Revision control

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/**
 * This header contains various SurfaceFilter implementations that apply
 * transformations to image data, for usage with SurfacePipe.
 */

#ifndef mozilla_image_SurfaceFilters_h
#define mozilla_image_SurfaceFilters_h

#include <algorithm>
#include <stdint.h>
#include <string.h>

#include "mozilla/Likely.h"
#include "mozilla/Maybe.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/gfx/2D.h"
#include "skia/src/core/SkBlitRow.h"

#include "DownscalingFilter.h"
#include "SurfaceCache.h"
#include "SurfacePipe.h"

namespace mozilla {
namespace image {

//////////////////////////////////////////////////////////////////////////////
// DeinterlacingFilter
//////////////////////////////////////////////////////////////////////////////

template <typename PixelType, typename Next>
class DeinterlacingFilter;

/**
 * A configuration struct for DeinterlacingFilter.
 *
 * The 'PixelType' template parameter should be either uint32_t (for output to a
 * SurfaceSink) or uint8_t (for output to a PalettedSurfaceSink).
 */
template <typename PixelType>
struct DeinterlacingConfig {
  template <typename Next>
  using Filter = DeinterlacingFilter<PixelType, Next>;
  bool mProgressiveDisplay;  /// If true, duplicate rows during deinterlacing
                             /// to make progressive display look better, at
                             /// the cost of some performance.
};

/**
 * DeinterlacingFilter performs deinterlacing by reordering the rows that are
 * written to it.
 *
 * The 'PixelType' template parameter should be either uint32_t (for output to a
 * SurfaceSink) or uint8_t (for output to a PalettedSurfaceSink).
 *
 * The 'Next' template parameter specifies the next filter in the chain.
 */
template <typename PixelType, typename Next>
class DeinterlacingFilter final : public SurfaceFilter {
 public:
  DeinterlacingFilter()
      : mInputRow(0), mOutputRow(0), mPass(0), mProgressiveDisplay(true) {}

  template <typename... Rest>
  nsresult Configure(const DeinterlacingConfig<PixelType>& aConfig,
                     const Rest&... aRest) {
    nsresult rv = mNext.Configure(aRest...);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (sizeof(PixelType) == 1 && !mNext.IsValidPalettedPipe()) {
      NS_WARNING("Paletted DeinterlacingFilter used with non-paletted pipe?");
      return NS_ERROR_INVALID_ARG;
    }
    if (sizeof(PixelType) == 4 && mNext.IsValidPalettedPipe()) {
      NS_WARNING("Non-paletted DeinterlacingFilter used with paletted pipe?");
      return NS_ERROR_INVALID_ARG;
    }

    gfx::IntSize outputSize = mNext.InputSize();
    mProgressiveDisplay = aConfig.mProgressiveDisplay;

    const uint32_t bufferSize =
        outputSize.width * outputSize.height * sizeof(PixelType);

    // Use the size of the SurfaceCache as a heuristic to avoid gigantic
    // allocations. Even if DownscalingFilter allowed us to allocate space for
    // the output image, the deinterlacing buffer may still be too big, and
    // fallible allocation won't always save us in the presence of overcommit.
    if (!SurfaceCache::CanHold(bufferSize)) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    // Allocate the buffer, which contains deinterlaced scanlines of the image.
    // The buffer is necessary so that we can output rows which have already
    // been deinterlaced again on subsequent passes. Since a later stage in the
    // pipeline may be transforming the rows it receives (for example, by
    // downscaling them), the rows may no longer exist in their original form on
    // the surface itself.
    mBuffer.reset(new (fallible) uint8_t[bufferSize]);
    if (MOZ_UNLIKELY(!mBuffer)) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    // Clear the buffer to avoid writing uninitialized memory to the output.
    memset(mBuffer.get(), 0, bufferSize);

    ConfigureFilter(outputSize, sizeof(PixelType));
    return NS_OK;
  }

  bool IsValidPalettedPipe() const override {
    return sizeof(PixelType) == 1 && mNext.IsValidPalettedPipe();
  }

  Maybe<SurfaceInvalidRect> TakeInvalidRect() override {
    return mNext.TakeInvalidRect();
  }

 protected:
  uint8_t* DoResetToFirstRow() override {
    mNext.ResetToFirstRow();
    mPass = 0;
    mInputRow = 0;
    mOutputRow = InterlaceOffset(mPass);
    return GetRowPointer(mOutputRow);
  }

  uint8_t* DoAdvanceRow() override {
    if (mPass >= 4) {
      return nullptr;  // We already finished all passes.
    }
    if (mInputRow >= InputSize().height) {
      return nullptr;  // We already got all the input rows we expect.
    }

    // Duplicate from the first Haeberli row to the remaining Haeberli rows
    // within the buffer.
    DuplicateRows(
        HaeberliOutputStartRow(mPass, mProgressiveDisplay, mOutputRow),
        HaeberliOutputUntilRow(mPass, mProgressiveDisplay, InputSize(),
                               mOutputRow));

    // Write the current set of Haeberli rows (which contains the current row)
    // to the next stage in the pipeline.
    OutputRows(HaeberliOutputStartRow(mPass, mProgressiveDisplay, mOutputRow),
               HaeberliOutputUntilRow(mPass, mProgressiveDisplay, InputSize(),
                                      mOutputRow));

    // Determine which output row the next input row corresponds to.
    bool advancedPass = false;
    uint32_t stride = InterlaceStride(mPass);
    int32_t nextOutputRow = mOutputRow + stride;
    while (nextOutputRow >= InputSize().height) {
      // Copy any remaining rows from the buffer.
      if (!advancedPass) {
        OutputRows(HaeberliOutputUntilRow(mPass, mProgressiveDisplay,
                                          InputSize(), mOutputRow),
                   InputSize().height);
      }

      // We finished the current pass; advance to the next one.
      mPass++;
      if (mPass >= 4) {
        return nullptr;  // Finished all passes.
      }

      // Tell the next pipeline stage that we're starting the next pass.
      mNext.ResetToFirstRow();

      // Update our state to reflect the pass change.
      advancedPass = true;
      stride = InterlaceStride(mPass);
      nextOutputRow = InterlaceOffset(mPass);
    }

    MOZ_ASSERT(nextOutputRow >= 0);
    MOZ_ASSERT(nextOutputRow < InputSize().height);

    MOZ_ASSERT(
        HaeberliOutputStartRow(mPass, mProgressiveDisplay, nextOutputRow) >= 0);
    MOZ_ASSERT(HaeberliOutputStartRow(mPass, mProgressiveDisplay,
                                      nextOutputRow) < InputSize().height);
    MOZ_ASSERT(HaeberliOutputStartRow(mPass, mProgressiveDisplay,
                                      nextOutputRow) <= nextOutputRow);

    MOZ_ASSERT(HaeberliOutputUntilRow(mPass, mProgressiveDisplay, InputSize(),
                                      nextOutputRow) >= 0);
    MOZ_ASSERT(HaeberliOutputUntilRow(mPass, mProgressiveDisplay, InputSize(),
                                      nextOutputRow) <= InputSize().height);
    MOZ_ASSERT(HaeberliOutputUntilRow(mPass, mProgressiveDisplay, InputSize(),
                                      nextOutputRow) > nextOutputRow);

    int32_t nextHaeberliOutputRow =
        HaeberliOutputStartRow(mPass, mProgressiveDisplay, nextOutputRow);

    // Copy rows from the buffer until we reach the desired output row.
    if (advancedPass) {
      OutputRows(0, nextHaeberliOutputRow);
    } else {
      OutputRows(HaeberliOutputUntilRow(mPass, mProgressiveDisplay, InputSize(),
                                        mOutputRow),
                 nextHaeberliOutputRow);
    }

    // Update our position within the buffer.
    mInputRow++;
    mOutputRow = nextOutputRow;

    // We'll actually write to the first Haeberli output row, then copy it until
    // we reach the last Haeberli output row. The assertions above make sure
    // this always includes mOutputRow.
    return GetRowPointer(nextHaeberliOutputRow);
  }

 private:
  static uint32_t InterlaceOffset(uint32_t aPass) {
    MOZ_ASSERT(aPass < 4, "Invalid pass");
    static const uint8_t offset[] = {0, 4, 2, 1};
    return offset[aPass];
  }

  static uint32_t InterlaceStride(uint32_t aPass) {
    MOZ_ASSERT(aPass < 4, "Invalid pass");
    static const uint8_t stride[] = {8, 8, 4, 2};
    return stride[aPass];
  }

  static int32_t HaeberliOutputStartRow(uint32_t aPass,
                                        bool aProgressiveDisplay,
                                        int32_t aOutputRow) {
    MOZ_ASSERT(aPass < 4, "Invalid pass");
    static const uint8_t firstRowOffset[] = {3, 1, 0, 0};

    if (aProgressiveDisplay) {
      return std::max(aOutputRow - firstRowOffset[aPass], 0);
    } else {
      return aOutputRow;
    }
  }

  static int32_t HaeberliOutputUntilRow(uint32_t aPass,
                                        bool aProgressiveDisplay,
                                        const gfx::IntSize& aInputSize,
                                        int32_t aOutputRow) {
    MOZ_ASSERT(aPass < 4, "Invalid pass");
    static const uint8_t lastRowOffset[] = {4, 2, 1, 0};

    if (aProgressiveDisplay) {
      return std::min(aOutputRow + lastRowOffset[aPass],
                      aInputSize.height - 1) +
             1;  // Add one because this is an open interval on the right.
    } else {
      return aOutputRow + 1;
    }
  }

  void DuplicateRows(int32_t aStart, int32_t aUntil) {
    MOZ_ASSERT(aStart >= 0);
    MOZ_ASSERT(aUntil >= 0);

    if (aUntil <= aStart || aStart >= InputSize().height) {
      return;
    }

    // The source row is the first row in the range.
    const uint8_t* sourceRowPointer = GetRowPointer(aStart);

    // We duplicate the source row into each subsequent row in the range.
    for (int32_t destRow = aStart + 1; destRow < aUntil; ++destRow) {
      uint8_t* destRowPointer = GetRowPointer(destRow);
      memcpy(destRowPointer, sourceRowPointer,
             InputSize().width * sizeof(PixelType));
    }
  }

  void OutputRows(int32_t aStart, int32_t aUntil) {
    MOZ_ASSERT(aStart >= 0);
    MOZ_ASSERT(aUntil >= 0);

    if (aUntil <= aStart || aStart >= InputSize().height) {
      return;
    }

    for (int32_t rowToOutput = aStart; rowToOutput < aUntil; ++rowToOutput) {
      mNext.WriteBuffer(
          reinterpret_cast<PixelType*>(GetRowPointer(rowToOutput)));
    }
  }

  uint8_t* GetRowPointer(uint32_t aRow) const {
    uint32_t offset = aRow * InputSize().width * sizeof(PixelType);
    MOZ_ASSERT(
        offset < InputSize().width * InputSize().height * sizeof(PixelType),
        "Start of row is outside of image");
    MOZ_ASSERT(offset + InputSize().width * sizeof(PixelType) <=
                   InputSize().width * InputSize().height * sizeof(PixelType),
               "End of row is outside of image");
    return mBuffer.get() + offset;
  }

  Next mNext;  /// The next SurfaceFilter in the chain.

  UniquePtr<uint8_t[]> mBuffer;  /// The buffer used to store reordered rows.
  int32_t mInputRow;             /// The current row we're reading. (0-indexed)
  int32_t mOutputRow;            /// The current row we're writing. (0-indexed)
  uint8_t mPass;                 /// Which pass we're on. (0-indexed)
  bool mProgressiveDisplay;      /// If true, duplicate rows to optimize for
                                 /// progressive display.
};

//////////////////////////////////////////////////////////////////////////////
// BlendAnimationFilter
//////////////////////////////////////////////////////////////////////////////

template <typename Next>
class BlendAnimationFilter;

/**
 * A configuration struct for BlendAnimationFilter.
 */
struct BlendAnimationConfig {
  template <typename Next>
  using Filter = BlendAnimationFilter<Next>;
  Decoder* mDecoder;  /// The decoder producing the animation.
};

/**
 * BlendAnimationFilter turns a partial image as part of an animation into a
 * complete frame given its frame rect, blend method, and the base frame's
 * data buffer, frame rect and disposal method. Any excess data caused by a
 * frame rect not being contained by the output size will be discarded.
 *
 * The base frame is an already produced complete frame from the animation.
 * It may be any previous frame depending on the disposal method, although
 * most often it will be the immediate previous frame to the current we are
 * generating.
 *
 * The 'Next' template parameter specifies the next filter in the chain.
 */
template <typename Next>
class BlendAnimationFilter final : public SurfaceFilter {
 public:
  BlendAnimationFilter()
      : mRow(0),
        mRowLength(0),
        mRecycleRow(0),
        mRecycleRowMost(0),
        mRecycleRowOffset(0),
        mRecycleRowLength(0),
        mClearRow(0),
        mClearRowMost(0),
        mClearPrefixLength(0),
        mClearInfixOffset(0),
        mClearInfixLength(0),
        mClearPostfixOffset(0),
        mClearPostfixLength(0),
        mOverProc(nullptr),
        mBaseFrameStartPtr(nullptr),
        mBaseFrameRowPtr(nullptr) {}

  template <typename... Rest>
  nsresult Configure(const BlendAnimationConfig& aConfig,
                     const Rest&... aRest) {
    nsresult rv = mNext.Configure(aRest...);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (!aConfig.mDecoder || !aConfig.mDecoder->ShouldBlendAnimation()) {
      MOZ_ASSERT_UNREACHABLE("Expected image decoder that is blending!");
      return NS_ERROR_INVALID_ARG;
    }

    imgFrame* currentFrame = aConfig.mDecoder->GetCurrentFrame();
    if (!currentFrame) {
      MOZ_ASSERT_UNREACHABLE("Decoder must have current frame!");
      return NS_ERROR_FAILURE;
    }

    mFrameRect = mUnclampedFrameRect = currentFrame->GetBlendRect();
    gfx::IntSize outputSize = mNext.InputSize();
    mRowLength = outputSize.width * sizeof(uint32_t);

    // Forbid frame rects with negative size.
    if (mUnclampedFrameRect.width < 0 || mUnclampedFrameRect.height < 0) {
      return NS_ERROR_FAILURE;
    }

    // Clamp mFrameRect to the output size.
    gfx::IntRect outputRect(0, 0, outputSize.width, outputSize.height);
    mFrameRect = mFrameRect.Intersect(outputRect);
    bool fullFrame = outputRect.IsEqualEdges(mFrameRect);

    // If there's no intersection, |mFrameRect| will be an empty rect positioned
    // at the maximum of |inputRect|'s and |aFrameRect|'s coordinates, which is
    // not what we want. Force it to (0, 0) sized 0 x 0 in that case.
    if (mFrameRect.IsEmpty()) {
      mFrameRect.SetRect(0, 0, 0, 0);
    }

    BlendMethod blendMethod = currentFrame->GetBlendMethod();
    switch (blendMethod) {
      default:
        blendMethod = BlendMethod::SOURCE;
        MOZ_FALLTHROUGH_ASSERT("Unexpected blend method!");
      case BlendMethod::SOURCE:
        // Default, overwrites base frame data (if any) with new.
        break;
      case BlendMethod::OVER:
        // OVER only has an impact on the output if we have new data to blend
        // with.
        if (mFrameRect.IsEmpty()) {
          blendMethod = BlendMethod::SOURCE;
        }
        break;
    }

    // Determine what we need to clear and what we need to copy. If this frame
    // is a full frame and uses source blending, there is no need to consider
    // the disposal method of the previous frame.
    gfx::IntRect dirtyRect(outputRect);
    gfx::IntRect clearRect;
    if (!fullFrame || blendMethod != BlendMethod::SOURCE) {
      const RawAccessFrameRef& restoreFrame =
          aConfig.mDecoder->GetRestoreFrameRef();
      if (restoreFrame) {
        MOZ_ASSERT(restoreFrame->GetImageSize() == outputSize);
        MOZ_ASSERT(restoreFrame->IsFinished());

        // We can safely use this pointer without holding a RawAccessFrameRef
        // because the decoder will keep it alive for us.
        mBaseFrameStartPtr = restoreFrame.Data();
        MOZ_ASSERT(mBaseFrameStartPtr);

        gfx::IntRect restoreBlendRect = restoreFrame->GetBoundedBlendRect();
        gfx::IntRect restoreDirtyRect = aConfig.mDecoder->GetRestoreDirtyRect();
        switch (restoreFrame->GetDisposalMethod()) {
          default:
          case DisposalMethod::RESTORE_PREVIOUS:
            MOZ_FALLTHROUGH_ASSERT("Unexpected DisposalMethod");
          case DisposalMethod::NOT_SPECIFIED:
          case DisposalMethod::KEEP:
            dirtyRect = mFrameRect.Union(restoreDirtyRect);
            break;
          case DisposalMethod::CLEAR:
            // We only need to clear if the rect is outside the frame rect (i.e.
            // overwrites a non-overlapping area) or the blend method may cause
            // us to combine old data and new.
            if (!mFrameRect.Contains(restoreBlendRect) ||
                blendMethod == BlendMethod::OVER) {
              clearRect = restoreBlendRect;
            }

            // If we are clearing the whole frame, we do not need to retain a
            // reference to the base frame buffer.
            if (outputRect.IsEqualEdges(clearRect)) {
              mBaseFrameStartPtr = nullptr;
            } else {
              dirtyRect = mFrameRect.Union(restoreDirtyRect).Union(clearRect);
            }
            break;
        }
      } else if (!fullFrame) {
        // This must be the first frame, clear everything.
        clearRect = outputRect;
      }
    }

    // We may be able to reuse parts of our underlying buffer that we are
    // writing the new frame to. The recycle rect gives us the invalidation
    // region which needs to be copied from the restore frame.
    const gfx::IntRect& recycleRect = aConfig.mDecoder->GetRecycleRect();
    mRecycleRow = recycleRect.y;
    mRecycleRowMost = recycleRect.YMost();
    mRecycleRowOffset = recycleRect.x * sizeof(uint32_t);
    mRecycleRowLength = recycleRect.width * sizeof(uint32_t);

    if (!clearRect.IsEmpty()) {
      // The clear rect interacts with the recycle rect because we need to copy
      // the prefix and postfix data from the base frame. The one thing we do
      // know is that the infix area is always cleared explicitly.
      mClearRow = clearRect.y;
      mClearRowMost = clearRect.YMost();
      mClearInfixOffset = clearRect.x * sizeof(uint32_t);
      mClearInfixLength = clearRect.width * sizeof(uint32_t);

      // The recycle row offset is where we need to begin copying base frame
      // data for a row. If this offset begins after or at the clear infix
      // offset, then there is no prefix data at all.
      if (mClearInfixOffset > mRecycleRowOffset) {
        mClearPrefixLength = mClearInfixOffset - mRecycleRowOffset;
      }

      // Similar to the prefix, if the postfix offset begins outside the recycle
      // rect, then we know we already have all the data we need.
      mClearPostfixOffset = mClearInfixOffset + mClearInfixLength;
      size_t recycleRowEndOffset = mRecycleRowOffset + mRecycleRowLength;
      if (mClearPostfixOffset < recycleRowEndOffset) {
        mClearPostfixLength = recycleRowEndOffset - mClearPostfixOffset;
      }
    }

    // The dirty rect, or delta between the current frame and the previous frame
    // (chronologically, not necessarily the restore frame) is the last
    // animation parameter we need to initialize the new frame with.
    currentFrame->SetDirtyRect(dirtyRect);

    if (!mBaseFrameStartPtr) {
      // Switch to SOURCE if no base frame to ensure we don't allocate an
      // intermediate buffer below. OVER does nothing without the base frame
      // data.
      blendMethod = BlendMethod::SOURCE;
    }

    // Skia provides arch-specific accelerated methods to perform blending.
    // Note that this is an internal Skia API and may be prone to change,
    // but we avoid the overhead of setting up Skia objects.
    if (blendMethod == BlendMethod::OVER) {
      mOverProc = SkBlitRow::Factory32(SkBlitRow::kSrcPixelAlpha_Flag32);
      MOZ_ASSERT(mOverProc);
    }

    // We don't need an intermediate buffer unless the unclamped frame rect
    // width is larger than the clamped frame rect width. In that case, the
    // caller will end up writing data that won't end up in the final image at
    // all, and we'll need a buffer to give that data a place to go.
    if (mFrameRect.width < mUnclampedFrameRect.width || mOverProc) {
      mBuffer.reset(new (fallible)
                        uint8_t[mUnclampedFrameRect.width * sizeof(uint32_t)]);
      if (MOZ_UNLIKELY(!mBuffer)) {
        return NS_ERROR_OUT_OF_MEMORY;
      }

      memset(mBuffer.get(), 0, mUnclampedFrameRect.width * sizeof(uint32_t));
    }

    ConfigureFilter(mUnclampedFrameRect.Size(), sizeof(uint32_t));
    return NS_OK;
  }

  Maybe<SurfaceInvalidRect> TakeInvalidRect() override {
    return mNext.TakeInvalidRect();
  }

 protected:
  uint8_t* DoResetToFirstRow() override {
    uint8_t* rowPtr = mNext.ResetToFirstRow();
    if (rowPtr == nullptr) {
      mRow = mFrameRect.YMost();
      return nullptr;
    }

    mRow = 0;
    mBaseFrameRowPtr = mBaseFrameStartPtr;

    while (mRow < mFrameRect.y) {
      WriteBaseFrameRow();
      AdvanceRowOutsideFrameRect();
    }

    // We're at the beginning of the frame rect now, so return if we're either
    // ready for input or we're already done.
    rowPtr = mBuffer ? mBuffer.get() : mNext.CurrentRowPointer();
    if (!mFrameRect.IsEmpty() || rowPtr == nullptr) {
      // Note that the pointer we're returning is for the next row we're
      // actually going to write to, but we may discard writes before that point
      // if mRow < mFrameRect.y.
      mRow = mUnclampedFrameRect.y;
      WriteBaseFrameRow();
      return AdjustRowPointer(rowPtr);
    }

    // We've finished the region specified by the frame rect, but the frame rect
    // is empty, so we need to output the rest of the image immediately. Advance
    // to the end of the next pipeline stage's buffer, outputting rows that are
    // copied from the base frame and/or cleared.
    WriteBaseFrameRowsUntilComplete();

    mRow = mFrameRect.YMost();
    return nullptr;  // We're done.
  }

  uint8_t* DoAdvanceRow() override {
    uint8_t* rowPtr = nullptr;

    const int32_t currentRow = mRow;
    mRow++;

    // The unclamped frame rect has a negative offset which means -y rows from
    // the decoder need to be discarded before we advance properly.
    if (currentRow >= 0 && mBaseFrameRowPtr) {
      mBaseFrameRowPtr += mRowLength;
    }

    if (currentRow < mFrameRect.y) {
      // This row is outside of the frame rect, so just drop it on the floor.
      rowPtr = mBuffer ? mBuffer.get() : mNext.CurrentRowPointer();
      return AdjustRowPointer(rowPtr);
    } else if (NS_WARN_IF(currentRow >= mFrameRect.YMost())) {
      return nullptr;
    }

    // If we had to buffer, merge the data into the row. Otherwise we had the
    // decoder write directly to the next stage's buffer.
    if (mBuffer) {
      int32_t width = mFrameRect.width;
      uint32_t* dst = reinterpret_cast<uint32_t*>(mNext.CurrentRowPointer());
      uint32_t* src = reinterpret_cast<uint32_t*>(mBuffer.get()) -
                      std::min(mUnclampedFrameRect.x, 0);
      dst += mFrameRect.x;
      if (mOverProc) {
        mOverProc(dst, src, width, 0xFF);
      } else {
        memcpy(dst, src, width * sizeof(uint32_t));
      }
      rowPtr = mNext.AdvanceRow() ? mBuffer.get() : nullptr;
    } else {
      MOZ_ASSERT(!mOverProc);
      rowPtr = mNext.AdvanceRow();
    }

    // If there's still more data coming or we're already done, just adjust the
    // pointer and return.
    if (mRow < mFrameRect.YMost() || rowPtr == nullptr) {
      WriteBaseFrameRow();
      return AdjustRowPointer(rowPtr);
    }

    // We've finished the region specified by the frame rect. Advance to the end
    // of the next pipeline stage's buffer, outputting rows that are copied from
    // the base frame and/or cleared.
    WriteBaseFrameRowsUntilComplete();

    return nullptr;  // We're done.
  }

 private:
  void WriteBaseFrameRowsUntilComplete() {
    do {
      WriteBaseFrameRow();
    } while (AdvanceRowOutsideFrameRect());
  }

  void WriteBaseFrameRow() {
    uint8_t* dest = mNext.CurrentRowPointer();
    if (!dest) {
      return;
    }

    // No need to copy pixels from the base frame for rows that will not change
    // between the recycled frame and the new frame.
    bool needBaseFrame = mRow >= mRecycleRow && mRow < mRecycleRowMost;

    if (!mBaseFrameRowPtr) {
      // No base frame, so we are clearing everything.
      if (needBaseFrame) {
        memset(dest + mRecycleRowOffset, 0, mRecycleRowLength);
      }
    } else if (mClearRow <= mRow && mClearRowMost > mRow) {
      // We have a base frame, but we are inside the area to be cleared.
      // Only copy the data we need from the source.
      if (needBaseFrame) {
        memcpy(dest + mRecycleRowOffset, mBaseFrameRowPtr + mRecycleRowOffset,
               mClearPrefixLength);
        memcpy(dest + mClearPostfixOffset,
               mBaseFrameRowPtr + mClearPostfixOffset, mClearPostfixLength);
      }
      memset(dest + mClearInfixOffset, 0, mClearInfixLength);
    } else if (needBaseFrame) {
      memcpy(dest + mRecycleRowOffset, mBaseFrameRowPtr + mRecycleRowOffset,
             mRecycleRowLength);
    }
  }

  bool AdvanceRowOutsideFrameRect() {
    // The unclamped frame rect may have a negative offset however we should
    // never be advancing the row via this path (otherwise mBaseFrameRowPtr
    // will be wrong.
    MOZ_ASSERT(mRow >= 0);
    MOZ_ASSERT(mRow < mFrameRect.y || mRow >= mFrameRect.YMost());

    mRow++;
    if (mBaseFrameRowPtr) {
      mBaseFrameRowPtr += mRowLength;
    }

    return mNext.AdvanceRow() != nullptr;
  }

  uint8_t* AdjustRowPointer(uint8_t* aNextRowPointer) const {
    if (mBuffer) {
      MOZ_ASSERT(aNextRowPointer == mBuffer.get() ||
                 aNextRowPointer == nullptr);
      return aNextRowPointer;  // No adjustment needed for an intermediate
                               // buffer.
    }

    if (mFrameRect.IsEmpty() || mRow >= mFrameRect.YMost() ||
        aNextRowPointer == nullptr) {
      return nullptr;  // Nothing left to write.
    }

    MOZ_ASSERT(!mOverProc);
    return aNextRowPointer + mFrameRect.x * sizeof(uint32_t);
  }

  Next mNext;  /// The next SurfaceFilter in the chain.

  gfx::IntRect mFrameRect;  /// The surface subrect which contains data,
                            /// clamped to the image size.
  gfx::IntRect mUnclampedFrameRect;  /// The frame rect before clamping.
  UniquePtr<uint8_t[]> mBuffer;      /// The intermediate buffer, if one is
                                     /// necessary because the frame rect width
  /// is larger than the image's logical width.
  int32_t mRow;              /// The row in unclamped frame rect space
                             /// that we're currently writing.
  size_t mRowLength;         /// Length in bytes of a row that is the input
                             /// for the next filter.
  int32_t mRecycleRow;       /// The starting row of the recycle rect.
  int32_t mRecycleRowMost;   /// The ending row of the recycle rect.
  size_t mRecycleRowOffset;  /// Row offset in bytes of the recycle rect.
  size_t mRecycleRowLength;  /// Row length in bytes of the recycle rect.

  /// The frame area to clear before blending the current frame.
  int32_t mClearRow;           /// The starting row of the clear rect.
  int32_t mClearRowMost;       /// The ending row of the clear rect.
  size_t mClearPrefixLength;   /// Row length in bytes of clear prefix.
  size_t mClearInfixOffset;    /// Row offset in bytes of clear area.
  size_t mClearInfixLength;    /// Row length in bytes of clear area.
  size_t mClearPostfixOffset;  /// Row offset in bytes of clear postfix.
  size_t mClearPostfixLength;  /// Row length in bytes of clear postfix.

  SkBlitRow::Proc32 mOverProc;  /// Function pointer to perform over blending.
  const uint8_t*
      mBaseFrameStartPtr;           /// Starting row pointer to the base frame
                                    /// data from which we copy pixel data from.
  const uint8_t* mBaseFrameRowPtr;  /// Current row pointer to the base frame
                                    /// data.
};

//////////////////////////////////////////////////////////////////////////////
// RemoveFrameRectFilter
//////////////////////////////////////////////////////////////////////////////

template <typename Next>
class RemoveFrameRectFilter;

/**
 * A configuration struct for RemoveFrameRectFilter.
 */
struct RemoveFrameRectConfig {
  template <typename Next>
  using Filter = RemoveFrameRectFilter<Next>;
  gfx::IntRect mFrameRect;  /// The surface subrect which contains data.
};

/**
 * RemoveFrameRectFilter turns an image with a frame rect that does not match
 * its logical size into an image with no frame rect. It does this by writing
 * transparent pixels into any padding regions and throwing away excess data.
 *
 * The 'Next' template parameter specifies the next filter in the chain.
 */
template <typename Next>
class RemoveFrameRectFilter final : public SurfaceFilter {
 public:
  RemoveFrameRectFilter() : mRow(0) {}

  template <typename... Rest>
  nsresult Configure(const RemoveFrameRectConfig& aConfig,
                     const Rest&... aRest) {
    nsresult rv = mNext.Configure(aRest...);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (mNext.IsValidPalettedPipe()) {
      NS_WARNING("RemoveFrameRectFilter used with paletted pipe?");
      return NS_ERROR_INVALID_ARG;
    }

    mFrameRect = mUnclampedFrameRect = aConfig.mFrameRect;
    gfx::IntSize outputSize = mNext.InputSize();

    // Forbid frame rects with negative size.
    if (aConfig.mFrameRect.Width() < 0 || aConfig.mFrameRect.Height() < 0) {
      return NS_ERROR_INVALID_ARG;
    }

    // Clamp mFrameRect to the output size.
    gfx::IntRect outputRect(0, 0, outputSize.width, outputSize.height);
    mFrameRect = mFrameRect.Intersect(outputRect);

    // If there's no intersection, |mFrameRect| will be an empty rect positioned
    // at the maximum of |inputRect|'s and |aFrameRect|'s coordinates, which is
    // not what we want. Force it to (0, 0) in that case.
    if (mFrameRect.IsEmpty()) {
      mFrameRect.MoveTo(0, 0);
    }

    // We don't need an intermediate buffer unless the unclamped frame rect
    // width is larger than the clamped frame rect width. In that case, the
    // caller will end up writing data that won't end up in the final image at
    // all, and we'll need a buffer to give that data a place to go.
    if (mFrameRect.Width() < mUnclampedFrameRect.Width()) {
      mBuffer.reset(new (
          fallible) uint8_t[mUnclampedFrameRect.Width() * sizeof(uint32_t)]);
      if (MOZ_UNLIKELY(!mBuffer)) {
        return NS_ERROR_OUT_OF_MEMORY;
      }

      memset(mBuffer.get(), 0, mUnclampedFrameRect.Width() * sizeof(uint32_t));
    }

    ConfigureFilter(mUnclampedFrameRect.Size(), sizeof(uint32_t));
    return NS_OK;
  }

  Maybe<SurfaceInvalidRect> TakeInvalidRect() override {
    return mNext.TakeInvalidRect();
  }

 protected:
  uint8_t* DoResetToFirstRow() override {
    uint8_t* rowPtr = mNext.ResetToFirstRow();
    if (rowPtr == nullptr) {
      mRow = mFrameRect.YMost();
      return nullptr;
    }

    mRow = mUnclampedFrameRect.Y();

    // Advance the next pipeline stage to the beginning of the frame rect,
    // outputting blank rows.
    if (mFrameRect.Y() > 0) {
      for (int32_t rowToOutput = 0; rowToOutput < mFrameRect.Y();
           ++rowToOutput) {
        mNext.WriteEmptyRow();
      }
    }

    // We're at the beginning of the frame rect now, so return if we're either
    // ready for input or we're already done.
    rowPtr = mBuffer ? mBuffer.get() : mNext.CurrentRowPointer();
    if (!mFrameRect.IsEmpty() || rowPtr == nullptr) {
      // Note that the pointer we're returning is for the next row we're
      // actually going to write to, but we may discard writes before that point
      // if mRow < mFrameRect.y.
      return AdjustRowPointer(rowPtr);
    }

    // We've finished the region specified by the frame rect, but the frame rect
    // is empty, so we need to output the rest of the image immediately. Advance
    // to the end of the next pipeline stage's buffer, outputting blank rows.
    while (mNext.WriteEmptyRow() == WriteState::NEED_MORE_DATA) {
    }

    mRow = mFrameRect.YMost();
    return nullptr;  // We're done.
  }

  uint8_t* DoAdvanceRow() override {
    uint8_t* rowPtr = nullptr;

    const int32_t currentRow = mRow;
    mRow++;

    if (currentRow < mFrameRect.Y()) {
      // This row is outside of the frame rect, so just drop it on the floor.
      rowPtr = mBuffer ? mBuffer.get() : mNext.CurrentRowPointer();
      return AdjustRowPointer(rowPtr);
    } else if (currentRow >= mFrameRect.YMost()) {
      NS_WARNING("RemoveFrameRectFilter: Advancing past end of frame rect");
      return nullptr;
    }

    // If we had to buffer, copy the data. Otherwise, just advance the row.
    if (mBuffer) {
      // We write from the beginning of the buffer unless
      // |mUnclampedFrameRect.x| is negative; if that's the case, we have to
      // skip the portion of the unclamped frame rect that's outside the row.
      uint32_t* source = reinterpret_cast<uint32_t*>(mBuffer.get()) -
                         std::min(mUnclampedFrameRect.X(), 0);

      // We write |mFrameRect.width| columns starting at |mFrameRect.x|; we've
      // already clamped these values to the size of the output, so we don't
      // have to worry about bounds checking here (though WriteBuffer() will do
      // it for us in any case).
      WriteState state =
          mNext.WriteBuffer(source, mFrameRect.X(), mFrameRect.Width());

      rowPtr = state == WriteState::NEED_MORE_DATA ? mBuffer.get() : nullptr;
    } else {
      rowPtr = mNext.AdvanceRow();
    }

    // If there's still more data coming or we're already done, just adjust the
    // pointer and return.
    if (mRow < mFrameRect.YMost() || rowPtr == nullptr) {
      return AdjustRowPointer(rowPtr);
    }

    // We've finished the region specified by the frame rect. Advance to the end
    // of the next pipeline stage's buffer, outputting blank rows.
    while (mNext.WriteEmptyRow() == WriteState::NEED_MORE_DATA) {
    }

    mRow = mFrameRect.YMost();
    return nullptr;  // We're done.
  }

 private:
  uint8_t* AdjustRowPointer(uint8_t* aNextRowPointer) const {
    if (mBuffer) {
      MOZ_ASSERT(aNextRowPointer == mBuffer.get() ||
                 aNextRowPointer == nullptr);
      return aNextRowPointer;  // No adjustment needed for an intermediate
                               // buffer.
    }

    if (mFrameRect.IsEmpty() || mRow >= mFrameRect.YMost() ||
        aNextRowPointer == nullptr) {
      return nullptr;  // Nothing left to write.
    }

    return aNextRowPointer + mFrameRect.X() * sizeof(uint32_t);
  }

  Next mNext;  /// The next SurfaceFilter in the chain.

  gfx::IntRect mFrameRect;  /// The surface subrect which contains data,
                            /// clamped to the image size.
  gfx::IntRect mUnclampedFrameRect;  /// The frame rect before clamping.
  UniquePtr<uint8_t[]> mBuffer;      /// The intermediate buffer, if one is
                                     /// necessary because the frame rect width
  /// is larger than the image's logical width.
  int32_t mRow;  /// The row in unclamped frame rect space
                 /// that we're currently writing.
};

//////////////////////////////////////////////////////////////////////////////
// ADAM7InterpolatingFilter
//////////////////////////////////////////////////////////////////////////////

template <typename Next>
class ADAM7InterpolatingFilter;

/**
 * A configuration struct for ADAM7InterpolatingFilter.
 */
struct ADAM7InterpolatingConfig {
  template <typename Next>
  using Filter = ADAM7InterpolatingFilter<Next>;
};

/**
 * ADAM7InterpolatingFilter performs bilinear interpolation over an ADAM7
 * interlaced image.
 *
 * ADAM7 breaks up the image into 8x8 blocks. On each of the 7 passes, a new set
 * of pixels in each block receives their final values, according to the
 * following pattern:
 *
 *    1 6 4 6 2 6 4 6
 *    7 7 7 7 7 7 7 7
 *    5 6 5 6 5 6 5 6
 *    7 7 7 7 7 7 7 7
 *    3 6 4 6 3 6 4 6
 *    7 7 7 7 7 7 7 7
 *    5 6 5 6 5 6 5 6
 *    7 7 7 7 7 7 7 7
 *
 * When rendering the pixels that have not yet received their final values, we
 * can get much better intermediate results if we interpolate between
 * the pixels we *have* gotten so far. This filter performs bilinear
 * interpolation by first performing linear interpolation horizontally for each
 * "important" row (which we'll define as a row that has received any pixels
 * with final values at all) and then performing linear interpolation vertically
 * to produce pixel values for rows which aren't important on the current pass.
 *
 * Note that this filter totally ignores the data which is written to rows which
 * aren't important on the current pass! It's fine to write nothing at all for
 * these rows, although doing so won't cause any harm.
 *
 * XXX(seth): In bug 1280552 we'll add a SIMD implementation for this filter.
 *
 * The 'Next' template parameter specifies the next filter in the chain.
 */
template <typename Next>
class ADAM7InterpolatingFilter final : public SurfaceFilter {
 public:
  ADAM7InterpolatingFilter()
      : mPass(0)  // The current pass, in the range 1..7. Starts at 0 so that
                  // DoResetToFirstRow() doesn't have to special case the first
                  // pass.
        ,
        mRow(0) {}

  template <typename... Rest>
  nsresult Configure(const ADAM7InterpolatingConfig& aConfig,
                     const Rest&... aRest) {
    nsresult rv = mNext.Configure(aRest...);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (mNext.IsValidPalettedPipe()) {
      NS_WARNING("ADAM7InterpolatingFilter used with paletted pipe?");
      return NS_ERROR_INVALID_ARG;
    }

    // We have two intermediate buffers, one for the previous row with final
    // pixel values and one for the row that the previous filter in the chain is
    // currently writing to.
    size_t inputWidthInBytes = mNext.InputSize().width * sizeof(uint32_t);
    mPreviousRow.reset(new (fallible) uint8_t[inputWidthInBytes]);
    if (MOZ_UNLIKELY(!mPreviousRow)) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    mCurrentRow.reset(new (fallible) uint8_t[inputWidthInBytes]);
    if (MOZ_UNLIKELY(!mCurrentRow)) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    memset(mPreviousRow.get(), 0, inputWidthInBytes);
    memset(mCurrentRow.get(), 0, inputWidthInBytes);

    ConfigureFilter(mNext.InputSize(), sizeof(uint32_t));
    return NS_OK;
  }

  Maybe<SurfaceInvalidRect> TakeInvalidRect() override {
    return mNext.TakeInvalidRect();
  }

 protected:
  uint8_t* DoResetToFirstRow() override {
    mRow = 0;
    mPass = std::min(mPass + 1, 7);

    uint8_t* rowPtr = mNext.ResetToFirstRow();
    if (mPass == 7) {
      // Short circuit this filter on the final pass, since all pixels have
      // their final values at that point.
      return rowPtr;
    }

    return mCurrentRow.get();
  }

  uint8_t* DoAdvanceRow() override {
    MOZ_ASSERT(0 < mPass && mPass <= 7, "Invalid pass");

    int32_t currentRow = mRow;
    ++mRow;

    if (mPass == 7) {
      // On the final pass we short circuit this filter totally.
      return mNext.AdvanceRow();
    }

    const int32_t lastImportantRow =
        LastImportantRow(InputSize().height, mPass);
    if (currentRow > lastImportantRow) {
      return nullptr;  // This pass is already complete.
    }

    if (!IsImportantRow(currentRow, mPass)) {
      // We just ignore whatever the caller gives us for these rows. We'll
      // interpolate them in later.
      return mCurrentRow.get();
    }

    // This is an important row. We need to perform horizontal interpolation for
    // these rows.
    InterpolateHorizontally(mCurrentRow.get(), InputSize().width, mPass);

    // Interpolate vertically between the previous important row and the current
    // important row. We skip this if the current row is 0 (which is always an
    // important row), because in that case there is no previous important row
    // to interpolate with.
    if (currentRow != 0) {
      InterpolateVertically(mPreviousRow.get(), mCurrentRow.get(), mPass,
                            mNext);
    }

    // Write out the current row itself, which, being an important row, does not
    // need vertical interpolation.
    uint32_t* currentRowAsPixels =
        reinterpret_cast<uint32_t*>(mCurrentRow.get());
    mNext.WriteBuffer(currentRowAsPixels);

    if (currentRow == lastImportantRow) {
      // This is the last important row, which completes this pass. Note that
      // for very small images, this may be the first row! Since there won't be
      // another important row, there's nothing to interpolate with vertically,
      // so we just duplicate this row until the end of the image.
      while (mNext.WriteBuffer(currentRowAsPixels) ==
             WriteState::NEED_MORE_DATA) {
      }

      // All of the remaining rows in the image were determined above, so we're
      // done.
      return nullptr;
    }

    // The current row is now the previous important row; save it.
    Swap(mPreviousRow, mCurrentRow);

    MOZ_ASSERT(mRow < InputSize().height,
               "Reached the end of the surface without "
               "hitting the last important row?");

    return mCurrentRow.get();
  }

 private:
  static void InterpolateVertically(uint8_t* aPreviousRow, uint8_t* aCurrentRow,
                                    uint8_t aPass, SurfaceFilter& aNext) {
    const float* weights = InterpolationWeights(ImportantRowStride(aPass));

    // We need to interpolate vertically to generate the rows between the
    // previous important row and the next one. Recall that important rows are
    // rows which contain at least some final pixels; see
    // InterpolateHorizontally() for some additional explanation as to what that
    // means. Note that we've already written out the previous important row, so
    // we start the iteration at 1.
    for (int32_t outRow = 1; outRow < ImportantRowStride(aPass); ++outRow) {
      const float weight = weights[outRow];

      // We iterate through the previous and current important row every time we
      // write out an interpolated row, so we need to copy the pointers.
      uint8_t* prevRowBytes = aPreviousRow;
      uint8_t* currRowBytes = aCurrentRow;

      // Write out the interpolated pixels. Interpolation is componentwise.
      aNext.template WritePixelsToRow<uint32_t>([&] {
        uint32_t pixel = 0;
        auto* component = reinterpret_cast<uint8_t*>(&pixel);
        *component++ =
            InterpolateByte(*prevRowBytes++, *currRowBytes++, weight);
        *component++ =
            InterpolateByte(*prevRowBytes++, *currRowBytes++, weight);
        *component++ =
            InterpolateByte(*prevRowBytes++, *currRowBytes++, weight);
        *component++ =
            InterpolateByte(*prevRowBytes++, *currRowBytes++, weight);
        return AsVariant(pixel);
      });
    }
  }

  static void InterpolateHorizontally(uint8_t* aRow, int32_t aWidth,
                                      uint8_t aPass) {
    // Collect the data we'll need to perform horizontal interpolation. The
    // terminology here bears some explanation: a "final pixel" is a pixel which
    // has received its final value. On each pass, a new set of pixels receives
    // their final value; see the diagram above of the 8x8 pattern that ADAM7
    // uses. Any pixel which hasn't received its final value on this pass
    // derives its value from either horizontal or vertical interpolation
    // instead.
    const size_t finalPixelStride = FinalPixelStride(aPass);
    const size_t finalPixelStrideBytes = finalPixelStride * sizeof(uint32_t);
    const size_t lastFinalPixel = LastFinalPixel(aWidth, aPass);
    const size_t lastFinalPixelBytes = lastFinalPixel * sizeof(uint32_t);
    const float* weights = InterpolationWeights(finalPixelStride);

    // Interpolate blocks of pixels which lie between two final pixels.
    // Horizontal interpolation is done in place, as we'll need the results
    // later when we vertically interpolate.
    for (size_t blockBytes = 0; blockBytes < lastFinalPixelBytes;
         blockBytes += finalPixelStrideBytes) {
      uint8_t* finalPixelA = aRow + blockBytes;
      uint8_t* finalPixelB = aRow + blockBytes + finalPixelStrideBytes;

      MOZ_ASSERT(finalPixelA < aRow + aWidth * sizeof(uint32_t),
                 "Running off end of buffer");
      MOZ_ASSERT(finalPixelB < aRow + aWidth * sizeof(uint32_t),
                 "Running off end of buffer");

      // Interpolate the individual pixels componentwise. Note that we start
      // iteration at 1 since we don't need to apply any interpolation to the
      // first pixel in the block, which has its final value.
      for (size_t pixelIndex = 1; pixelIndex < finalPixelStride; ++pixelIndex) {
        const float weight = weights[pixelIndex];
        uint8_t* pixel = aRow + blockBytes + pixelIndex * sizeof(uint32_t);

        MOZ_ASSERT(pixel < aRow + aWidth * sizeof(uint32_t),
                   "Running off end of buffer");

        for (size_t component = 0; component < sizeof(uint32_t); ++component) {
          pixel[component] = InterpolateByte(finalPixelA[component],
                                             finalPixelB[component], weight);
        }
      }
    }

    // For the pixels after the last final pixel in the row, there isn't a
    // second final pixel to interpolate with, so just duplicate.
    uint32_t* rowPixels = reinterpret_cast<uint32_t*>(aRow);
    uint32_t pixelToDuplicate = rowPixels[lastFinalPixel];
    for (int32_t pixelIndex = lastFinalPixel + 1; pixelIndex < aWidth;
         ++pixelIndex) {
      MOZ_ASSERT(pixelIndex < aWidth, "Running off end of buffer");
      rowPixels[pixelIndex] = pixelToDuplicate;
    }
  }

  static uint8_t InterpolateByte(uint8_t aByteA, uint8_t aByteB,
                                 float aWeight) {
    return uint8_t(aByteA * aWeight + aByteB * (1.0f - aWeight));
  }

  static int32_t ImportantRowStride(uint8_t aPass) {
    MOZ_ASSERT(0 < aPass && aPass <= 7, "Invalid pass");

    // The stride between important rows for each pass, with a dummy value for
    // the nonexistent pass 0.
    static int32_t strides[] = {1, 8, 8, 4, 4, 2, 2, 1};

    return strides[aPass];
  }

  static bool IsImportantRow(int32_t aRow, uint8_t aPass) {
    MOZ_ASSERT(aRow >= 0);

    // Whether the row is important comes down to divisibility by the stride for
    // this pass, which is always a power of 2, so we can check using a mask.
    int32_t mask = ImportantRowStride(aPass) - 1;
    return (aRow & mask) == 0;
  }

  static int32_t LastImportantRow(int32_t aHeight, uint8_t aPass) {
    MOZ_ASSERT(aHeight > 0);

    // We can find the last important row using the same mask trick as above.
    int32_t lastRow = aHeight - 1;
    int32_t mask = ImportantRowStride(aPass) - 1;
    return lastRow - (lastRow & mask);
  }

  static size_t FinalPixelStride(uint8_t aPass) {
    MOZ_ASSERT(0 < aPass && aPass <= 7, "Invalid pass");

    // The stride between the final pixels in important rows for each pass, with
    // a dummy value for the nonexistent pass 0.
    static size_t strides[] = {1, 8, 4, 4, 2, 2, 1, 1};

    return strides[aPass];
  }

  static size_t LastFinalPixel(int32_t aWidth, uint8_t aPass) {
    MOZ_ASSERT(aWidth >= 0);

    // Again, we can use the mask trick above to find the last important pixel.
    int32_t lastColumn = aWidth - 1;
    size_t mask = FinalPixelStride(aPass) - 1;
    return lastColumn - (lastColumn & mask);
  }

  static const float* InterpolationWeights(int32_t aStride) {
    // Precalculated interpolation weights. These are used to interpolate
    // between final pixels or between important rows. Although no interpolation
    // is actually applied to the previous final pixel or important row value,
    // the arrays still start with 1.0f, which is always skipped, primarily
    // because otherwise |stride1Weights| would have zero elements.
    static float stride8Weights[] = {1.0f,     7 / 8.0f, 6 / 8.0f, 5 / 8.0f,
                                     4 / 8.0f, 3 / 8.0f, 2 / 8.0f, 1 / 8.0f};
    static float stride4Weights[] = {1.0f, 3 / 4.0f, 2 / 4.0f, 1 / 4.0f};
    static float stride2Weights[] = {1.0f, 1 / 2.0f};
    static float stride1Weights[] = {1.0f};

    switch (aStride) {
      case 8:
        return stride8Weights;
      case 4:
        return stride4Weights;
      case 2:
        return stride2Weights;
      case 1:
        return stride1Weights;
      default:
        MOZ_CRASH();
    }
  }

  Next mNext;  /// The next SurfaceFilter in the chain.

  UniquePtr<uint8_t[]>
      mPreviousRow;  /// The last important row (i.e., row with
                     /// final pixel values) that got written to.
  UniquePtr<uint8_t[]> mCurrentRow;  /// The row that's being written to right
                                     /// now.
  uint8_t mPass;                     /// Which ADAM7 pass we're on. Valid passes
                                     /// are 1..7 during processing and 0 prior
                                     /// to configuraiton.
  int32_t mRow;                      /// The row we're currently reading.
};

}  // namespace image
}  // namespace mozilla

#endif  // mozilla_image_SurfaceFilters_h