Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ThrottledEventQueue.h"
#include "mozilla/Atomics.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/CondVar.h"
#include "mozilla/EventQueue.h"
#include "mozilla/Mutex.h"
#include "mozilla/Unused.h"
#include "nsThreadUtils.h"
namespace mozilla {
namespace {} // anonymous namespace
// The ThrottledEventQueue is designed with inner and outer objects:
//
// XPCOM code base event target
// | |
// v v
// +-------+ +--------+
// | Outer | +-->|executor|
// +-------+ | +--------+
// | | |
// | +-------+ |
// +-->| Inner |<--+
// +-------+
//
// Client code references the outer nsIEventTarget which in turn references
// an inner object, which actually holds the queue of runnables.
//
// Whenever the queue is non-empty (and not paused), it keeps an "executor"
// runnable dispatched to the base event target. Each time the executor is run,
// it draws the next event from Inner's queue and runs it. If that queue has
// more events, the executor is dispatched to the base again.
//
// The executor holds a strong reference to the Inner object. This means that if
// the outer object is dereferenced and destroyed, the Inner object will remain
// live for as long as the executor exists - that is, until the Inner's queue is
// empty.
//
// A Paused ThrottledEventQueue does not enqueue an executor when new events are
// added. Any executor previously queued on the base event target draws no
// events from a Paused ThrottledEventQueue, and returns without re-enqueueing
// itself. Since there is no executor keeping the Inner object alive until its
// queue is empty, dropping a Paused ThrottledEventQueue may drop the Inner
// while it still owns events. This is the correct behavior: if there are no
// references to it, it will never be Resumed, and thus it will never dispatch
// events again.
//
// Resuming a ThrottledEventQueue must dispatch an executor, so calls to Resume
// are fallible for the same reasons as calls to Dispatch.
//
// The xpcom shutdown process drains the main thread's event queue several
// times, so if a ThrottledEventQueue is being driven by the main thread, it
// should get emptied out by the time we reach the "eventq shutdown" phase.
class ThrottledEventQueue::Inner final : public nsISupports {
// The runnable which is dispatched to the underlying base target. Since
// we only execute one event at a time we just re-use a single instance
// of this class while there are events left in the queue.
class Executor final : public Runnable, public nsIRunnablePriority {
// The Inner whose runnables we execute. mInner->mExecutor points
// to this executor, forming a reference loop.
RefPtr<Inner> mInner;
~Executor() = default;
public:
explicit Executor(Inner* aInner)
: Runnable("ThrottledEventQueue::Inner::Executor"), mInner(aInner) {}
NS_DECL_ISUPPORTS_INHERITED
NS_IMETHODIMP
Run() override {
mInner->ExecuteRunnable();
return NS_OK;
}
NS_IMETHODIMP
GetPriority(uint32_t* aPriority) override {
*aPriority = mInner->mPriority;
return NS_OK;
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHODIMP
GetName(nsACString& aName) override { return mInner->CurrentName(aName); }
#endif
};
mutable Mutex mMutex;
mutable CondVar mIdleCondVar MOZ_GUARDED_BY(mMutex);
// As-of-yet unexecuted runnables queued on this ThrottledEventQueue.
//
// Used from any thread; protected by mMutex. Signals mIdleCondVar when
// emptied.
EventQueueSized<64> mEventQueue MOZ_GUARDED_BY(mMutex);
// The event target we dispatch our events (actually, just our Executor) to.
//
// Written only during construction. Readable by any thread without locking.
const nsCOMPtr<nsISerialEventTarget> mBaseTarget;
// The Executor that we dispatch to mBaseTarget to draw runnables from our
// queue. mExecutor->mInner points to this Inner, forming a reference loop.
//
// Used from any thread; protected by mMutex.
nsCOMPtr<nsIRunnable> mExecutor MOZ_GUARDED_BY(mMutex);
const char* const mName;
const uint32_t mPriority;
// True if this queue is currently paused.
// Used from any thread; protected by mMutex.
bool mIsPaused MOZ_GUARDED_BY(mMutex);
explicit Inner(nsISerialEventTarget* aBaseTarget, const char* aName,
uint32_t aPriority)
: mMutex("ThrottledEventQueue"),
mIdleCondVar(mMutex, "ThrottledEventQueue:Idle"),
mBaseTarget(aBaseTarget),
mName(aName),
mPriority(aPriority),
mIsPaused(false) {
MOZ_ASSERT(mName, "Must pass a valid name!");
}
~Inner() {
#ifdef DEBUG
MutexAutoLock lock(mMutex);
// As long as an executor exists, it had better keep us alive, since it's
// going to call ExecuteRunnable on us.
MOZ_ASSERT(!mExecutor);
// If we have any events in our queue, there should be an executor queued
// for them, and that should have kept us alive. The exception is that, if
// we're paused, we don't enqueue an executor.
MOZ_ASSERT(mEventQueue.IsEmpty(lock) || IsPaused(lock));
// Some runnables are only safe to drop on the main thread, so if our queue
// isn't empty, we'd better be on the main thread.
MOZ_ASSERT_IF(!mEventQueue.IsEmpty(lock), NS_IsMainThread());
#endif
}
// Make sure an executor has been queued on our base target. If we already
// have one, do nothing; otherwise, create and dispatch it.
nsresult EnsureExecutor(MutexAutoLock& lock) MOZ_REQUIRES(mMutex) {
if (mExecutor) return NS_OK;
// Note, this creates a ref cycle keeping the inner alive
// until the queue is drained.
mExecutor = new Executor(this);
nsresult rv = mBaseTarget->Dispatch(mExecutor, NS_DISPATCH_NORMAL);
if (NS_WARN_IF(NS_FAILED(rv))) {
mExecutor = nullptr;
return rv;
}
return NS_OK;
}
nsresult CurrentName(nsACString& aName) {
nsCOMPtr<nsIRunnable> event;
#ifdef DEBUG
bool currentThread = false;
mBaseTarget->IsOnCurrentThread(&currentThread);
MOZ_ASSERT(currentThread);
#endif
{
MutexAutoLock lock(mMutex);
event = mEventQueue.PeekEvent(lock);
// It is possible that mEventQueue wasn't empty when the executor
// was added to the queue, but someone processed events from mEventQueue
// before the executor, this is why mEventQueue is empty here
if (!event) {
aName.AssignLiteral("no runnables left in the ThrottledEventQueue");
return NS_OK;
}
}
if (nsCOMPtr<nsINamed> named = do_QueryInterface(event)) {
nsresult rv = named->GetName(aName);
return rv;
}
aName.AssignASCII(mName);
return NS_OK;
}
void ExecuteRunnable() {
// Any thread
nsCOMPtr<nsIRunnable> event;
#ifdef DEBUG
bool currentThread = false;
mBaseTarget->IsOnCurrentThread(&currentThread);
MOZ_ASSERT(currentThread);
#endif
{
MutexAutoLock lock(mMutex);
// Normally, a paused queue doesn't dispatch any executor, but we might
// have been paused after the executor was already in flight. There's no
// way to yank the executor out of the base event target, so we just check
// for a paused queue here and return without running anything. We'll
// create a new executor when we're resumed.
if (IsPaused(lock)) {
// Note, this breaks a ref cycle.
mExecutor = nullptr;
return;
}
// We only dispatch an executor runnable when we know there is something
// in the queue, so this should never fail.
event = mEventQueue.GetEvent(lock);
MOZ_ASSERT(event);
// If there are more events in the queue, then dispatch the next
// executor. We do this now, before running the event, because
// the event might spin the event loop and we don't want to stall
// the queue.
if (mEventQueue.HasReadyEvent(lock)) {
// Dispatch the next base target runnable to attempt to execute
// the next throttled event. We must do this before executing
// the event in case the event spins the event loop.
MOZ_ALWAYS_SUCCEEDS(
mBaseTarget->Dispatch(mExecutor, NS_DISPATCH_NORMAL));
}
// Otherwise the queue is empty and we can stop dispatching the
// executor.
else {
// Break the Executor::mInner / Inner::mExecutor reference loop.
mExecutor = nullptr;
mIdleCondVar.NotifyAll();
}
}
// Execute the event now that we have unlocked.
LogRunnable::Run log(event);
Unused << event->Run();
// To cover the event's destructor code in the LogRunnable log
event = nullptr;
}
public:
static already_AddRefed<Inner> Create(nsISerialEventTarget* aBaseTarget,
const char* aName, uint32_t aPriority) {
MOZ_ASSERT(NS_IsMainThread());
// FIXME: This assertion only worked when `sCurrentShutdownPhase` was not
// being updated.
// MOZ_ASSERT(ClearOnShutdown_Internal::sCurrentShutdownPhase ==
// ShutdownPhase::NotInShutdown);
RefPtr<Inner> ref = new Inner(aBaseTarget, aName, aPriority);
return ref.forget();
}
bool IsEmpty() const {
// Any thread
return Length() == 0;
}
uint32_t Length() const {
// Any thread
MutexAutoLock lock(mMutex);
return mEventQueue.Count(lock);
}
already_AddRefed<nsIRunnable> GetEvent() {
MutexAutoLock lock(mMutex);
return mEventQueue.GetEvent(lock);
}
void AwaitIdle() const {
// Any thread, except the main thread or our base target. Blocking the
// main thread is forbidden. Blocking the base target is guaranteed to
// produce a deadlock.
MOZ_ASSERT(!NS_IsMainThread());
#ifdef DEBUG
bool onBaseTarget = false;
Unused << mBaseTarget->IsOnCurrentThread(&onBaseTarget);
MOZ_ASSERT(!onBaseTarget);
#endif
MutexAutoLock lock(mMutex);
while (mExecutor || IsPaused(lock)) {
mIdleCondVar.Wait();
}
}
bool IsPaused() const {
MutexAutoLock lock(mMutex);
return IsPaused(lock);
}
bool IsPaused(const MutexAutoLock& aProofOfLock) const MOZ_REQUIRES(mMutex) {
return mIsPaused;
}
nsresult SetIsPaused(bool aIsPaused) {
MutexAutoLock lock(mMutex);
// If we will be unpaused, and we have events in our queue, make sure we
// have an executor queued on the base event target to run them. Do this
// before we actually change mIsPaused, since this is fallible.
if (!aIsPaused && !mEventQueue.IsEmpty(lock)) {
nsresult rv = EnsureExecutor(lock);
if (NS_FAILED(rv)) {
return rv;
}
}
mIsPaused = aIsPaused;
return NS_OK;
}
nsresult DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
// Any thread
nsCOMPtr<nsIRunnable> r = aEvent;
return Dispatch(r.forget(), aFlags);
}
nsresult Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) {
MOZ_ASSERT(aFlags == NS_DISPATCH_NORMAL || aFlags == NS_DISPATCH_AT_END);
// Any thread
MutexAutoLock lock(mMutex);
if (!IsPaused(lock)) {
// Make sure we have an executor in flight to process events. This is
// fallible, so do it first. Our lock will prevent the executor from
// accessing the event queue before we add the event below.
nsresult rv = EnsureExecutor(lock);
if (NS_FAILED(rv)) return rv;
}
// Only add the event to the underlying queue if are able to
// dispatch to our base target.
nsCOMPtr<nsIRunnable> event(aEvent);
LogRunnable::LogDispatch(event);
mEventQueue.PutEvent(event.forget(), EventQueuePriority::Normal, lock);
return NS_OK;
}
nsresult DelayedDispatch(already_AddRefed<nsIRunnable> aEvent,
uint32_t aDelay) {
// The base target may implement this, but we don't. Always fail
// to provide consistent behavior.
return NS_ERROR_NOT_IMPLEMENTED;
}
nsresult RegisterShutdownTask(nsITargetShutdownTask* aTask) {
return mBaseTarget->RegisterShutdownTask(aTask);
}
nsresult UnregisterShutdownTask(nsITargetShutdownTask* aTask) {
return mBaseTarget->UnregisterShutdownTask(aTask);
}
bool IsOnCurrentThread() { return mBaseTarget->IsOnCurrentThread(); }
NS_DECL_THREADSAFE_ISUPPORTS
};
NS_IMPL_ISUPPORTS(ThrottledEventQueue::Inner, nsISupports);
NS_IMPL_ISUPPORTS_INHERITED(ThrottledEventQueue::Inner::Executor, Runnable,
nsIRunnablePriority)
NS_IMPL_ISUPPORTS(ThrottledEventQueue, ThrottledEventQueue, nsIEventTarget,
nsISerialEventTarget);
ThrottledEventQueue::ThrottledEventQueue(already_AddRefed<Inner> aInner)
: mInner(aInner) {
MOZ_ASSERT(mInner);
}
already_AddRefed<ThrottledEventQueue> ThrottledEventQueue::Create(
nsISerialEventTarget* aBaseTarget, const char* aName, uint32_t aPriority) {
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(aBaseTarget);
RefPtr<Inner> inner = Inner::Create(aBaseTarget, aName, aPriority);
RefPtr<ThrottledEventQueue> ref = new ThrottledEventQueue(inner.forget());
return ref.forget();
}
bool ThrottledEventQueue::IsEmpty() const { return mInner->IsEmpty(); }
uint32_t ThrottledEventQueue::Length() const { return mInner->Length(); }
// Get the next runnable from the queue
already_AddRefed<nsIRunnable> ThrottledEventQueue::GetEvent() {
return mInner->GetEvent();
}
void ThrottledEventQueue::AwaitIdle() const { return mInner->AwaitIdle(); }
nsresult ThrottledEventQueue::SetIsPaused(bool aIsPaused) {
return mInner->SetIsPaused(aIsPaused);
}
bool ThrottledEventQueue::IsPaused() const { return mInner->IsPaused(); }
NS_IMETHODIMP
ThrottledEventQueue::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
return mInner->DispatchFromScript(aEvent, aFlags);
}
NS_IMETHODIMP
ThrottledEventQueue::Dispatch(already_AddRefed<nsIRunnable> aEvent,
uint32_t aFlags) {
return mInner->Dispatch(std::move(aEvent), aFlags);
}
NS_IMETHODIMP
ThrottledEventQueue::DelayedDispatch(already_AddRefed<nsIRunnable> aEvent,
uint32_t aFlags) {
return mInner->DelayedDispatch(std::move(aEvent), aFlags);
}
NS_IMETHODIMP
ThrottledEventQueue::RegisterShutdownTask(nsITargetShutdownTask* aTask) {
return mInner->RegisterShutdownTask(aTask);
}
NS_IMETHODIMP
ThrottledEventQueue::UnregisterShutdownTask(nsITargetShutdownTask* aTask) {
return mInner->UnregisterShutdownTask(aTask);
}
NS_IMETHODIMP
ThrottledEventQueue::IsOnCurrentThread(bool* aResult) {
*aResult = mInner->IsOnCurrentThread();
return NS_OK;
}
NS_IMETHODIMP_(bool)
ThrottledEventQueue::IsOnCurrentThreadInfallible() {
return mInner->IsOnCurrentThread();
}
} // namespace mozilla