Source code

Revision control

Other Tools

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "Downscaler.h"

#include <algorithm>
#include <ctime>
#include "gfxPrefs.h"
#include "mozilla/gfx/2D.h"

using std::max;
using std::swap;

namespace mozilla {

using gfx::IntRect;

namespace image {

Downscaler::Downscaler(const nsIntSize& aTargetSize)
    : mTargetSize(aTargetSize),
      mOutputBuffer(nullptr),
      mWindowCapacity(0),
      mLinesInBuffer(0),
      mPrevInvalidatedLine(0),
      mCurrentOutLine(0),
      mCurrentInLine(0),
      mHasAlpha(true),
      mFlipVertically(false) {
  MOZ_ASSERT(mTargetSize.width > 0 && mTargetSize.height > 0,
             "Invalid target size");
}

Downscaler::~Downscaler() { ReleaseWindow(); }

void Downscaler::ReleaseWindow() {
  if (!mWindow) {
    return;
  }

  for (int32_t i = 0; i < mWindowCapacity; ++i) {
    delete[] mWindow[i];
  }

  mWindow = nullptr;
  mWindowCapacity = 0;
}

nsresult Downscaler::BeginFrame(const nsIntSize& aOriginalSize,
                                const Maybe<nsIntRect>& aFrameRect,
                                uint8_t* aOutputBuffer, bool aHasAlpha,
                                bool aFlipVertically /* = false */) {
  MOZ_ASSERT(aOutputBuffer);
  MOZ_ASSERT(mTargetSize != aOriginalSize,
             "Created a downscaler, but not downscaling?");
  MOZ_ASSERT(mTargetSize.width <= aOriginalSize.width,
             "Created a downscaler, but width is larger");
  MOZ_ASSERT(mTargetSize.height <= aOriginalSize.height,
             "Created a downscaler, but height is larger");
  MOZ_ASSERT(aOriginalSize.width > 0 && aOriginalSize.height > 0,
             "Invalid original size");

  // Only downscale from reasonable sizes to avoid using too much memory/cpu
  // downscaling and decoding. 1 << 20 == 1,048,576 seems a reasonable limit.
  if (aOriginalSize.width > (1 << 20) || aOriginalSize.height > (1 << 20)) {
    NS_WARNING("Trying to downscale image frame that is too large");
    return NS_ERROR_INVALID_ARG;
  }

  mFrameRect = aFrameRect.valueOr(nsIntRect(nsIntPoint(), aOriginalSize));
  MOZ_ASSERT(mFrameRect.X() >= 0 && mFrameRect.Y() >= 0 &&
                 mFrameRect.Width() >= 0 && mFrameRect.Height() >= 0,
             "Frame rect must have non-negative components");
  MOZ_ASSERT(nsIntRect(0, 0, aOriginalSize.width, aOriginalSize.height)
                 .Contains(mFrameRect),
             "Frame rect must fit inside image");
  MOZ_ASSERT_IF(!nsIntRect(0, 0, aOriginalSize.width, aOriginalSize.height)
                     .IsEqualEdges(mFrameRect),
                aHasAlpha);

  mOriginalSize = aOriginalSize;
  mScale = gfxSize(double(mOriginalSize.width) / mTargetSize.width,
                   double(mOriginalSize.height) / mTargetSize.height);
  mOutputBuffer = aOutputBuffer;
  mHasAlpha = aHasAlpha;
  mFlipVertically = aFlipVertically;

  ReleaseWindow();

  auto resizeMethod = gfx::ConvolutionFilter::ResizeMethod::LANCZOS3;
  if (!mXFilter.ComputeResizeFilter(resizeMethod, mOriginalSize.width,
                                    mTargetSize.width) ||
      !mYFilter.ComputeResizeFilter(resizeMethod, mOriginalSize.height,
                                    mTargetSize.height)) {
    NS_WARNING("Failed to compute filters for image downscaling");
    return NS_ERROR_OUT_OF_MEMORY;
  }

  // Allocate the buffer, which contains scanlines of the original image.
  // pad to handle overreads by the simd code
  size_t bufferLen = gfx::ConvolutionFilter::PadBytesForSIMD(
      mOriginalSize.width * sizeof(uint32_t));
  mRowBuffer.reset(new (fallible) uint8_t[bufferLen]);
  if (MOZ_UNLIKELY(!mRowBuffer)) {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  // Zero buffer to keep valgrind happy.
  memset(mRowBuffer.get(), 0, bufferLen);

  // Allocate the window, which contains horizontally downscaled scanlines. (We
  // can store scanlines which are already downscale because our downscaling
  // filter is separable.)
  mWindowCapacity = mYFilter.MaxFilter();
  mWindow.reset(new (fallible) uint8_t*[mWindowCapacity]);
  if (MOZ_UNLIKELY(!mWindow)) {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  bool anyAllocationFailed = false;
  // pad to handle overreads by the simd code
  const size_t rowSize = gfx::ConvolutionFilter::PadBytesForSIMD(
      mTargetSize.width * sizeof(uint32_t));
  for (int32_t i = 0; i < mWindowCapacity; ++i) {
    mWindow[i] = new (fallible) uint8_t[rowSize];
    anyAllocationFailed = anyAllocationFailed || mWindow[i] == nullptr;
  }

  if (MOZ_UNLIKELY(anyAllocationFailed)) {
    // We intentionally iterate through the entire array even if an allocation
    // fails, to ensure that all the pointers in it are either valid or nullptr.
    // That in turn ensures that ReleaseWindow() can clean up correctly.
    return NS_ERROR_OUT_OF_MEMORY;
  }

  ResetForNextProgressivePass();

  return NS_OK;
}

void Downscaler::SkipToRow(int32_t aRow) {
  if (mCurrentInLine < aRow) {
    ClearRow();
    do {
      CommitRow();
    } while (mCurrentInLine < aRow);
  }
}

void Downscaler::ResetForNextProgressivePass() {
  mPrevInvalidatedLine = 0;
  mCurrentOutLine = 0;
  mCurrentInLine = 0;
  mLinesInBuffer = 0;

  if (mFrameRect.IsEmpty()) {
    // Our frame rect is zero size; commit rows until the end of the image.
    SkipToRow(mOriginalSize.height - 1);
  } else {
    // If we have a vertical offset, commit rows to shift us past it.
    SkipToRow(mFrameRect.Y());
  }
}

void Downscaler::ClearRestOfRow(uint32_t aStartingAtCol) {
  MOZ_ASSERT(int64_t(aStartingAtCol) <= int64_t(mOriginalSize.width));
  uint32_t bytesToClear =
      (mOriginalSize.width - aStartingAtCol) * sizeof(uint32_t);
  memset(mRowBuffer.get() + (aStartingAtCol * sizeof(uint32_t)), 0,
         bytesToClear);
}

void Downscaler::CommitRow() {
  MOZ_ASSERT(mOutputBuffer, "Should have a current frame");
  MOZ_ASSERT(mCurrentInLine < mOriginalSize.height, "Past end of input");

  if (mCurrentOutLine < mTargetSize.height) {
    int32_t filterOffset = 0;
    int32_t filterLength = 0;
    mYFilter.GetFilterOffsetAndLength(mCurrentOutLine, &filterOffset,
                                      &filterLength);

    int32_t inLineToRead = filterOffset + mLinesInBuffer;
    MOZ_ASSERT(mCurrentInLine <= inLineToRead, "Reading past end of input");
    if (mCurrentInLine == inLineToRead) {
      MOZ_RELEASE_ASSERT(mLinesInBuffer < mWindowCapacity,
                         "Need more rows than capacity!");
      mXFilter.ConvolveHorizontally(mRowBuffer.get(), mWindow[mLinesInBuffer++],
                                    mHasAlpha);
    }

    MOZ_ASSERT(mCurrentOutLine < mTargetSize.height,
               "Writing past end of output");

    while (mLinesInBuffer >= filterLength) {
      DownscaleInputLine();

      if (mCurrentOutLine == mTargetSize.height) {
        break;  // We're done.
      }

      mYFilter.GetFilterOffsetAndLength(mCurrentOutLine, &filterOffset,
                                        &filterLength);
    }
  }

  mCurrentInLine += 1;

  // If we're at the end of the part of the original image that has data, commit
  // rows to shift us to the end.
  if (mCurrentInLine == (mFrameRect.Y() + mFrameRect.Height())) {
    SkipToRow(mOriginalSize.height - 1);
  }
}

bool Downscaler::HasInvalidation() const {
  return mCurrentOutLine > mPrevInvalidatedLine;
}

DownscalerInvalidRect Downscaler::TakeInvalidRect() {
  if (MOZ_UNLIKELY(!HasInvalidation())) {
    return DownscalerInvalidRect();
  }

  DownscalerInvalidRect invalidRect;

  // Compute the target size invalid rect.
  if (mFlipVertically) {
    // We need to flip it. This will implicitly flip the original size invalid
    // rect, since we compute it by scaling this rect.
    invalidRect.mTargetSizeRect =
        IntRect(0, mTargetSize.height - mCurrentOutLine, mTargetSize.width,
                mCurrentOutLine - mPrevInvalidatedLine);
  } else {
    invalidRect.mTargetSizeRect =
        IntRect(0, mPrevInvalidatedLine, mTargetSize.width,
                mCurrentOutLine - mPrevInvalidatedLine);
  }

  mPrevInvalidatedLine = mCurrentOutLine;

  // Compute the original size invalid rect.
  invalidRect.mOriginalSizeRect = invalidRect.mTargetSizeRect;
  invalidRect.mOriginalSizeRect.ScaleRoundOut(mScale.width, mScale.height);

  return invalidRect;
}

void Downscaler::DownscaleInputLine() {
  MOZ_ASSERT(mOutputBuffer);
  MOZ_ASSERT(mCurrentOutLine < mTargetSize.height,
             "Writing past end of output");

  int32_t filterOffset = 0;
  int32_t filterLength = 0;
  mYFilter.GetFilterOffsetAndLength(mCurrentOutLine, &filterOffset,
                                    &filterLength);

  int32_t currentOutLine = mFlipVertically
                               ? mTargetSize.height - (mCurrentOutLine + 1)
                               : mCurrentOutLine;
  MOZ_ASSERT(currentOutLine >= 0);

  uint8_t* outputLine =
      &mOutputBuffer[currentOutLine * mTargetSize.width * sizeof(uint32_t)];
  mYFilter.ConvolveVertically(mWindow.get(), outputLine, mCurrentOutLine,
                              mXFilter.NumValues(), mHasAlpha);

  mCurrentOutLine += 1;

  if (mCurrentOutLine == mTargetSize.height) {
    // We're done.
    return;
  }

  int32_t newFilterOffset = 0;
  int32_t newFilterLength = 0;
  mYFilter.GetFilterOffsetAndLength(mCurrentOutLine, &newFilterOffset,
                                    &newFilterLength);

  int diff = newFilterOffset - filterOffset;
  MOZ_ASSERT(diff >= 0, "Moving backwards in the filter?");

  // Shift the buffer. We're just moving pointers here, so this is cheap.
  mLinesInBuffer -= diff;
  mLinesInBuffer = min(max(mLinesInBuffer, 0), mWindowCapacity);

  // If we already have enough rows to satisfy the filter, there is no need
  // to swap as we won't be writing more before the next convolution.
  if (filterLength > mLinesInBuffer) {
    for (int32_t i = 0; i < mLinesInBuffer; ++i) {
      swap(mWindow[i], mWindow[filterLength - mLinesInBuffer + i]);
    }
  }
}

}  // namespace image
}  // namespace mozilla