Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsTimerImpl.h"
#include "TimerThread.h"
#include "GeckoProfiler.h"
#include "nsThreadUtils.h"
#include "pratom.h"
#include "nsIObserverService.h"
#include "mozilla/Services.h"
#include "mozilla/ChaosMode.h"
#include "mozilla/ArenaAllocator.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/BinarySearch.h"
#include "mozilla/OperatorNewExtensions.h"
#include "mozilla/StaticPrefs_timer.h"
#include <math.h>
using namespace mozilla;
// Uncomment the following line to enable runtime stats during development.
//#define TIMERS_RUNTIME_STATS
#ifdef TIMERS_RUNTIME_STATS
// This class gathers durations and displays some basic stats when destroyed.
// It is intended to be used as a static variable (see `AUTO_TIMERS_STATS`
// below), to display stats at the end of the program.
class StaticTimersStats {
public:
explicit StaticTimersStats(const char* aName) : mName(aName) {}
~StaticTimersStats() {
// Using unsigned long long for computations and printfs.
using ULL = unsigned long long;
ULL n = static_cast<ULL>(mCount);
if (n == 0) {
printf("[%d] Timers stats `%s`: (nothing)\n",
int(profiler_current_process_id().ToNumber()), mName);
} else if (ULL sumNs = static_cast<ULL>(mSumDurationsNs); sumNs == 0) {
printf("[%d] Timers stats `%s`: %llu\n",
int(profiler_current_process_id().ToNumber()), mName, n);
} else {
printf("[%d] Timers stats `%s`: %llu ns / %llu = %llu ns, max %llu ns\n",
int(profiler_current_process_id().ToNumber()), mName, sumNs, n,
sumNs / n, static_cast<ULL>(mLongestDurationNs));
}
}
void AddDurationFrom(TimeStamp aStart) {
// Duration between aStart and now, rounded to the nearest nanosecond.
DurationNs duration = static_cast<DurationNs>(
(TimeStamp::Now() - aStart).ToMicroseconds() * 1000 + 0.5);
mSumDurationsNs += duration;
++mCount;
// Update mLongestDurationNs if this one is longer.
for (;;) {
DurationNs longest = mLongestDurationNs;
if (MOZ_LIKELY(longest >= duration)) {
// This duration is not the longest, nothing to do.
break;
}
if (MOZ_LIKELY(mLongestDurationNs.compareExchange(longest, duration))) {
// Successfully updated `mLongestDurationNs` with the new value.
break;
}
// Otherwise someone else just updated `mLongestDurationNs`, we need to
// try again by looping.
}
}
void AddCount() {
MOZ_ASSERT(mSumDurationsNs == 0, "Don't mix counts and durations");
++mCount;
}
private:
using DurationNs = uint64_t;
using Count = uint32_t;
Atomic<DurationNs> mSumDurationsNs{0};
Atomic<DurationNs> mLongestDurationNs{0};
Atomic<Count> mCount{0};
const char* mName;
};
// RAII object that measures its scoped lifetime duration and reports it to a
// `StaticTimersStats`.
class MOZ_RAII AutoTimersStats {
public:
explicit AutoTimersStats(StaticTimersStats& aStats)
: mStats(aStats), mStart(TimeStamp::Now()) {}
~AutoTimersStats() { mStats.AddDurationFrom(mStart); }
private:
StaticTimersStats& mStats;
TimeStamp mStart;
};
// Macro that should be used to collect basic statistics from measurements of
// block durations, from where this macro is, until the end of its enclosing
// scope. The name is used in the static variable name and when displaying stats
// at the end of the program; Another location could use the same name but their
// stats will not be combined, so use different name if these locations should
// be distinguished.
# define AUTO_TIMERS_STATS(name) \
static ::StaticTimersStats sStat##name(#name); \
::AutoTimersStats autoStat##name(sStat##name);
// This macro only counts the number of times it's used, not durations.
// Don't mix with AUTO_TIMERS_STATS!
# define COUNT_TIMERS_STATS(name) \
static ::StaticTimersStats sStat##name(#name); \
sStat##name.AddCount();
#else // TIMERS_RUNTIME_STATS
# define AUTO_TIMERS_STATS(name)
# define COUNT_TIMERS_STATS(name)
#endif // TIMERS_RUNTIME_STATS else
NS_IMPL_ISUPPORTS_INHERITED(TimerThread, Runnable, nsIObserver)
TimerThread::TimerThread()
: Runnable("TimerThread"),
mInitialized(false),
mMonitor("TimerThread.mMonitor"),
mShutdown(false),
mWaiting(false),
mNotified(false),
mSleeping(false),
mAllowedEarlyFiringMicroseconds(0) {}
TimerThread::~TimerThread() {
mThread = nullptr;
NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
}
namespace {
class TimerObserverRunnable : public Runnable {
public:
explicit TimerObserverRunnable(nsIObserver* aObserver)
: mozilla::Runnable("TimerObserverRunnable"), mObserver(aObserver) {}
NS_DECL_NSIRUNNABLE
private:
nsCOMPtr<nsIObserver> mObserver;
};
NS_IMETHODIMP
TimerObserverRunnable::Run() {
nsCOMPtr<nsIObserverService> observerService =
mozilla::services::GetObserverService();
if (observerService) {
observerService->AddObserver(mObserver, "sleep_notification", false);
observerService->AddObserver(mObserver, "wake_notification", false);
observerService->AddObserver(mObserver, "suspend_process_notification",
false);
observerService->AddObserver(mObserver, "resume_process_notification",
false);
}
return NS_OK;
}
} // namespace
namespace {
// TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
// It's needed to avoid contention over the default allocator lock when
// firing timer events (see bug 733277). The thread-safety is required because
// nsTimerEvent objects are allocated on the timer thread, and freed on another
// thread. Because TimerEventAllocator has its own lock, contention over that
// lock is limited to the allocation and deallocation of nsTimerEvent objects.
//
// Because this is layered over ArenaAllocator, it never shrinks -- even
// "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
// for later recycling. So the amount of memory consumed will always be equal
// to the high-water mark consumption. But nsTimerEvents are small and it's
// unusual to have more than a few hundred of them, so this shouldn't be a
// problem in practice.
class TimerEventAllocator {
private:
struct FreeEntry {
FreeEntry* mNext;
};
ArenaAllocator<4096> mPool MOZ_GUARDED_BY(mMonitor);
FreeEntry* mFirstFree MOZ_GUARDED_BY(mMonitor);
mozilla::Monitor mMonitor;
public:
TimerEventAllocator()
: mPool(), mFirstFree(nullptr), mMonitor("TimerEventAllocator") {}
~TimerEventAllocator() = default;
void* Alloc(size_t aSize);
void Free(void* aPtr);
};
} // namespace
// This is a nsICancelableRunnable because we can dispatch it to Workers and
// those can be shut down at any time, and in these cases, Cancel() is called
// instead of Run().
class nsTimerEvent final : public CancelableRunnable {
public:
NS_IMETHOD Run() override;
nsresult Cancel() override {
mTimer->Cancel();
return NS_OK;
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHOD GetName(nsACString& aName) override;
#endif
explicit nsTimerEvent(already_AddRefed<nsTimerImpl> aTimer,
ProfilerThreadId aTimerThreadId)
: mozilla::CancelableRunnable("nsTimerEvent"),
mTimer(aTimer),
mGeneration(mTimer->GetGeneration()),
mTimerThreadId(aTimerThreadId) {
// Note: We override operator new for this class, and the override is
// fallible!
sAllocatorUsers++;
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug) ||
profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) {
mInitTime = TimeStamp::Now();
}
}
static void Init();
static void Shutdown();
static void DeleteAllocatorIfNeeded();
static void* operator new(size_t aSize) noexcept(true) {
return sAllocator->Alloc(aSize);
}
void operator delete(void* aPtr) {
sAllocator->Free(aPtr);
sAllocatorUsers--;
DeleteAllocatorIfNeeded();
}
already_AddRefed<nsTimerImpl> ForgetTimer() { return mTimer.forget(); }
private:
nsTimerEvent(const nsTimerEvent&) = delete;
nsTimerEvent& operator=(const nsTimerEvent&) = delete;
nsTimerEvent& operator=(const nsTimerEvent&&) = delete;
~nsTimerEvent() {
MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0,
"This will result in us attempting to deallocate the "
"nsTimerEvent allocator twice");
}
TimeStamp mInitTime;
RefPtr<nsTimerImpl> mTimer;
const int32_t mGeneration;
ProfilerThreadId mTimerThreadId;
static TimerEventAllocator* sAllocator;
static Atomic<int32_t, SequentiallyConsistent> sAllocatorUsers;
static Atomic<bool, SequentiallyConsistent> sCanDeleteAllocator;
};
TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
Atomic<int32_t, SequentiallyConsistent> nsTimerEvent::sAllocatorUsers;
Atomic<bool, SequentiallyConsistent> nsTimerEvent::sCanDeleteAllocator;
namespace {
void* TimerEventAllocator::Alloc(size_t aSize) {
MOZ_ASSERT(aSize == sizeof(nsTimerEvent));
mozilla::MonitorAutoLock lock(mMonitor);
void* p;
if (mFirstFree) {
p = mFirstFree;
mFirstFree = mFirstFree->mNext;
} else {
p = mPool.Allocate(aSize, fallible);
}
return p;
}
void TimerEventAllocator::Free(void* aPtr) {
mozilla::MonitorAutoLock lock(mMonitor);
FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);
entry->mNext = mFirstFree;
mFirstFree = entry;
}
} // namespace
void nsTimerEvent::Init() { sAllocator = new TimerEventAllocator(); }
void nsTimerEvent::Shutdown() {
sCanDeleteAllocator = true;
DeleteAllocatorIfNeeded();
}
void nsTimerEvent::DeleteAllocatorIfNeeded() {
if (sCanDeleteAllocator && sAllocatorUsers == 0) {
delete sAllocator;
sAllocator = nullptr;
}
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHODIMP
nsTimerEvent::GetName(nsACString& aName) {
bool current;
MOZ_RELEASE_ASSERT(
NS_SUCCEEDED(mTimer->mEventTarget->IsOnCurrentThread(&current)) &&
current);
mTimer->GetName(aName);
return NS_OK;
}
#endif
NS_IMETHODIMP
nsTimerEvent::Run() {
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
TimeStamp now = TimeStamp::Now();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] time between PostTimerEvent() and Fire(): %fms\n", this,
(now - mInitTime).ToMilliseconds()));
}
if (profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) {
nsAutoCString name;
mTimer->GetName(name);
PROFILER_MARKER_TEXT(
"PostTimerEvent", OTHER,
MarkerOptions(MOZ_LIKELY(mInitTime)
? MarkerTiming::IntervalUntilNowFrom(mInitTime)
: MarkerTiming::InstantNow(),
MarkerThreadId(mTimerThreadId)),
name);
}
mTimer->Fire(mGeneration);
return NS_OK;
}
nsresult TimerThread::Init() {
mMonitor.AssertCurrentThreadOwns();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("TimerThread::Init [%d]\n", mInitialized));
if (!mInitialized) {
nsTimerEvent::Init();
// We hold on to mThread to keep the thread alive.
nsresult rv = NS_NewNamedThread("Timer", getter_AddRefs(mThread), this);
if (NS_FAILED(rv)) {
mThread = nullptr;
} else {
RefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
if (NS_IsMainThread()) {
r->Run();
} else {
NS_DispatchToMainThread(r);
}
}
mInitialized = true;
}
if (!mThread) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsresult TimerThread::Shutdown() {
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n"));
if (!mThread) {
return NS_ERROR_NOT_INITIALIZED;
}
nsTArray<RefPtr<nsTimerImpl>> timers;
{
// lock scope
MonitorAutoLock lock(mMonitor);
mShutdown = true;
// notify the cond var so that Run() can return
if (mWaiting) {
mNotified = true;
mMonitor.Notify();
}
// Need to copy content of mTimers array to a local array
// because call to timers' Cancel() (and release its self)
// must not be done under the lock. Destructor of a callback
// might potentially call some code reentering the same lock
// that leads to unexpected behavior or deadlock.
// See bug 422472.
for (const UniquePtr<Entry>& entry : mTimers) {
timers.AppendElement(entry->Take());
}
mTimers.Clear();
}
for (const RefPtr<nsTimerImpl>& timer : timers) {
if (timer) {
timer->Cancel();
}
}
mThread->Shutdown(); // wait for the thread to die
nsTimerEvent::Shutdown();
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n"));
return NS_OK;
}
namespace {
struct MicrosecondsToInterval {
PRIntervalTime operator[](size_t aMs) const {
return PR_MicrosecondsToInterval(aMs);
}
};
struct IntervalComparator {
int operator()(PRIntervalTime aInterval) const {
return (0 < aInterval) ? -1 : 1;
}
};
} // namespace
NS_IMETHODIMP
TimerThread::Run() {
MonitorAutoLock lock(mMonitor);
mProfilerThreadId = profiler_current_thread_id();
// We need to know how many microseconds give a positive PRIntervalTime. This
// is platform-dependent and we calculate it at runtime, finding a value |v|
// such that |PR_MicrosecondsToInterval(v) > 0| and then binary-searching in
// the range [0, v) to find the ms-to-interval scale.
uint32_t usForPosInterval = 1;
while (PR_MicrosecondsToInterval(usForPosInterval) == 0) {
usForPosInterval <<= 1;
}
size_t usIntervalResolution;
BinarySearchIf(MicrosecondsToInterval(), 0, usForPosInterval,
IntervalComparator(), &usIntervalResolution);
MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution - 1) == 0);
MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution) == 1);
// Half of the amount of microseconds needed to get positive PRIntervalTime.
// We use this to decide how to round our wait times later
mAllowedEarlyFiringMicroseconds = usIntervalResolution / 2;
bool forceRunNextTimer = false;
while (!mShutdown) {
// Have to use PRIntervalTime here, since PR_WaitCondVar takes it
TimeDuration waitFor;
bool forceRunThisTimer = forceRunNextTimer;
forceRunNextTimer = false;
if (mSleeping) {
// Sleep for 0.1 seconds while not firing timers.
uint32_t milliseconds = 100;
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
milliseconds = ChaosMode::randomUint32LessThan(200);
}
waitFor = TimeDuration::FromMilliseconds(milliseconds);
} else {
waitFor = TimeDuration::Forever();
TimeStamp now = TimeStamp::Now();
RemoveLeadingCanceledTimersInternal();
if (!mTimers.IsEmpty()) {
if (now >= mTimers[0]->Value()->mTimeout || forceRunThisTimer) {
next:
// NB: AddRef before the Release under RemoveTimerInternal to avoid
// mRefCnt passing through zero, in case all other refs than the one
// from mTimers have gone away (the last non-mTimers[i]-ref's Release
// must be racing with us, blocked in gThread->RemoveTimer waiting
// for TimerThread::mMonitor, under nsTimerImpl::Release.
RefPtr<nsTimerImpl> timerRef(mTimers[0]->Take());
RemoveFirstTimerInternal();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("Timer thread woke up %fms from when it was supposed to\n",
fabs((now - timerRef->mTimeout).ToMilliseconds())));
// We are going to let the call to PostTimerEvent here handle the
// release of the timer so that we don't end up releasing the timer
// on the TimerThread instead of on the thread it targets.
{
LogTimerEvent::Run run(timerRef.get());
PostTimerEvent(timerRef.forget());
}
if (mShutdown) {
break;
}
// Update now, as PostTimerEvent plus the locking may have taken a
// tick or two, and we may goto next below.
now = TimeStamp::Now();
}
}
RemoveLeadingCanceledTimersInternal();
if (!mTimers.IsEmpty()) {
TimeStamp timeout = mTimers[0]->Value()->mTimeout;
// Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer
// is due now or overdue.
//
// Note that we can only sleep for integer values of a certain
// resolution. We use mAllowedEarlyFiringMicroseconds, calculated
// before, to do the optimal rounding (i.e., of how to decide what
// interval is so small we should not wait at all).
double microseconds = (timeout - now).ToMicroseconds();
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
// The mean value of sFractions must be 1 to ensure that
// the average of a long sequence of timeouts converges to the
// actual sum of their times.
static const float sFractions[] = {0.0f, 0.25f, 0.5f, 0.75f,
1.0f, 1.75f, 2.75f};
microseconds *= sFractions[ChaosMode::randomUint32LessThan(
ArrayLength(sFractions))];
forceRunNextTimer = true;
}
if (microseconds < mAllowedEarlyFiringMicroseconds) {
forceRunNextTimer = false;
goto next; // round down; execute event now
}
waitFor = TimeDuration::FromMicroseconds(microseconds);
if (waitFor.IsZero()) {
// round up, wait the minimum time we can wait
waitFor = TimeDuration::FromMicroseconds(1);
}
}
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
if (waitFor == TimeDuration::Forever())
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting forever\n"));
else
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("waiting for %f\n", waitFor.ToMilliseconds()));
}
}
mWaiting = true;
mNotified = false;
{
AUTO_PROFILER_TRACING_MARKER("TimerThread", "Wait", OTHER);
mMonitor.Wait(waitFor);
}
if (mNotified) {
forceRunNextTimer = false;
}
mWaiting = false;
}
return NS_OK;
}
nsresult TimerThread::AddTimer(nsTimerImpl* aTimer,
const MutexAutoLock& aProofOfLock) {
MonitorAutoLock lock(mMonitor);
AUTO_TIMERS_STATS(TimerThread_AddTimer);
if (!aTimer->mEventTarget) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = Init();
if (NS_FAILED(rv)) {
return rv;
}
// Add the timer to our list.
if (!AddTimerInternal(aTimer)) {
return NS_ERROR_OUT_OF_MEMORY;
}
// Awaken the timer thread if:
// - This is the new front timer, which may require the TimerThread to wake up
// earlier than previously planned. AND/OR
// - The delay is 0, which is usually meant to be run as soon as possible.
// Note: Even if the thread is scheduled to wake up now/soon, on some
// systems there could be a significant delay compared to notifying, which
// is almost immediate; and some users of 0-delay depend on it being this
// fast!
if (mWaiting && (mTimers[0]->Value() == aTimer || aTimer->mDelay.IsZero())) {
mNotified = true;
mMonitor.Notify();
}
if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) {
struct TimerMarker {
static constexpr Span<const char> MarkerTypeName() {
return MakeStringSpan("Timer");
}
static void StreamJSONMarkerData(
baseprofiler::SpliceableJSONWriter& aWriter,
const ProfilerString8View& aTimerName, uint32_t aDelay,
MarkerThreadId aThreadId) {
aWriter.StringProperty("name", aTimerName);
aWriter.IntProperty("delay", aDelay);
if (!aThreadId.IsUnspecified()) {
// Tech note: If `ToNumber()` returns a uint64_t, the conversion to
// int64_t is "implementation-defined" before C++20. This is
// acceptable here, because this is a one-way conversion to a unique
// identifier that's used to visually separate data by thread on the
// front-end.
aWriter.IntProperty("threadId", static_cast<int64_t>(
aThreadId.ThreadId().ToNumber()));
}
}
static MarkerSchema MarkerTypeDisplay() {
using MS = MarkerSchema;
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
schema.AddKeyLabelFormatSearchable("name", "Name", MS::Format::String,
MS::Searchable::Searchable);
schema.AddKeyLabelFormat("delay", "Delay", MS::Format::Milliseconds);
schema.SetTableLabel(
"{marker.name} - {marker.data.name} - {marker.data.delay}");
return schema;
}
};
nsAutoCString name;
aTimer->GetName(name, aProofOfLock);
nsLiteralCString prefix("Anonymous_");
profiler_add_marker(
"AddTimer", geckoprofiler::category::OTHER,
MarkerOptions(MarkerThreadId(mProfilerThreadId),
MarkerStack::MaybeCapture(
StringHead(name, prefix.Length()) == prefix)),
TimerMarker{}, name, aTimer->mDelay.ToMilliseconds(),
MarkerThreadId::CurrentThread());
}
return NS_OK;
}
nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer,
const MutexAutoLock& aProofOfLock) {
MonitorAutoLock lock(mMonitor);
AUTO_TIMERS_STATS(TimerThread_RemoveTimer);
// Remove the timer from our array. Tell callers that aTimer was not found
// by returning NS_ERROR_NOT_AVAILABLE.
if (!RemoveTimerInternal(aTimer)) {
return NS_ERROR_NOT_AVAILABLE;
}
// Note: The timer thread is *not* awoken.
// The removed-timer entry is just left null, and will be reused (by a new or
// re-set timer) or discarded (when the timer thread logic handles non-null
// timers around it).
// If this was the front timer, and in the unlikely case that its entry is not
// soon reused by a re-set timer, the timer thread will wake up at the
// previously-scheduled time, but will quickly notice that there is no actual
// pending timer, and will restart its wait until the following real timeout.
if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) {
nsAutoCString name;
aTimer->GetName(name, aProofOfLock);
nsLiteralCString prefix("Anonymous_");
PROFILER_MARKER_TEXT(
"RemoveTimer", OTHER,
MarkerOptions(MarkerThreadId(mProfilerThreadId),
MarkerStack::MaybeCapture(
StringHead(name, prefix.Length()) == prefix)),
name);
}
return NS_OK;
}
TimeStamp TimerThread::FindNextFireTimeForCurrentThread(TimeStamp aDefault,
uint32_t aSearchBound) {
MonitorAutoLock lock(mMonitor);
AUTO_TIMERS_STATS(TimerThread_FindNextFireTimeForCurrentThread);
TimeStamp timeStamp = aDefault;
uint32_t index = 0;
#ifdef DEBUG
TimeStamp firstTimeStamp;
Entry* initialFirstEntry = nullptr;
if (!mTimers.IsEmpty()) {
initialFirstEntry = mTimers[0].get();
firstTimeStamp = mTimers[0]->Timeout();
}
#endif
auto end = mTimers.end();
while (end != mTimers.begin()) {
nsTimerImpl* timer = mTimers[0]->Value();
if (timer) {
if (timer->mTimeout > aDefault) {
timeStamp = aDefault;
break;
}
// Don't yield to timers created with the *_LOW_PRIORITY type.
if (!timer->IsLowPriority()) {
bool isOnCurrentThread = false;
nsresult rv =
timer->mEventTarget->IsOnCurrentThread(&isOnCurrentThread);
if (NS_SUCCEEDED(rv) && isOnCurrentThread) {
timeStamp = timer->mTimeout;
break;
}
}
if (++index > aSearchBound) {
// Track the currently highest timeout so that we can bail out when we
// reach the bound or when we find a timer for the current thread.
// This won't give accurate information if we stop before finding
// any timer for the current thread, but at least won't report too
// long idle period.
timeStamp = timer->mTimeout;
break;
}
}
std::pop_heap(mTimers.begin(), end, Entry::UniquePtrLessThan);
--end;
}
while (end != mTimers.end()) {
++end;
std::push_heap(mTimers.begin(), end, Entry::UniquePtrLessThan);
}
#ifdef DEBUG
if (!mTimers.IsEmpty()) {
if (firstTimeStamp != mTimers[0]->Timeout()) {
TimeStamp now = TimeStamp::Now();
printf_stderr(
"firstTimeStamp %f, mTimers[0]->Timeout() %f, "
"initialFirstTimer %p, current first %p\n",
(firstTimeStamp - now).ToMilliseconds(),
(mTimers[0]->Timeout() - now).ToMilliseconds(), initialFirstEntry,
mTimers[0].get());
}
}
MOZ_ASSERT_IF(!mTimers.IsEmpty(), firstTimeStamp == mTimers[0]->Timeout());
#endif
return timeStamp;
}
// This function must be called from within a lock
// Also: we hold the mutex for the nsTimerImpl.
bool TimerThread::AddTimerInternal(nsTimerImpl* aTimer) {
mMonitor.AssertCurrentThreadOwns();
aTimer->mMutex.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal);
if (mShutdown) {
return false;
}
TimeStamp now = TimeStamp::Now();
LogTimerEvent::LogDispatch(aTimer);
UniquePtr<Entry>* entry = mTimers.AppendElement(
MakeUnique<Entry>(now, aTimer->mTimeout, aTimer), mozilla::fallible);
if (!entry) {
return false;
}
std::push_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan);
return true;
}
// This function must be called from within a lock
// Also: we hold the mutex for the nsTimerImpl.
bool TimerThread::RemoveTimerInternal(nsTimerImpl* aTimer) {
mMonitor.AssertCurrentThreadOwns();
aTimer->mMutex.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_RemoveTimerInternal);
if (!aTimer) {
COUNT_TIMERS_STATS(TimerThread_RemoveTimerInternal_nullptr);
return false;
}
if (!aTimer->mHolder) {
COUNT_TIMERS_STATS(TimerThread_RemoveTimerInternal_not_in_list);
return false;
}
AUTO_TIMERS_STATS(TimerThread_RemoveTimerInternal_in_list);
aTimer->mHolder->Forget(aTimer);
return true;
}
void TimerThread::RemoveLeadingCanceledTimersInternal() {
mMonitor.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_RemoveLeadingCanceledTimersInternal);
// Move all canceled timers from the front of the list to
// the back of the list using std::pop_heap(). We do this
// without actually removing them from the list so we can
// modify the nsTArray in a single bulk operation.
auto sortedEnd = mTimers.end();
while (sortedEnd != mTimers.begin() && !mTimers[0]->Value()) {
std::pop_heap(mTimers.begin(), sortedEnd, Entry::UniquePtrLessThan);
--sortedEnd;
}
// If there were no canceled timers then we are done.
if (sortedEnd == mTimers.end()) {
return;
}
// Finally, remove the canceled timers from the back of the
// nsTArray.
mTimers.RemoveLastElements(mTimers.end() - sortedEnd);
}
void TimerThread::RemoveFirstTimerInternal() {
mMonitor.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_RemoveFirstTimerInternal);
MOZ_ASSERT(!mTimers.IsEmpty());
std::pop_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan);
mTimers.RemoveLastElement();
}
void TimerThread::PostTimerEvent(already_AddRefed<nsTimerImpl> aTimerRef) {
mMonitor.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_PostTimerEvent);
RefPtr<nsTimerImpl> timer(aTimerRef);
if (!timer->mEventTarget) {
NS_ERROR("Attempt to post timer event to NULL event target");
return;
}
// XXX we may want to reuse this nsTimerEvent in the case of repeating timers.
// Since we already addref'd 'timer', we don't need to addref here.
// We will release either in ~nsTimerEvent(), or pass the reference back to
// the caller. We need to copy the generation number from this timer into the
// event, so we can avoid firing a timer that was re-initialized after being
// canceled.
nsCOMPtr<nsIEventTarget> target = timer->mEventTarget;
void* p = nsTimerEvent::operator new(sizeof(nsTimerEvent));
if (!p) {
return;
}
RefPtr<nsTimerEvent> event =
::new (KnownNotNull, p) nsTimerEvent(timer.forget(), mProfilerThreadId);
nsresult rv;
{
// We release mMonitor around the Dispatch because if the Dispatch interacts
// with the timer API we'll deadlock.
MonitorAutoUnlock unlock(mMonitor);
rv = target->Dispatch(event, NS_DISPATCH_NORMAL);
if (NS_FAILED(rv)) {
timer = event->ForgetTimer();
// We do this to avoid possible deadlock by taking the two locks in a
// different order than is used in RemoveTimer(). RemoveTimer() has
// aTimer->mMutex first. We use timer.get() to keep static analysis
// happy
MutexAutoLock lock1(timer.get()->mMutex);
MonitorAutoLock lock2(mMonitor);
RemoveTimerInternal(timer.get());
}
}
}
void TimerThread::DoBeforeSleep() {
// Mainthread
MonitorAutoLock lock(mMonitor);
mSleeping = true;
}
// Note: wake may be notified without preceding sleep notification
void TimerThread::DoAfterSleep() {
// Mainthread
MonitorAutoLock lock(mMonitor);
mSleeping = false;
// Wake up the timer thread to re-process the array to ensure the sleep delay
// is correct, and fire any expired timers (perhaps quite a few)
mNotified = true;
PROFILER_MARKER_UNTYPED("AfterSleep", OTHER,
MarkerThreadId(mProfilerThreadId));
mMonitor.Notify();
}
NS_IMETHODIMP
TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic,
const char16_t* /* aData */) {
if (StaticPrefs::timer_ignore_sleep_wake_notifications()) {
return NS_OK;
}
if (strcmp(aTopic, "sleep_notification") == 0 ||
strcmp(aTopic, "suspend_process_notification") == 0) {
DoBeforeSleep();
} else if (strcmp(aTopic, "wake_notification") == 0 ||
strcmp(aTopic, "resume_process_notification") == 0) {
DoAfterSleep();
}
return NS_OK;
}
uint32_t TimerThread::AllowedEarlyFiringMicroseconds() {
MonitorAutoLock lock(mMonitor);
return mAllowedEarlyFiringMicroseconds;
}