
  return mCompositingFailed;
}

void imgFrame::SetCompositingFailed(bool val) {
  MOZ_ASSERT(NS_IsMainThread());
  mCompositingFailed = val;
}

void imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
                                      const AddSizeOfCb& aCallback) const {
  MonitorAutoLock lock(mMonitor);

  AddSizeOfCbData metadata;
  if (mPalettedImageData) {
    metadata.heap += aMallocSizeOf(mPalettedImageData);
  }
  if (mLockedSurface) {
    metadata.heap += aMallocSizeOf(mLockedSurface);
  }
  if (mOptSurface) {
    metadata.heap += aMallocSizeOf(mOptSurface);
  }
  if (mRawSurface) {
    metadata.heap += aMallocSizeOf(mRawSurface);
    mRawSurface->AddSizeOfExcludingThis(aMallocSizeOf, metadata.heap,
                                        metadata.nonHeap, metadata.handles,
                                        metadata.externalId);
  }

  aCallback(metadata);
}

RecyclingSourceSurface::RecyclingSourceSurface(imgFrame* aParent,
                                               DataSourceSurface* aSurface)
    : mParent(aParent), mSurface(aSurface), mType(SurfaceType::DATA) {
  mParent->mMonitor.AssertCurrentThreadOwns();
  ++mParent->mRecycleLockCount;

  if (aSurface->GetType() == SurfaceType::DATA_SHARED) {
    mType = SurfaceType::DATA_RECYCLING_SHARED;
  }
}

RecyclingSourceSurface::~RecyclingSourceSurface() {
  MonitorAutoLock lock(mParent->mMonitor);
  MOZ_ASSERT(mParent->mRecycleLockCount > 0);
  if (--mParent->mRecycleLockCount == 0) {
    mParent->mMonitor.NotifyAll();
  }
}

}  // namespace image
}  // namespace mozilla