Source code
Revision control
Copy as Markdown
Other Tools
//* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#include "ProtocolParser.h"
#include "LookupCache.h"
#include "nsNetCID.h"
#include "mozilla/Components.h"
#include "mozilla/Logging.h"
#include "prnetdb.h"
#include "prprf.h"
#include "Classifier.h"
#include "nsUrlClassifierDBService.h"
#include "nsUrlClassifierUtils.h"
#include "nsPrintfCString.h"
#include "mozilla/Base64.h"
#include "RiceDeltaDecoder.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/ErrorNames.h"
#include "mozilla/IntegerPrintfMacros.h"
// MOZ_LOG=UrlClassifierProtocolParser:5
extern mozilla::LazyLogModule gUrlClassifierDbServiceLog;
mozilla::LazyLogModule gUrlClassifierProtocolParserLog(
"UrlClassifierProtocolParser");
#define PARSER_LOG(args) \
MOZ_LOG(gUrlClassifierProtocolParserLog, mozilla::LogLevel::Debug, args)
#define LOG_ENABLED() \
MOZ_LOG_TEST(gUrlClassifierDbServiceLog, mozilla::LogLevel::Debug)
namespace mozilla {
namespace safebrowsing {
// Updates will fail if fed chunks larger than this
const uint32_t MAX_CHUNK_SIZE = (4 * 1024 * 1024);
// Updates will fail if the total number of tocuhed chunks is larger than this
const uint32_t MAX_CHUNK_RANGE = 1000000;
const uint32_t DOMAIN_SIZE = 4;
// Parse one stringified range of chunks of the form "n" or "n-m" from a
// comma-separated list of chunks. Upon return, 'begin' will point to the
// next range of chunks in the list of chunks.
static bool ParseChunkRange(const nsAutoCString& string, uint32_t* aFirst,
uint32_t* aLast) {
uint32_t numRead = PR_sscanf(string.get(), "%u-%u", aFirst, aLast);
if (numRead == 2) {
if (*aFirst > *aLast) {
uint32_t tmp = *aFirst;
*aFirst = *aLast;
*aLast = tmp;
}
return true;
}
if (numRead == 1) {
*aLast = *aFirst;
return true;
}
return false;
}
///////////////////////////////////////////////////////////////
// ProtocolParser implementation
ProtocolParser::ProtocolParser() : mUpdateStatus(NS_OK), mUpdateWaitSec(0) {}
ProtocolParser::~ProtocolParser() = default;
nsresult ProtocolParser::Begin(const nsACString& aTable,
const nsTArray<nsCString>& aUpdateTables) {
// ProtocolParser objects should never be reused.
MOZ_ASSERT(mPending.IsEmpty());
MOZ_ASSERT(mTableUpdates.IsEmpty());
MOZ_ASSERT(mForwards.IsEmpty());
MOZ_ASSERT(mRequestedTables.IsEmpty());
MOZ_ASSERT(mTablesToReset.IsEmpty());
if (!aTable.IsEmpty()) {
SetCurrentTable(aTable);
}
SetRequestedTables(aUpdateTables);
return NS_OK;
}
RefPtr<TableUpdate> ProtocolParser::GetTableUpdate(const nsACString& aTable) {
for (uint32_t i = 0; i < mTableUpdates.Length(); i++) {
if (aTable.Equals(mTableUpdates[i]->TableName())) {
return mTableUpdates[i];
}
}
// We free automatically on destruction, ownership of these
// updates can be transferred to DBServiceWorker, which passes
// them back to Classifier when doing the updates, and that
// will free them.
RefPtr<TableUpdate> update = CreateTableUpdate(aTable);
mTableUpdates.AppendElement(update);
return update;
}
///////////////////////////////////////////////////////////////////////
// ProtocolParserV2
ProtocolParserV2::ProtocolParserV2()
: mState(PROTOCOL_STATE_CONTROL), mTableUpdate(nullptr) {}
ProtocolParserV2::~ProtocolParserV2() = default;
void ProtocolParserV2::SetCurrentTable(const nsACString& aTable) {
RefPtr<TableUpdate> update = GetTableUpdate(aTable);
mTableUpdate = TableUpdate::Cast<TableUpdateV2>(update);
}
nsresult ProtocolParserV2::AppendStream(const nsACString& aData) {
if (NS_FAILED(mUpdateStatus)) return mUpdateStatus;
nsresult rv;
if (!mPending.Append(aData, mozilla::fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
bool done = false;
while (!done) {
if (nsUrlClassifierDBService::ShutdownHasStarted()) {
return NS_ERROR_ABORT;
}
if (mState == PROTOCOL_STATE_CONTROL) {
rv = ProcessControl(&done);
} else if (mState == PROTOCOL_STATE_CHUNK) {
rv = ProcessChunk(&done);
} else {
NS_ERROR("Unexpected protocol state");
rv = NS_ERROR_FAILURE;
}
if (NS_FAILED(rv)) {
mUpdateStatus = rv;
return rv;
}
}
return NS_OK;
}
void ProtocolParserV2::End() {
// Inbound data has already been processed in every AppendStream() call.
mTableUpdate = nullptr;
}
nsresult ProtocolParserV2::ProcessControl(bool* aDone) {
nsresult rv;
nsAutoCString line;
*aDone = true;
while (NextLine(line)) {
PARSER_LOG(("Processing %s\n", line.get()));
if (StringBeginsWith(line, "i:"_ns)) {
// Set the table name from the table header line.
SetCurrentTable(Substring(line, 2));
} else if (StringBeginsWith(line, "n:"_ns)) {
if (PR_sscanf(line.get(), "n:%d", &mUpdateWaitSec) != 1) {
PARSER_LOG(("Error parsing n: '%s' (%d)", line.get(), mUpdateWaitSec));
return NS_ERROR_FAILURE;
}
} else if (line.EqualsLiteral("r:pleasereset")) {
PARSER_LOG(("All tables will be reset."));
mTablesToReset = mRequestedTables.Clone();
} else if (StringBeginsWith(line, "u:"_ns)) {
rv = ProcessForward(line);
NS_ENSURE_SUCCESS(rv, rv);
} else if (StringBeginsWith(line, "a:"_ns) ||
StringBeginsWith(line, "s:"_ns)) {
rv = ProcessChunkControl(line);
NS_ENSURE_SUCCESS(rv, rv);
*aDone = false;
return NS_OK;
} else if (StringBeginsWith(line, "ad:"_ns) ||
StringBeginsWith(line, "sd:"_ns)) {
rv = ProcessExpirations(line);
NS_ENSURE_SUCCESS(rv, rv);
}
}
*aDone = true;
return NS_OK;
}
nsresult ProtocolParserV2::ProcessExpirations(const nsCString& aLine) {
if (!mTableUpdate) {
NS_WARNING("Got an expiration without a table.");
return NS_ERROR_FAILURE;
}
const nsACString& list = Substring(aLine, 3);
for (const auto& str : list.Split(',')) {
uint32_t first, last;
if (ParseChunkRange(nsAutoCString(str), &first, &last)) {
if (last < first) return NS_ERROR_FAILURE;
if (last - first > MAX_CHUNK_RANGE) return NS_ERROR_FAILURE;
for (uint32_t num = first; num <= last; num++) {
if (aLine[0] == 'a') {
nsresult rv = mTableUpdate->NewAddExpiration(num);
if (NS_FAILED(rv)) {
return rv;
}
} else {
nsresult rv = mTableUpdate->NewSubExpiration(num);
if (NS_FAILED(rv)) {
return rv;
}
}
}
} else {
return NS_ERROR_FAILURE;
}
}
return NS_OK;
}
nsresult ProtocolParserV2::ProcessChunkControl(const nsCString& aLine) {
if (!mTableUpdate) {
NS_WARNING("Got a chunk before getting a table.");
return NS_ERROR_FAILURE;
}
mState = PROTOCOL_STATE_CHUNK;
char command;
mChunkState.Clear();
if (PR_sscanf(aLine.get(), "%c:%d:%d:%d", &command, &mChunkState.num,
&mChunkState.hashSize, &mChunkState.length) != 4) {
NS_WARNING(("PR_sscanf failed"));
return NS_ERROR_FAILURE;
}
if (mChunkState.length > MAX_CHUNK_SIZE) {
NS_WARNING("Invalid length specified in update.");
return NS_ERROR_FAILURE;
}
if (!(mChunkState.hashSize == PREFIX_SIZE ||
mChunkState.hashSize == COMPLETE_SIZE)) {
NS_WARNING("Invalid hash size specified in update.");
return NS_ERROR_FAILURE;
}
if (StringEndsWith(mTableUpdate->TableName(), "-shavar"_ns) ||
StringEndsWith(mTableUpdate->TableName(), "-simple"_ns)) {
// Accommodate test tables ending in -simple for now.
mChunkState.type = (command == 'a') ? CHUNK_ADD : CHUNK_SUB;
} else if (StringEndsWith(mTableUpdate->TableName(), "-digest256"_ns)) {
mChunkState.type = (command == 'a') ? CHUNK_ADD_DIGEST : CHUNK_SUB_DIGEST;
}
nsresult rv;
switch (mChunkState.type) {
case CHUNK_ADD:
rv = mTableUpdate->NewAddChunk(mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
break;
case CHUNK_SUB:
rv = mTableUpdate->NewSubChunk(mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
break;
case CHUNK_ADD_DIGEST:
rv = mTableUpdate->NewAddChunk(mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
break;
case CHUNK_SUB_DIGEST:
rv = mTableUpdate->NewSubChunk(mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
break;
}
return NS_OK;
}
nsresult ProtocolParserV2::ProcessForward(const nsCString& aLine) {
const nsACString& forward = Substring(aLine, 2);
return AddForward(forward);
}
nsresult ProtocolParserV2::AddForward(const nsACString& aUrl) {
if (!mTableUpdate) {
NS_WARNING("Forward without a table name.");
return NS_ERROR_FAILURE;
}
ForwardedUpdate* forward = mForwards.AppendElement();
forward->table = mTableUpdate->TableName();
forward->url.Assign(aUrl);
return NS_OK;
}
nsresult ProtocolParserV2::ProcessChunk(bool* aDone) {
if (!mTableUpdate) {
NS_WARNING("Processing chunk without an active table.");
return NS_ERROR_FAILURE;
}
NS_ASSERTION(mChunkState.num != 0, "Must have a chunk number.");
if (mPending.Length() < mChunkState.length) {
*aDone = true;
return NS_OK;
}
// Pull the chunk out of the pending stream data.
nsAutoCString chunk;
chunk.Assign(Substring(mPending, 0, mChunkState.length));
mPending.Cut(0, mChunkState.length);
*aDone = false;
mState = PROTOCOL_STATE_CONTROL;
if (StringEndsWith(mTableUpdate->TableName(), "-shavar"_ns)) {
return ProcessShaChunk(chunk);
}
if (StringEndsWith(mTableUpdate->TableName(), "-digest256"_ns)) {
return ProcessDigestChunk(chunk);
}
return ProcessPlaintextChunk(chunk);
}
/**
* Process a plaintext chunk (currently only used in unit tests).
*/
nsresult ProtocolParserV2::ProcessPlaintextChunk(const nsACString& aChunk) {
if (!mTableUpdate) {
NS_WARNING("Chunk received with no table.");
return NS_ERROR_FAILURE;
}
PARSER_LOG(("Handling a %zd-byte simple chunk", aChunk.Length()));
nsTArray<nsCString> lines;
ParseString(PromiseFlatCString(aChunk), '\n', lines);
// non-hashed tables need to be hashed
for (uint32_t i = 0; i < lines.Length(); i++) {
nsCString& line = lines[i];
if (mChunkState.type == CHUNK_ADD) {
if (mChunkState.hashSize == COMPLETE_SIZE) {
Completion hash;
hash.FromPlaintext(line);
nsresult rv = mTableUpdate->NewAddComplete(mChunkState.num, hash);
if (NS_FAILED(rv)) {
return rv;
}
} else {
NS_ASSERTION(mChunkState.hashSize == 4,
"Only 32- or 4-byte hashes can be used for add chunks.");
Prefix hash;
hash.FromPlaintext(line);
nsresult rv = mTableUpdate->NewAddPrefix(mChunkState.num, hash);
if (NS_FAILED(rv)) {
return rv;
}
}
} else {
nsCString::const_iterator begin, iter, end;
line.BeginReading(begin);
line.EndReading(end);
iter = begin;
uint32_t addChunk;
if (!FindCharInReadable(':', iter, end) ||
PR_sscanf(lines[i].get(), "%d:", &addChunk) != 1) {
NS_WARNING("Received sub chunk without associated add chunk.");
return NS_ERROR_FAILURE;
}
iter++;
if (mChunkState.hashSize == COMPLETE_SIZE) {
Completion hash;
hash.FromPlaintext(Substring(iter, end));
nsresult rv =
mTableUpdate->NewSubComplete(addChunk, hash, mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
} else {
NS_ASSERTION(mChunkState.hashSize == 4,
"Only 32- or 4-byte hashes can be used for add chunks.");
Prefix hash;
hash.FromPlaintext(Substring(iter, end));
nsresult rv =
mTableUpdate->NewSubPrefix(addChunk, hash, mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
}
}
}
return NS_OK;
}
nsresult ProtocolParserV2::ProcessShaChunk(const nsACString& aChunk) {
uint32_t start = 0;
while (start < aChunk.Length()) {
// First four bytes are the domain key.
Prefix domain;
domain.Assign(Substring(aChunk, start, DOMAIN_SIZE));
start += DOMAIN_SIZE;
// Then a count of entries.
uint8_t numEntries = static_cast<uint8_t>(aChunk[start]);
start++;
PARSER_LOG(
("Handling a %zd-byte shavar chunk containing %u entries"
" for domain %X",
aChunk.Length(), numEntries, domain.ToUint32()));
nsresult rv;
if (mChunkState.type == CHUNK_ADD && mChunkState.hashSize == PREFIX_SIZE) {
rv = ProcessHostAdd(domain, numEntries, aChunk, &start);
} else if (mChunkState.type == CHUNK_ADD &&
mChunkState.hashSize == COMPLETE_SIZE) {
rv = ProcessHostAddComplete(numEntries, aChunk, &start);
} else if (mChunkState.type == CHUNK_SUB &&
mChunkState.hashSize == PREFIX_SIZE) {
rv = ProcessHostSub(domain, numEntries, aChunk, &start);
} else if (mChunkState.type == CHUNK_SUB &&
mChunkState.hashSize == COMPLETE_SIZE) {
rv = ProcessHostSubComplete(numEntries, aChunk, &start);
} else {
NS_WARNING("Unexpected chunk type/hash size!");
PARSER_LOG(("Got an unexpected chunk type/hash size: %s:%d",
mChunkState.type == CHUNK_ADD ? "add" : "sub",
mChunkState.hashSize));
return NS_ERROR_FAILURE;
}
NS_ENSURE_SUCCESS(rv, rv);
}
return NS_OK;
}
nsresult ProtocolParserV2::ProcessDigestChunk(const nsACString& aChunk) {
PARSER_LOG(("Handling a %zd-byte digest256 chunk", aChunk.Length()));
if (mChunkState.type == CHUNK_ADD_DIGEST) {
return ProcessDigestAdd(aChunk);
}
if (mChunkState.type == CHUNK_SUB_DIGEST) {
return ProcessDigestSub(aChunk);
}
return NS_ERROR_UNEXPECTED;
}
nsresult ProtocolParserV2::ProcessDigestAdd(const nsACString& aChunk) {
MOZ_ASSERT(mTableUpdate);
// The ABNF format for add chunks is (HASH)+, where HASH is 32 bytes.
MOZ_ASSERT(aChunk.Length() % 32 == 0,
"Chunk length in bytes must be divisible by 4");
uint32_t start = 0;
while (start < aChunk.Length()) {
Completion hash;
hash.Assign(Substring(aChunk, start, COMPLETE_SIZE));
start += COMPLETE_SIZE;
nsresult rv = mTableUpdate->NewAddComplete(mChunkState.num, hash);
if (NS_FAILED(rv)) {
return rv;
}
}
return NS_OK;
}
nsresult ProtocolParserV2::ProcessDigestSub(const nsACString& aChunk) {
MOZ_ASSERT(mTableUpdate);
// The ABNF format for sub chunks is (ADDCHUNKNUM HASH)+, where ADDCHUNKNUM
// is a 4 byte chunk number, and HASH is 32 bytes.
MOZ_ASSERT(aChunk.Length() % 36 == 0,
"Chunk length in bytes must be divisible by 36");
uint32_t start = 0;
while (start < aChunk.Length()) {
// Read ADDCHUNKNUM
const nsACString& addChunkStr = Substring(aChunk, start, 4);
start += 4;
uint32_t addChunk;
memcpy(&addChunk, addChunkStr.BeginReading(), 4);
addChunk = PR_ntohl(addChunk);
// Read the hash
Completion hash;
hash.Assign(Substring(aChunk, start, COMPLETE_SIZE));
start += COMPLETE_SIZE;
nsresult rv = mTableUpdate->NewSubComplete(addChunk, hash, mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
}
return NS_OK;
}
nsresult ProtocolParserV2::ProcessHostAdd(const Prefix& aDomain,
uint8_t aNumEntries,
const nsACString& aChunk,
uint32_t* aStart) {
MOZ_ASSERT(mTableUpdate);
NS_ASSERTION(mChunkState.hashSize == PREFIX_SIZE,
"ProcessHostAdd should only be called for prefix hashes.");
if (aNumEntries == 0) {
nsresult rv = mTableUpdate->NewAddPrefix(mChunkState.num, aDomain);
if (NS_FAILED(rv)) {
return rv;
}
return NS_OK;
}
if (*aStart + (PREFIX_SIZE * aNumEntries) > aChunk.Length()) {
NS_WARNING("Chunk is not long enough to contain the expected entries.");
return NS_ERROR_FAILURE;
}
for (uint8_t i = 0; i < aNumEntries; i++) {
Prefix hash;
hash.Assign(Substring(aChunk, *aStart, PREFIX_SIZE));
PARSER_LOG(("Add prefix %X", hash.ToUint32()));
nsresult rv = mTableUpdate->NewAddPrefix(mChunkState.num, hash);
if (NS_FAILED(rv)) {
return rv;
}
*aStart += PREFIX_SIZE;
}
return NS_OK;
}
nsresult ProtocolParserV2::ProcessHostSub(const Prefix& aDomain,
uint8_t aNumEntries,
const nsACString& aChunk,
uint32_t* aStart) {
MOZ_ASSERT(mTableUpdate);
NS_ASSERTION(mChunkState.hashSize == PREFIX_SIZE,
"ProcessHostSub should only be called for prefix hashes.");
if (aNumEntries == 0) {
if ((*aStart) + 4 > aChunk.Length()) {
NS_WARNING("Received a zero-entry sub chunk without an associated add.");
return NS_ERROR_FAILURE;
}
const nsACString& addChunkStr = Substring(aChunk, *aStart, 4);
*aStart += 4;
uint32_t addChunk;
memcpy(&addChunk, addChunkStr.BeginReading(), 4);
addChunk = PR_ntohl(addChunk);
PARSER_LOG(("Sub prefix (addchunk=%u)", addChunk));
nsresult rv =
mTableUpdate->NewSubPrefix(addChunk, aDomain, mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
return NS_OK;
}
if (*aStart + ((PREFIX_SIZE + 4) * aNumEntries) > aChunk.Length()) {
NS_WARNING("Chunk is not long enough to contain the expected entries.");
return NS_ERROR_FAILURE;
}
for (uint8_t i = 0; i < aNumEntries; i++) {
const nsACString& addChunkStr = Substring(aChunk, *aStart, 4);
*aStart += 4;
uint32_t addChunk;
memcpy(&addChunk, addChunkStr.BeginReading(), 4);
addChunk = PR_ntohl(addChunk);
Prefix prefix;
prefix.Assign(Substring(aChunk, *aStart, PREFIX_SIZE));
*aStart += PREFIX_SIZE;
PARSER_LOG(("Sub prefix %X (addchunk=%u)", prefix.ToUint32(), addChunk));
nsresult rv = mTableUpdate->NewSubPrefix(addChunk, prefix, mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
}
return NS_OK;
}
nsresult ProtocolParserV2::ProcessHostAddComplete(uint8_t aNumEntries,
const nsACString& aChunk,
uint32_t* aStart) {
MOZ_ASSERT(mTableUpdate);
NS_ASSERTION(
mChunkState.hashSize == COMPLETE_SIZE,
"ProcessHostAddComplete should only be called for complete hashes.");
if (aNumEntries == 0) {
// this is totally comprehensible.
// My sarcasm detector is going off!
NS_WARNING("Expected > 0 entries for a 32-byte hash add.");
return NS_OK;
}
if (*aStart + (COMPLETE_SIZE * aNumEntries) > aChunk.Length()) {
NS_WARNING("Chunk is not long enough to contain the expected entries.");
return NS_ERROR_FAILURE;
}
for (uint8_t i = 0; i < aNumEntries; i++) {
Completion hash;
hash.Assign(Substring(aChunk, *aStart, COMPLETE_SIZE));
nsresult rv = mTableUpdate->NewAddComplete(mChunkState.num, hash);
if (NS_FAILED(rv)) {
return rv;
}
*aStart += COMPLETE_SIZE;
}
return NS_OK;
}
nsresult ProtocolParserV2::ProcessHostSubComplete(uint8_t aNumEntries,
const nsACString& aChunk,
uint32_t* aStart) {
MOZ_ASSERT(mTableUpdate);
NS_ASSERTION(
mChunkState.hashSize == COMPLETE_SIZE,
"ProcessHostSubComplete should only be called for complete hashes.");
if (aNumEntries == 0) {
// this is totally comprehensible.
NS_WARNING("Expected > 0 entries for a 32-byte hash sub.");
return NS_OK;
}
if (*aStart + ((COMPLETE_SIZE + 4) * aNumEntries) > aChunk.Length()) {
NS_WARNING("Chunk is not long enough to contain the expected entries.");
return NS_ERROR_FAILURE;
}
for (uint8_t i = 0; i < aNumEntries; i++) {
const nsACString& addChunkStr = Substring(aChunk, *aStart, 4);
*aStart += 4;
uint32_t addChunk;
memcpy(&addChunk, addChunkStr.BeginReading(), 4);
addChunk = PR_ntohl(addChunk);
Completion hash;
hash.Assign(Substring(aChunk, *aStart, COMPLETE_SIZE));
*aStart += COMPLETE_SIZE;
nsresult rv = mTableUpdate->NewSubComplete(addChunk, hash, mChunkState.num);
if (NS_FAILED(rv)) {
return rv;
}
}
return NS_OK;
}
bool ProtocolParserV2::NextLine(nsACString& aLine) {
int32_t newline = mPending.FindChar('\n');
if (newline == kNotFound) {
return false;
}
aLine.Assign(Substring(mPending, 0, newline));
mPending.Cut(0, newline + 1);
return true;
}
RefPtr<TableUpdate> ProtocolParserV2::CreateTableUpdate(
const nsACString& aTableName) const {
return new TableUpdateV2(aTableName);
}
///////////////////////////////////////////////////////////////////////
// ProtocolParserProtobuf
ProtocolParserProtobuf::ProtocolParserProtobuf() = default;
ProtocolParserProtobuf::~ProtocolParserProtobuf() = default;
void ProtocolParserProtobuf::SetCurrentTable(const nsACString& aTable) {
// Should never occur.
MOZ_ASSERT_UNREACHABLE("SetCurrentTable shouldn't be called");
}
RefPtr<TableUpdate> ProtocolParserProtobuf::CreateTableUpdate(
const nsACString& aTableName) const {
return new TableUpdateV4(aTableName);
}
nsresult ProtocolParserProtobuf::AppendStream(const nsACString& aData) {
// Protobuf data cannot be parsed progressively. Just save the incoming data.
if (!mPending.Append(aData, mozilla::fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
return NS_OK;
}
void ProtocolParserProtobuf::End() {
// mUpdateStatus will be updated to success as long as not all
// the responses are invalid.
mUpdateStatus = NS_ERROR_FAILURE;
FetchThreatListUpdatesResponse response;
if (!response.ParseFromArray(mPending.get(), mPending.Length())) {
NS_WARNING("ProtocolParserProtobuf failed parsing data.");
return;
}
auto minWaitDuration = response.minimum_wait_duration();
mUpdateWaitSec =
minWaitDuration.seconds() + minWaitDuration.nanos() / 1000000000;
for (int i = 0; i < response.list_update_responses_size(); i++) {
auto r = response.list_update_responses(i);
nsAutoCString listName;
nsresult rv = ProcessOneResponse(r, listName);
if (NS_SUCCEEDED(rv)) {
mUpdateStatus = rv;
} else {
nsAutoCString errorName;
mozilla::GetErrorName(rv, errorName);
NS_WARNING(nsPrintfCString("Failed to process one response for '%s': %s",
listName.get(), errorName.get())
.get());
if (!listName.IsEmpty()) {
PARSER_LOG(("Table %s will be reset.", listName.get()));
mTablesToReset.AppendElement(listName);
}
}
}
}
nsresult ProtocolParserProtobuf::ProcessOneResponse(
const ListUpdateResponse& aResponse, nsACString& aListName) {
MOZ_ASSERT(aListName.IsEmpty());
// A response must have a threat type.
if (!aResponse.has_threat_type()) {
NS_WARNING(
"Threat type not initialized. This seems to be an invalid response.");
return NS_ERROR_UC_PARSER_MISSING_PARAM;
}
nsUrlClassifierUtils* urlUtil = nsUrlClassifierUtils::GetInstance();
if (NS_WARN_IF(!urlUtil)) {
return NS_ERROR_FAILURE;
}
// Convert threat type to list name.
nsCString possibleListNames;
nsresult rv = urlUtil->ConvertThreatTypeToListNames(aResponse.threat_type(),
possibleListNames);
if (NS_FAILED(rv)) {
PARSER_LOG(("Threat type to list name conversion error: %d",
aResponse.threat_type()));
return NS_ERROR_UC_PARSER_UNKNOWN_THREAT;
}
// Match the table name we received with one of the ones we requested.
// We ignore the case where a threat type matches more than one list
nsTArray<nsCString> possibleListNameArray;
Classifier::SplitTables(possibleListNames, possibleListNameArray);
for (auto possibleName : possibleListNameArray) {
if (mRequestedTables.Contains(possibleName)) {
aListName = possibleName;
break;
}
}
if (aListName.IsEmpty()) {
PARSER_LOG(
("We received an update for a list we didn't ask for. Ignoring it."));
return NS_ERROR_FAILURE;
}
// Test if this is a full update.
bool isFullUpdate = false;
if (aResponse.has_response_type()) {
isFullUpdate = aResponse.response_type() == ListUpdateResponse::FULL_UPDATE;
} else {
NS_WARNING("Response type not initialized.");
return NS_ERROR_UC_PARSER_MISSING_PARAM;
}
// Warn if there's no new state.
if (!aResponse.has_new_client_state()) {
NS_WARNING("New state not initialized.");
return NS_ERROR_UC_PARSER_MISSING_PARAM;
}
auto tu = GetTableUpdate(aListName);
auto tuV4 = TableUpdate::Cast<TableUpdateV4>(tu);
NS_ENSURE_TRUE(tuV4, NS_ERROR_FAILURE);
nsCString state(aResponse.new_client_state().c_str(),
aResponse.new_client_state().size());
tuV4->SetNewClientState(state);
if (aResponse.has_checksum()) {
tuV4->SetSHA256(aResponse.checksum().sha256());
}
PARSER_LOG(
("==== Update for threat type '%d' ====", aResponse.threat_type()));
PARSER_LOG(("* aListName: %s\n", PromiseFlatCString(aListName).get()));
PARSER_LOG(("* newState: %s\n", aResponse.new_client_state().c_str()));
PARSER_LOG(("* isFullUpdate: %s\n", (isFullUpdate ? "yes" : "no")));
PARSER_LOG(
("* hasChecksum: %s\n", (aResponse.has_checksum() ? "yes" : "no")));
PARSER_LOG(("* additions: %d\n", aResponse.additions().size()));
PARSER_LOG(("* removals: %d\n", aResponse.removals().size()));
tuV4->SetFullUpdate(isFullUpdate);
rv = ProcessAdditionOrRemoval(*tuV4, aResponse.additions(),
true /*aIsAddition*/);
NS_ENSURE_SUCCESS(rv, rv);
rv = ProcessAdditionOrRemoval(*tuV4, aResponse.removals(), false);
NS_ENSURE_SUCCESS(rv, rv);
PARSER_LOG(("\n\n"));
return NS_OK;
}
nsresult ProtocolParserProtobuf::ProcessAdditionOrRemoval(
TableUpdateV4& aTableUpdate, const ThreatEntrySetList& aUpdate,
bool aIsAddition) {
nsresult ret = NS_OK;
for (int i = 0; i < aUpdate.size(); i++) {
auto update = aUpdate.Get(i);
if (!update.has_compression_type()) {
NS_WARNING(nsPrintfCString("%s with no compression type.",
aIsAddition ? "Addition" : "Removal")
.get());
continue;
}
switch (update.compression_type()) {
case COMPRESSION_TYPE_UNSPECIFIED:
NS_WARNING("Unspecified compression type.");
break;
case RAW:
ret = (aIsAddition ? ProcessRawAddition(aTableUpdate, update)
: ProcessRawRemoval(aTableUpdate, update));
break;
case RICE:
ret = (aIsAddition ? ProcessEncodedAddition(aTableUpdate, update)
: ProcessEncodedRemoval(aTableUpdate, update));
break;
}
}
return ret;
}
nsresult ProtocolParserProtobuf::ProcessRawAddition(
TableUpdateV4& aTableUpdate, const ThreatEntrySet& aAddition) {
if (!aAddition.has_raw_hashes()) {
PARSER_LOG(("* No raw addition."));
return NS_OK;
}
auto rawHashes = aAddition.raw_hashes();
if (!rawHashes.has_prefix_size()) {
NS_WARNING("Raw hash has no prefix size");
return NS_OK;
}
uint32_t prefixSize = rawHashes.prefix_size();
MOZ_ASSERT(prefixSize >= PREFIX_SIZE && prefixSize <= COMPLETE_SIZE);
nsCString prefixes;
if (!prefixes.Assign(rawHashes.raw_hashes().c_str(),
rawHashes.raw_hashes().size(), mozilla::fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
MOZ_ASSERT(prefixes.Length() % prefixSize == 0,
"PrefixString length must be a multiple of the prefix size.");
if (LOG_ENABLED()) {
PARSER_LOG((" Raw addition (%d-byte prefixes)", prefixSize));
PARSER_LOG((" - # of prefixes: %zu", prefixes.Length() / prefixSize));
if (4 == prefixSize) {
uint32_t* fixedLengthPrefixes = (uint32_t*)prefixes.get();
PARSER_LOG((" - Memory address: 0x%p", fixedLengthPrefixes));
}
}
aTableUpdate.NewPrefixes(prefixSize, prefixes);
return NS_OK;
}
nsresult ProtocolParserProtobuf::ProcessRawRemoval(
TableUpdateV4& aTableUpdate, const ThreatEntrySet& aRemoval) {
if (!aRemoval.has_raw_indices()) {
NS_WARNING("A removal has no indices.");
return NS_OK;
}
// indices is an array of int32.
auto indices = aRemoval.raw_indices().indices();
PARSER_LOG(("* Raw removal"));
PARSER_LOG((" - # of removal: %d", indices.size()));
nsresult rv = aTableUpdate.NewRemovalIndices((const uint32_t*)indices.data(),
indices.size());
if (NS_FAILED(rv)) {
PARSER_LOG(("Failed to create new removal indices."));
return rv;
}
return NS_OK;
}
static nsresult DoRiceDeltaDecode(const RiceDeltaEncoding& aEncoding,
nsTArray<uint32_t>& aDecoded) {
if (aEncoding.num_entries() > 0 &&
(!aEncoding.has_rice_parameter() || !aEncoding.has_encoded_data())) {
PARSER_LOG(("Rice parameter or encoded data is missing."));
return NS_ERROR_UC_PARSER_MISSING_PARAM;
} else if (aEncoding.num_entries() == 0 && !aEncoding.has_first_value()) {
PARSER_LOG(("Missing first_value for an single-integer Rice encoding."));
return NS_ERROR_UC_PARSER_MISSING_VALUE;
}
auto first_value = aEncoding.has_first_value() ? aEncoding.first_value() : 0;
PARSER_LOG(("* Encoding info:"));
PARSER_LOG((" - First value: %" PRId64, first_value));
PARSER_LOG((" - Num of entries: %d", aEncoding.num_entries()));
PARSER_LOG((" - Rice parameter: %d", aEncoding.rice_parameter()));
// Set up the input buffer. Note that the bits should be read
// from LSB to MSB so that we in-place reverse the bits before
// feeding to the decoder.
auto encoded =
const_cast<RiceDeltaEncoding&>(aEncoding).mutable_encoded_data();
RiceDeltaDecoder decoder((uint8_t*)encoded->c_str(), encoded->size());
// Setup the output buffer. The "first value" is included in
// the output buffer.
if (!aDecoded.SetLength(aEncoding.num_entries() + 1, mozilla::fallible)) {
NS_WARNING("Not enough memory to decode the RiceDelta input.");
return NS_ERROR_OUT_OF_MEMORY;
}
// Decode!
bool rv = decoder.Decode(
aEncoding.rice_parameter(), first_value,
aEncoding.num_entries(), // # of entries (first value not included).
&aDecoded[0]);
NS_ENSURE_TRUE(rv, NS_ERROR_UC_PARSER_DECODE_FAILURE);
return NS_OK;
}
nsresult ProtocolParserProtobuf::ProcessEncodedAddition(
TableUpdateV4& aTableUpdate, const ThreatEntrySet& aAddition) {
if (!aAddition.has_rice_hashes()) {
PARSER_LOG(("* No rice encoded addition."));
return NS_OK;
}
nsTArray<uint32_t> decoded;
nsresult rv = DoRiceDeltaDecode(aAddition.rice_hashes(), decoded);
if (NS_FAILED(rv)) {
PARSER_LOG(("Failed to parse encoded prefixes."));
return rv;
}
// Say we have the following raw prefixes
// BE LE
// 00 00 00 01 1 16777216
// 00 00 02 00 512 131072
// 00 03 00 00 196608 768
// 04 00 00 00 67108864 4
//
// which can be treated as uint32 (big-endian) sorted in increasing order:
//
// [1, 512, 196608, 67108864]
//
// the following should be done prior to compression:
//
// 1) re-interpret in little-endian ==> [16777216, 131072, 768, 4]
// 2) sort in increasing order ==> [4, 768, 131072, 16777216]
//
// In order to get the original byte stream from |decoded|
// ([4, 768, 131072, 16777216] in this case), we have to:
//
// 1) sort in big-endian order ==> [16777216, 131072, 768, 4]
// 2) copy each uint32 in little-endian to the result string
//
// The 4-byte prefixes have to be re-sorted in Big-endian increasing order.
struct CompareBigEndian {
bool Equals(const uint32_t& aA, const uint32_t& aB) const {
return aA == aB;
}
bool LessThan(const uint32_t& aA, const uint32_t& aB) const {
return NativeEndian::swapToBigEndian(aA) <
NativeEndian::swapToBigEndian(aB);
}
};
decoded.Sort(CompareBigEndian());
// The encoded prefixes are always 4 bytes.
nsCString prefixes;
if (!prefixes.SetCapacity(decoded.Length() * 4, mozilla::fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
for (size_t i = 0; i < decoded.Length(); i++) {
// Note that the third argument is the number of elements we want
// to copy (and swap) but not the number of bytes we want to copy.
char p[4];
NativeEndian::copyAndSwapToLittleEndian(p, &decoded[i], 1);
prefixes.Append(p, 4);
}
aTableUpdate.NewPrefixes(4, prefixes);
return NS_OK;
}
nsresult ProtocolParserProtobuf::ProcessEncodedRemoval(
TableUpdateV4& aTableUpdate, const ThreatEntrySet& aRemoval) {
if (!aRemoval.has_rice_indices()) {
PARSER_LOG(("* No rice encoded removal."));
return NS_OK;
}
nsTArray<uint32_t> decoded;
nsresult rv = DoRiceDeltaDecode(aRemoval.rice_indices(), decoded);
if (NS_FAILED(rv)) {
PARSER_LOG(("Failed to decode encoded removal indices."));
return rv;
}
// The encoded prefixes are always 4 bytes.
rv = aTableUpdate.NewRemovalIndices(&decoded[0], decoded.Length());
if (NS_FAILED(rv)) {
PARSER_LOG(("Failed to create new removal indices."));
return rv;
}
return NS_OK;
}
} // namespace safebrowsing
} // namespace mozilla