Source code

Revision control

Copy as Markdown

Other Tools

/*!
Types and routines for working with look-around assertions.
This module principally defines two types:
* [`Look`] enumerates all of the assertions supported by this crate.
* [`LookSet`] provides a way to efficiently store a set of [`Look`] values.
* [`LookMatcher`] provides routines for checking whether a `Look` or a
`LookSet` matches at a particular position in a haystack.
*/
// LAMENTATION: Sadly, a lot of the API of `Look` and `LookSet` were basically
// copied verbatim from the regex-syntax crate. I would have no problems using
// the regex-syntax types and defining the matching routines (only found
// in this crate) as free functions, except the `Look` and `LookSet` types
// are used in lots of places. Including in places we expect to work when
// regex-syntax is *not* enabled, such as in the definition of the NFA itself.
//
// Thankfully the code we copy is pretty simple and there isn't much of it.
// Otherwise, the rest of this module deals with *matching* the assertions,
// which is not something that regex-syntax handles.
use crate::util::{escape::DebugByte, utf8};
/// A look-around assertion.
///
/// An assertion matches at a position between characters in a haystack.
/// Namely, it does not actually "consume" any input as most parts of a regular
/// expression do. Assertions are a way of stating that some property must be
/// true at a particular point during matching.
///
/// For example, `(?m)^[a-z]+$` is a pattern that:
///
/// * Scans the haystack for a position at which `(?m:^)` is satisfied. That
/// occurs at either the beginning of the haystack, or immediately following
/// a `\n` character.
/// * Looks for one or more occurrences of `[a-z]`.
/// * Once `[a-z]+` has matched as much as it can, an overall match is only
/// reported when `[a-z]+` stops just before a `\n`.
///
/// So in this case, `abc` and `\nabc\n` match, but `\nabc1\n` does not.
///
/// Assertions are also called "look-around," "look-behind" and "look-ahead."
/// Specifically, some assertions are look-behind (like `^`), other assertions
/// are look-ahead (like `$`) and yet other assertions are both look-ahead and
/// look-behind (like `\b`).
///
/// # Assertions in an NFA
///
/// An assertion in a [`thompson::NFA`](crate::nfa::thompson::NFA) can be
/// thought of as a conditional epsilon transition. That is, a matching engine
/// like the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM) only permits
/// moving through conditional epsilon transitions when their condition
/// is satisfied at whatever position the `PikeVM` is currently at in the
/// haystack.
///
/// How assertions are handled in a `DFA` is trickier, since a DFA does not
/// have epsilon transitions at all. In this case, they are compiled into the
/// automaton itself, at the expense of more states than what would be required
/// without an assertion.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Look {
/// Match the beginning of text. Specifically, this matches at the starting
/// position of the input.
Start = 1 << 0,
/// Match the end of text. Specifically, this matches at the ending
/// position of the input.
End = 1 << 1,
/// Match the beginning of a line or the beginning of text. Specifically,
/// this matches at the starting position of the input, or at the position
/// immediately following a `\n` character.
StartLF = 1 << 2,
/// Match the end of a line or the end of text. Specifically, this matches
/// at the end position of the input, or at the position immediately
/// preceding a `\n` character.
EndLF = 1 << 3,
/// Match the beginning of a line or the beginning of text. Specifically,
/// this matches at the starting position of the input, or at the position
/// immediately following either a `\r` or `\n` character, but never after
/// a `\r` when a `\n` follows.
StartCRLF = 1 << 4,
/// Match the end of a line or the end of text. Specifically, this matches
/// at the end position of the input, or at the position immediately
/// preceding a `\r` or `\n` character, but never before a `\n` when a `\r`
/// precedes it.
EndCRLF = 1 << 5,
/// Match an ASCII-only word boundary. That is, this matches a position
/// where the left adjacent character and right adjacent character
/// correspond to a word and non-word or a non-word and word character.
WordAscii = 1 << 6,
/// Match an ASCII-only negation of a word boundary.
WordAsciiNegate = 1 << 7,
/// Match a Unicode-aware word boundary. That is, this matches a position
/// where the left adjacent character and right adjacent character
/// correspond to a word and non-word or a non-word and word character.
WordUnicode = 1 << 8,
/// Match a Unicode-aware negation of a word boundary.
WordUnicodeNegate = 1 << 9,
}
impl Look {
/// Flip the look-around assertion to its equivalent for reverse searches.
/// For example, `StartLF` gets translated to `EndLF`.
///
/// Some assertions, such as `WordUnicode`, remain the same since they
/// match the same positions regardless of the direction of the search.
#[inline]
pub const fn reversed(self) -> Look {
match self {
Look::Start => Look::End,
Look::End => Look::Start,
Look::StartLF => Look::EndLF,
Look::EndLF => Look::StartLF,
Look::StartCRLF => Look::EndCRLF,
Look::EndCRLF => Look::StartCRLF,
Look::WordAscii => Look::WordAscii,
Look::WordAsciiNegate => Look::WordAsciiNegate,
Look::WordUnicode => Look::WordUnicode,
Look::WordUnicodeNegate => Look::WordUnicodeNegate,
}
}
/// Return the underlying representation of this look-around enumeration
/// as an integer. Giving the return value to the [`Look::from_repr`]
/// constructor is guaranteed to return the same look-around variant that
/// one started with within a semver compatible release of this crate.
#[inline]
pub const fn as_repr(self) -> u16 {
// AFAIK, 'as' is the only way to zero-cost convert an int enum to an
// actual int.
self as u16
}
/// Given the underlying representation of a `Look` value, return the
/// corresponding `Look` value if the representation is valid. Otherwise
/// `None` is returned.
#[inline]
pub const fn from_repr(repr: u16) -> Option<Look> {
match repr {
0b00_0000_0001 => Some(Look::Start),
0b00_0000_0010 => Some(Look::End),
0b00_0000_0100 => Some(Look::StartLF),
0b00_0000_1000 => Some(Look::EndLF),
0b00_0001_0000 => Some(Look::StartCRLF),
0b00_0010_0000 => Some(Look::EndCRLF),
0b00_0100_0000 => Some(Look::WordAscii),
0b00_1000_0000 => Some(Look::WordAsciiNegate),
0b01_0000_0000 => Some(Look::WordUnicode),
0b10_0000_0000 => Some(Look::WordUnicodeNegate),
_ => None,
}
}
/// Returns a convenient single codepoint representation of this
/// look-around assertion. Each assertion is guaranteed to be represented
/// by a distinct character.
///
/// This is useful for succinctly representing a look-around assertion in
/// human friendly but succinct output intended for a programmer working on
/// regex internals.
#[inline]
pub const fn as_char(self) -> char {
match self {
Look::Start => 'A',
Look::End => 'z',
Look::StartLF => '^',
Look::EndLF => '$',
Look::StartCRLF => 'r',
Look::EndCRLF => 'R',
Look::WordAscii => 'b',
Look::WordAsciiNegate => 'B',
Look::WordUnicode => '𝛃',
Look::WordUnicodeNegate => '𝚩',
}
}
}
/// LookSet is a memory-efficient set of look-around assertions.
///
/// This is useful for efficiently tracking look-around assertions. For
/// example, a [`thompson::NFA`](crate::nfa::thompson::NFA) provides properties
/// that return `LookSet`s.
#[derive(Clone, Copy, Default, Eq, PartialEq)]
pub struct LookSet {
/// The underlying representation this set is exposed to make it possible
/// to store it somewhere efficiently. The representation is that
/// of a bitset, where each assertion occupies bit `i` where `i =
/// Look::as_repr()`.
///
/// Note that users of this internal representation must permit the full
/// range of `u16` values to be represented. For example, even if the
/// current implementation only makes use of the 10 least significant bits,
/// it may use more bits in a future semver compatible release.
pub bits: u16,
}
impl LookSet {
/// Create an empty set of look-around assertions.
#[inline]
pub fn empty() -> LookSet {
LookSet { bits: 0 }
}
/// Create a full set of look-around assertions.
///
/// This set contains all possible look-around assertions.
#[inline]
pub fn full() -> LookSet {
LookSet { bits: !0 }
}
/// Create a look-around set containing the look-around assertion given.
///
/// This is a convenience routine for creating an empty set and inserting
/// one look-around assertions.
#[inline]
pub fn singleton(look: Look) -> LookSet {
LookSet::empty().insert(look)
}
/// Returns the total number of look-around assertions in this set.
#[inline]
pub fn len(self) -> usize {
// OK because max value always fits in a u8, which in turn always
// fits in a usize, regardless of target.
usize::try_from(self.bits.count_ones()).unwrap()
}
/// Returns true if and only if this set is empty.
#[inline]
pub fn is_empty(self) -> bool {
self.len() == 0
}
/// Returns true if and only if the given look-around assertion is in this
/// set.
#[inline]
pub fn contains(self, look: Look) -> bool {
self.bits & look.as_repr() != 0
}
/// Returns true if and only if this set contains any anchor assertions.
/// This includes both "start/end of haystack" and "start/end of line."
#[inline]
pub fn contains_anchor(&self) -> bool {
self.contains_anchor_haystack() || self.contains_anchor_line()
}
/// Returns true if and only if this set contains any "start/end of
/// haystack" anchors. This doesn't include "start/end of line" anchors.
#[inline]
pub fn contains_anchor_haystack(&self) -> bool {
self.contains(Look::Start) || self.contains(Look::End)
}
/// Returns true if and only if this set contains any "start/end of line"
/// anchors. This doesn't include "start/end of haystack" anchors. This
/// includes both `\n` line anchors and CRLF (`\r\n`) aware line anchors.
#[inline]
pub fn contains_anchor_line(&self) -> bool {
self.contains(Look::StartLF)
|| self.contains(Look::EndLF)
|| self.contains(Look::StartCRLF)
|| self.contains(Look::EndCRLF)
}
/// Returns true if and only if this set contains any "start/end of line"
/// anchors that only treat `\n` as line terminators. This does not include
/// haystack anchors or CRLF aware line anchors.
#[inline]
pub fn contains_anchor_lf(&self) -> bool {
self.contains(Look::StartLF) || self.contains(Look::EndLF)
}
/// Returns true if and only if this set contains any "start/end of line"
/// anchors that are CRLF-aware. This doesn't include "start/end of
/// haystack" or "start/end of line-feed" anchors.
#[inline]
pub fn contains_anchor_crlf(&self) -> bool {
self.contains(Look::StartCRLF) || self.contains(Look::EndCRLF)
}
/// Returns true if and only if this set contains any word boundary or
/// negated word boundary assertions. This include both Unicode and ASCII
/// word boundaries.
#[inline]
pub fn contains_word(self) -> bool {
self.contains_word_unicode() || self.contains_word_ascii()
}
/// Returns true if and only if this set contains any Unicode word boundary
/// or negated Unicode word boundary assertions.
#[inline]
pub fn contains_word_unicode(self) -> bool {
self.contains(Look::WordUnicode)
|| self.contains(Look::WordUnicodeNegate)
}
/// Returns true if and only if this set contains any ASCII word boundary
/// or negated ASCII word boundary assertions.
#[inline]
pub fn contains_word_ascii(self) -> bool {
self.contains(Look::WordAscii) || self.contains(Look::WordAsciiNegate)
}
/// Returns an iterator over all of the look-around assertions in this set.
#[inline]
pub fn iter(self) -> LookSetIter {
LookSetIter { set: self }
}
/// Return a new set that is equivalent to the original, but with the given
/// assertion added to it. If the assertion is already in the set, then the
/// returned set is equivalent to the original.
#[inline]
pub fn insert(self, look: Look) -> LookSet {
LookSet { bits: self.bits | look.as_repr() }
}
/// Updates this set in place with the result of inserting the given
/// assertion into this set.
#[inline]
pub fn set_insert(&mut self, look: Look) {
*self = self.insert(look);
}
/// Return a new set that is equivalent to the original, but with the given
/// assertion removed from it. If the assertion is not in the set, then the
/// returned set is equivalent to the original.
#[inline]
pub fn remove(self, look: Look) -> LookSet {
LookSet { bits: self.bits & !look.as_repr() }
}
/// Updates this set in place with the result of removing the given
/// assertion from this set.
#[inline]
pub fn set_remove(&mut self, look: Look) {
*self = self.remove(look);
}
/// Returns a new set that is the result of subtracting the given set from
/// this set.
#[inline]
pub fn subtract(self, other: LookSet) -> LookSet {
LookSet { bits: self.bits & !other.bits }
}
/// Updates this set in place with the result of subtracting the given set
/// from this set.
#[inline]
pub fn set_subtract(&mut self, other: LookSet) {
*self = self.subtract(other);
}
/// Returns a new set that is the union of this and the one given.
#[inline]
pub fn union(self, other: LookSet) -> LookSet {
LookSet { bits: self.bits | other.bits }
}
/// Updates this set in place with the result of unioning it with the one
/// given.
#[inline]
pub fn set_union(&mut self, other: LookSet) {
*self = self.union(other);
}
/// Returns a new set that is the intersection of this and the one given.
#[inline]
pub fn intersect(self, other: LookSet) -> LookSet {
LookSet { bits: self.bits & other.bits }
}
/// Updates this set in place with the result of intersecting it with the
/// one given.
#[inline]
pub fn set_intersect(&mut self, other: LookSet) {
*self = self.intersect(other);
}
/// Return a `LookSet` from the slice given as a native endian 16-bit
/// integer.
///
/// # Panics
///
/// This panics if `slice.len() < 2`.
#[inline]
pub fn read_repr(slice: &[u8]) -> LookSet {
let bits = u16::from_ne_bytes(slice[..2].try_into().unwrap());
LookSet { bits }
}
/// Write a `LookSet` as a native endian 16-bit integer to the beginning
/// of the slice given.
///
/// # Panics
///
/// This panics if `slice.len() < 2`.
#[inline]
pub fn write_repr(self, slice: &mut [u8]) {
let raw = self.bits.to_ne_bytes();
slice[0] = raw[0];
slice[1] = raw[1];
}
/// Checks that all assertions in this set can be matched.
///
/// Some assertions, such as Unicode word boundaries, require optional (but
/// enabled by default) tables that may not be available. If there are
/// assertions in this set that require tables that are not available, then
/// this will return an error.
///
/// Specifically, this returns an error when the the
/// `unicode-word-boundary` feature is _not_ enabled _and_ this set
/// contains a Unicode word boundary assertion.
///
/// It can be useful to use this on the result of
/// [`NFA::look_set_any`](crate::nfa::thompson::NFA::look_set_any)
/// when building a matcher engine to ensure methods like
/// [`LookMatcher::matches_set`] do not panic at search time.
pub fn available(self) -> Result<(), UnicodeWordBoundaryError> {
if self.contains_word_unicode() {
UnicodeWordBoundaryError::check()?;
}
Ok(())
}
}
impl core::fmt::Debug for LookSet {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
if self.is_empty() {
return write!(f, "∅");
}
for look in self.iter() {
write!(f, "{}", look.as_char())?;
}
Ok(())
}
}
/// An iterator over all look-around assertions in a [`LookSet`].
///
/// This iterator is created by [`LookSet::iter`].
#[derive(Clone, Debug)]
pub struct LookSetIter {
set: LookSet,
}
impl Iterator for LookSetIter {
type Item = Look;
#[inline]
fn next(&mut self) -> Option<Look> {
if self.set.is_empty() {
return None;
}
// We'll never have more than u8::MAX distinct look-around assertions,
// so 'repr' will always fit into a u16.
let repr = u16::try_from(self.set.bits.trailing_zeros()).unwrap();
let look = Look::from_repr(1 << repr)?;
self.set = self.set.remove(look);
Some(look)
}
}
/// A matcher for look-around assertions.
///
/// This matcher permits configuring aspects of how look-around assertions are
/// matched.
///
/// # Example
///
/// A `LookMatcher` can change the line terminator used for matching multi-line
/// anchors such as `(?m:^)` and `(?m:$)`.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, pikevm::PikeVM},
/// util::look::LookMatcher,
/// Match, Input,
/// };
///
/// let mut lookm = LookMatcher::new();
/// lookm.set_line_terminator(b'\x00');
///
/// let re = PikeVM::builder()
/// .thompson(thompson::Config::new().look_matcher(lookm))
/// .build(r"(?m)^[a-z]+$")?;
/// let mut cache = re.create_cache();
///
/// // Multi-line assertions now use NUL as a terminator.
/// assert_eq!(
/// Some(Match::must(0, 1..4)),
/// re.find(&mut cache, b"\x00abc\x00"),
/// );
/// // ... and \n is no longer recognized as a terminator.
/// assert_eq!(
/// None,
/// re.find(&mut cache, b"\nabc\n"),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct LookMatcher {
lineterm: DebugByte,
}
impl LookMatcher {
/// Creates a new default matcher for look-around assertions.
pub fn new() -> LookMatcher {
LookMatcher { lineterm: DebugByte(b'\n') }
}
/// Sets the line terminator for use with `(?m:^)` and `(?m:$)`.
///
/// Namely, instead of `^` matching after `\n` and `$` matching immediately
/// before a `\n`, this will cause it to match after and before the byte
/// given.
///
/// It can occasionally be useful to use this to configure the line
/// terminator to the NUL byte when searching binary data.
///
/// Note that this does not apply to CRLF-aware line anchors such as
/// `(?Rm:^)` and `(?Rm:$)`. CRLF-aware line anchors are hard-coded to
/// use `\r` and `\n`.
pub fn set_line_terminator(&mut self, byte: u8) -> &mut LookMatcher {
self.lineterm.0 = byte;
self
}
/// Returns the line terminator that was configured for this matcher.
///
/// If no line terminator was configured, then this returns `\n`.
///
/// Note that the line terminator should only be used for matching `(?m:^)`
/// and `(?m:$)` assertions. It specifically should _not_ be used for
/// matching the CRLF aware assertions `(?Rm:^)` and `(?Rm:$)`.
pub fn get_line_terminator(&self) -> u8 {
self.lineterm.0
}
/// Returns true when the position `at` in `haystack` satisfies the given
/// look-around assertion.
///
/// # Panics
///
/// This panics when testing any Unicode word boundary assertion in this
/// set and when the Unicode word data is not available. Specifically, this
/// only occurs when the `unicode-word-boundary` feature is not enabled.
///
/// Since it's generally expected that this routine is called inside of
/// a matching engine, callers should check the error condition when
/// building the matching engine. If there is a Unicode word boundary
/// in the matcher and the data isn't available, then the matcher should
/// fail to build.
///
/// Callers can check the error condition with [`LookSet::available`].
///
/// This also may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn matches(&self, look: Look, haystack: &[u8], at: usize) -> bool {
self.matches_inline(look, haystack, at)
}
/// Like `matches`, but forcefully inlined.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn matches_inline(
&self,
look: Look,
haystack: &[u8],
at: usize,
) -> bool {
match look {
Look::Start => self.is_start(haystack, at),
Look::End => self.is_end(haystack, at),
Look::StartLF => self.is_start_lf(haystack, at),
Look::EndLF => self.is_end_lf(haystack, at),
Look::StartCRLF => self.is_start_crlf(haystack, at),
Look::EndCRLF => self.is_end_crlf(haystack, at),
Look::WordAscii => self.is_word_ascii(haystack, at),
Look::WordAsciiNegate => self.is_word_ascii_negate(haystack, at),
Look::WordUnicode => self.is_word_unicode(haystack, at).unwrap(),
Look::WordUnicodeNegate => {
self.is_word_unicode_negate(haystack, at).unwrap()
}
}
}
/// Returns true when _all_ of the assertions in the given set match at the
/// given position in the haystack.
///
/// # Panics
///
/// This panics when testing any Unicode word boundary assertion in this
/// set and when the Unicode word data is not available. Specifically, this
/// only occurs when the `unicode-word-boundary` feature is not enabled.
///
/// Since it's generally expected that this routine is called inside of
/// a matching engine, callers should check the error condition when
/// building the matching engine. If there is a Unicode word boundary
/// in the matcher and the data isn't available, then the matcher should
/// fail to build.
///
/// Callers can check the error condition with [`LookSet::available`].
///
/// This also may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn matches_set(
&self,
set: LookSet,
haystack: &[u8],
at: usize,
) -> bool {
self.matches_set_inline(set, haystack, at)
}
/// Like `LookSet::matches`, but forcefully inlined for perf.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn matches_set_inline(
&self,
set: LookSet,
haystack: &[u8],
at: usize,
) -> bool {
// This used to luse LookSet::iter with Look::matches on each element,
// but that proved to be quite diastrous for perf. The manual "if
// the set has this assertion, check it" turns out to be quite a bit
// faster.
if set.contains(Look::Start) {
if !self.is_start(haystack, at) {
return false;
}
}
if set.contains(Look::End) {
if !self.is_end(haystack, at) {
return false;
}
}
if set.contains(Look::StartLF) {
if !self.is_start_lf(haystack, at) {
return false;
}
}
if set.contains(Look::EndLF) {
if !self.is_end_lf(haystack, at) {
return false;
}
}
if set.contains(Look::StartCRLF) {
if !self.is_start_crlf(haystack, at) {
return false;
}
}
if set.contains(Look::EndCRLF) {
if !self.is_end_crlf(haystack, at) {
return false;
}
}
if set.contains(Look::WordAscii) {
if !self.is_word_ascii(haystack, at) {
return false;
}
}
if set.contains(Look::WordAsciiNegate) {
if !self.is_word_ascii_negate(haystack, at) {
return false;
}
}
if set.contains(Look::WordUnicode) {
if !self.is_word_unicode(haystack, at).unwrap() {
return false;
}
}
if set.contains(Look::WordUnicodeNegate) {
if !self.is_word_unicode_negate(haystack, at).unwrap() {
return false;
}
}
true
}
/// Split up the given byte classes into equivalence classes in a way that
/// is consistent with this look-around assertion.
#[cfg(feature = "alloc")]
pub(crate) fn add_to_byteset(
&self,
look: Look,
set: &mut crate::util::alphabet::ByteClassSet,
) {
match look {
Look::Start | Look::End => {}
Look::StartLF | Look::EndLF => {
set.set_range(self.lineterm.0, self.lineterm.0);
}
Look::StartCRLF | Look::EndCRLF => {
set.set_range(b'\r', b'\r');
set.set_range(b'\n', b'\n');
}
Look::WordAscii
| Look::WordAsciiNegate
| Look::WordUnicode
| Look::WordUnicodeNegate => {
// We need to mark all ranges of bytes whose pairs result in
// evaluating \b differently. This isn't technically correct
// for Unicode word boundaries, but DFAs can't handle those
// anyway, and thus, the byte classes don't need to either
// since they are themselves only used in DFAs.
//
// FIXME: It seems like the calls to 'set_range' here are
// completely invariant, which means we could just hard-code
// them here without needing to write a loop. And we only need
// to do this dance at most once per regex.
//
// FIXME: Is this correct for \B?
let iswb = utf8::is_word_byte;
// This unwrap is OK because we guard every use of 'asu8' with
// a check that the input is <= 255.
let asu8 = |b: u16| u8::try_from(b).unwrap();
let mut b1: u16 = 0;
let mut b2: u16;
while b1 <= 255 {
b2 = b1 + 1;
while b2 <= 255 && iswb(asu8(b1)) == iswb(asu8(b2)) {
b2 += 1;
}
// The guards above guarantee that b2 can never get any
// bigger.
assert!(b2 <= 256);
// Subtracting 1 from b2 is always OK because it is always
// at least 1 greater than b1, and the assert above
// guarantees that the asu8 conversion will succeed.
set.set_range(asu8(b1), asu8(b2.checked_sub(1).unwrap()));
b1 = b2;
}
}
}
}
/// Returns true when [`Look::Start`] is satisfied `at` the given position
/// in `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn is_start(&self, _haystack: &[u8], at: usize) -> bool {
at == 0
}
/// Returns true when [`Look::End`] is satisfied `at` the given position in
/// `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn is_end(&self, haystack: &[u8], at: usize) -> bool {
at == haystack.len()
}
/// Returns true when [`Look::StartLF`] is satisfied `at` the given
/// position in `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn is_start_lf(&self, haystack: &[u8], at: usize) -> bool {
self.is_start(haystack, at) || haystack[at - 1] == self.lineterm.0
}
/// Returns true when [`Look::EndLF`] is satisfied `at` the given position
/// in `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn is_end_lf(&self, haystack: &[u8], at: usize) -> bool {
self.is_end(haystack, at) || haystack[at] == self.lineterm.0
}
/// Returns true when [`Look::StartCRLF`] is satisfied `at` the given
/// position in `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn is_start_crlf(&self, haystack: &[u8], at: usize) -> bool {
self.is_start(haystack, at)
|| haystack[at - 1] == b'\n'
|| (haystack[at - 1] == b'\r'
&& (at >= haystack.len() || haystack[at] != b'\n'))
}
/// Returns true when [`Look::EndCRLF`] is satisfied `at` the given
/// position in `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn is_end_crlf(&self, haystack: &[u8], at: usize) -> bool {
self.is_end(haystack, at)
|| haystack[at] == b'\r'
|| (haystack[at] == b'\n'
&& (at == 0 || haystack[at - 1] != b'\r'))
}
/// Returns true when [`Look::WordAscii`] is satisfied `at` the given
/// position in `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn is_word_ascii(&self, haystack: &[u8], at: usize) -> bool {
let word_before = at > 0 && utf8::is_word_byte(haystack[at - 1]);
let word_after =
at < haystack.len() && utf8::is_word_byte(haystack[at]);
word_before != word_after
}
/// Returns true when [`Look::WordAsciiNegate`] is satisfied `at` the given
/// position in `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
#[inline]
pub fn is_word_ascii_negate(&self, haystack: &[u8], at: usize) -> bool {
!self.is_word_ascii(haystack, at)
}
/// Returns true when [`Look::WordUnicode`] is satisfied `at` the given
/// position in `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
///
/// # Errors
///
/// This returns an error when Unicode word boundary tables
/// are not available. Specifically, this only occurs when the
/// `unicode-word-boundary` feature is not enabled.
#[inline]
pub fn is_word_unicode(
&self,
haystack: &[u8],
at: usize,
) -> Result<bool, UnicodeWordBoundaryError> {
let word_before = is_word_char::rev(haystack, at)?;
let word_after = is_word_char::fwd(haystack, at)?;
Ok(word_before != word_after)
}
/// Returns true when [`Look::WordUnicodeNegate`] is satisfied `at` the
/// given position in `haystack`.
///
/// # Panics
///
/// This may panic when `at > haystack.len()`. Note that `at ==
/// haystack.len()` is legal and guaranteed not to panic.
///
/// # Errors
///
/// This returns an error when Unicode word boundary tables
/// are not available. Specifically, this only occurs when the
/// `unicode-word-boundary` feature is not enabled.
#[inline]
pub fn is_word_unicode_negate(
&self,
haystack: &[u8],
at: usize,
) -> Result<bool, UnicodeWordBoundaryError> {
// This is pretty subtle. Why do we need to do UTF-8 decoding here?
// Well... at time of writing, the is_word_char_{fwd,rev} routines will
// only return true if there is a valid UTF-8 encoding of a "word"
// codepoint, and false in every other case (including invalid UTF-8).
// This means that in regions of invalid UTF-8 (which might be a
// subset of valid UTF-8!), it would result in \B matching. While this
// would be questionable in the context of truly invalid UTF-8, it is
// *certainly* wrong to report match boundaries that split the encoding
// of a codepoint. So to work around this, we ensure that we can decode
// a codepoint on either side of `at`. If either direction fails, then
// we don't permit \B to match at all.
//
// Now, this isn't exactly optimal from a perf perspective. We could
// try and detect this in is_word_char::{fwd,rev}, but it's not clear
// if it's worth it. \B is, after all, rarely used. Even worse,
// is_word_char::{fwd,rev} could do its own UTF-8 decoding, and so this
// will wind up doing UTF-8 decoding twice. Owch. We could fix this
// with more code complexity, but it just doesn't feel worth it for \B.
//
// And in particular, we do *not* have to do this with \b, because \b
// *requires* that at least one side of `at` be a "word" codepoint,
// which in turn implies one side of `at` must be valid UTF-8. This in
// turn implies that \b can never split a valid UTF-8 encoding of a
// codepoint. In the case where one side of `at` is truly invalid UTF-8
// and the other side IS a word codepoint, then we want \b to match
// since it represents a valid UTF-8 boundary. It also makes sense. For
// example, you'd want \b\w+\b to match 'abc' in '\xFFabc\xFF'.
//
// Note also that this is not just '!is_word_unicode(..)' like it is
// for the ASCII case. For example, neither \b nor \B is satisfied
// within invalid UTF-8 sequences.
let word_before = at > 0
&& match utf8::decode_last(&haystack[..at]) {
None | Some(Err(_)) => return Ok(false),
Some(Ok(_)) => is_word_char::rev(haystack, at)?,
};
let word_after = at < haystack.len()
&& match utf8::decode(&haystack[at..]) {
None | Some(Err(_)) => return Ok(false),
Some(Ok(_)) => is_word_char::fwd(haystack, at)?,
};
Ok(word_before == word_after)
}
}
impl Default for LookMatcher {
fn default() -> LookMatcher {
LookMatcher::new()
}
}
/// An error that occurs when the Unicode-aware `\w` class is unavailable.
///
/// This error can occur when the data tables necessary for the Unicode aware
/// Perl character class `\w` are unavailable. The `\w` class is used to
/// determine whether a codepoint is considered a word character or not when
/// determining whether a Unicode aware `\b` (or `\B`) matches at a particular
/// position.
///
/// This error can only occur when the `unicode-word-boundary` feature is
/// disabled.
#[derive(Clone, Debug)]
pub struct UnicodeWordBoundaryError(());
impl UnicodeWordBoundaryError {
#[cfg(not(feature = "unicode-word-boundary"))]
pub(crate) fn new() -> UnicodeWordBoundaryError {
UnicodeWordBoundaryError(())
}
/// Returns an error if and only if Unicode word boundary data is
/// unavailable.
pub fn check() -> Result<(), UnicodeWordBoundaryError> {
is_word_char::check()
}
}
#[cfg(feature = "std")]
impl std::error::Error for UnicodeWordBoundaryError {}
impl core::fmt::Display for UnicodeWordBoundaryError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(
f,
"Unicode-aware \\b and \\B are unavailable because the \
requisite data tables are missing, please enable the \
unicode-word-boundary feature"
)
}
}
// Below are FOUR different ways for checking whether whether a "word"
// codepoint exists at a particular position in the haystack. The four
// different approaches are, in order of preference:
//
// 1. Parse '\w', convert to an NFA, convert to a fully compiled DFA on the
// first call, and then use that DFA for all subsequent calls.
// 2. Do UTF-8 decoding and use regex_syntax::is_word_character if available.
// 3. Do UTF-8 decoding and use our own 'perl_word' table.
// 4. Return an error.
//
// The reason for all of these approaches is a combination of perf and
// permitting one to build regex-automata without the Unicode data necessary
// for handling Unicode-aware word boundaries. (In which case, '(?-u:\b)' would
// still work.)
//
// The DFA approach is the fastest, but it requires the regex parser, the
// NFA compiler, the DFA builder and the DFA search runtime. That's a lot to
// bring in, but if it's available, it's (probably) the best we can do.
//
// Approaches (2) and (3) are effectively equivalent, but (2) reuses the
// data in regex-syntax and avoids duplicating it in regex-automata.
//
// Finally, (4) unconditionally returns an error since the requisite data isn't
// available anywhere.
//
// There are actually more approaches possible that we didn't implement. For
// example, if the DFA builder is available but the syntax parser is not, we
// could technically hand construct our own NFA from the 'perl_word' data
// table. But to avoid some pretty hairy code duplication, we would in turn
// need to pull the UTF-8 compiler out of the NFA compiler. Yikes.
//
// A possibly more sensible alternative is to use a lazy DFA when the full
// DFA builder isn't available...
//
// Yet another choice would be to build the full DFA and then embed it into the
// source. Then we'd only need to bring in the DFA search runtime, which is
// considerably smaller than the DFA builder code. The problem here is that the
// Debian people have spooked me[1] into avoiding cyclic dependencies. Namely,
// we'd need to build regex-cli, which depends on regex-automata in order to
// build some part of regex-automata. But to be honest, something like this has
// to be allowed somehow? I just don't know what the right process is.
//
// There are perhaps other choices as well. Why did I stop at these 4? Because
// I wanted to preserve my sanity. I suspect I'll wind up adding the lazy DFA
// approach eventually, as the benefits of the DFA approach are somewhat
// compelling. The 'boundary-words-holmes' benchmark tests this:
//
// $ regex-cli bench measure -f boundary-words-holmes -e pikevm > dfa.csv
//
// Then I changed the code below so that the util/unicode_data/perl_word table
// was used and re-ran the benchmark:
//
// $ regex-cli bench measure -f boundary-words-holmes -e pikevm > table.csv
//
// And compared them:
//
// $ regex-cli bench diff dfa.csv table.csv
// benchmark engine dfa table
// --------- ------ --- -----
// internal/count/boundary-words-holmes regex/automata/pikevm 18.6 MB/s 12.9 MB/s
//
// Which is a nice improvement.
//
// UPDATE: It turns out that it takes approximately 22ms to build the reverse
// DFA for \w. (And about 3ms for the forward DFA.) It's probably not much in
// the grand scheme things, but that is a significant latency cost. So I'm not
// sure that's a good idea. I then tried using a lazy DFA instead, and that
// eliminated the overhead, but since the lazy DFA requires mutable working
// memory, that requires introducing a 'Cache' for every simultaneous call.
//
// I ended up deciding for now to just keep the "UTF-8 decode and check the
// table." The DFA and lazy DFA approaches are still below, but commented out.
//
/*
/// A module that looks for word codepoints using lazy DFAs.
#[cfg(all(
feature = "unicode-word-boundary",
feature = "syntax",
feature = "unicode-perl",
feature = "hybrid"
))]
mod is_word_char {
use alloc::vec::Vec;
use crate::{
hybrid::dfa::{Cache, DFA},
nfa::thompson::NFA,
util::{lazy::Lazy, pool::Pool, primitives::StateID},
Anchored, Input,
};
pub(super) fn check() -> Result<(), super::UnicodeWordBoundaryError> {
Ok(())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn fwd(
haystack: &[u8],
mut at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
static WORD: Lazy<DFA> = Lazy::new(|| DFA::new(r"\w").unwrap());
static CACHE: Lazy<Pool<Cache>> =
Lazy::new(|| Pool::new(|| WORD.create_cache()));
let dfa = Lazy::get(&WORD);
let mut cache = Lazy::get(&CACHE).get();
let mut sid = dfa
.start_state_forward(
&mut cache,
&Input::new("").anchored(Anchored::Yes),
)
.unwrap();
while at < haystack.len() {
let byte = haystack[at];
sid = dfa.next_state(&mut cache, sid, byte).unwrap();
at += 1;
if sid.is_tagged() {
if sid.is_match() {
return Ok(true);
} else if sid.is_dead() {
return Ok(false);
}
}
}
Ok(dfa.next_eoi_state(&mut cache, sid).unwrap().is_match())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn rev(
haystack: &[u8],
mut at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
static WORD: Lazy<DFA> = Lazy::new(|| {
DFA::builder()
.thompson(NFA::config().reverse(true))
.build(r"\w")
.unwrap()
});
static CACHE: Lazy<Pool<Cache>> =
Lazy::new(|| Pool::new(|| WORD.create_cache()));
let dfa = Lazy::get(&WORD);
let mut cache = Lazy::get(&CACHE).get();
let mut sid = dfa
.start_state_reverse(
&mut cache,
&Input::new("").anchored(Anchored::Yes),
)
.unwrap();
while at > 0 {
at -= 1;
let byte = haystack[at];
sid = dfa.next_state(&mut cache, sid, byte).unwrap();
if sid.is_tagged() {
if sid.is_match() {
return Ok(true);
} else if sid.is_dead() {
return Ok(false);
}
}
}
Ok(dfa.next_eoi_state(&mut cache, sid).unwrap().is_match())
}
}
*/
/*
/// A module that looks for word codepoints using fully compiled DFAs.
#[cfg(all(
feature = "unicode-word-boundary",
feature = "syntax",
feature = "unicode-perl",
feature = "dfa-build"
))]
mod is_word_char {
use alloc::vec::Vec;
use crate::{
dfa::{dense::DFA, Automaton, StartKind},
nfa::thompson::NFA,
util::{lazy::Lazy, primitives::StateID},
Anchored, Input,
};
pub(super) fn check() -> Result<(), super::UnicodeWordBoundaryError> {
Ok(())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn fwd(
haystack: &[u8],
mut at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
static WORD: Lazy<(DFA<Vec<u32>>, StateID)> = Lazy::new(|| {
let dfa = DFA::builder()
.configure(DFA::config().start_kind(StartKind::Anchored))
.build(r"\w")
.unwrap();
// OK because our regex has no look-around.
let start_id = dfa.universal_start_state(Anchored::Yes).unwrap();
(dfa, start_id)
});
let &(ref dfa, mut sid) = Lazy::get(&WORD);
while at < haystack.len() {
let byte = haystack[at];
sid = dfa.next_state(sid, byte);
at += 1;
if dfa.is_special_state(sid) {
if dfa.is_match_state(sid) {
return Ok(true);
} else if dfa.is_dead_state(sid) {
return Ok(false);
}
}
}
Ok(dfa.is_match_state(dfa.next_eoi_state(sid)))
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn rev(
haystack: &[u8],
mut at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
static WORD: Lazy<(DFA<Vec<u32>>, StateID)> = Lazy::new(|| {
let dfa = DFA::builder()
.configure(DFA::config().start_kind(StartKind::Anchored))
// From ad hoc measurements, it looks like setting
// shrink==false is slightly faster than shrink==true. I kind
// of feel like this indicates that shrinking is probably a
// failure, although it can help in some cases. Sigh.
.thompson(NFA::config().reverse(true).shrink(false))
.build(r"\w")
.unwrap();
// OK because our regex has no look-around.
let start_id = dfa.universal_start_state(Anchored::Yes).unwrap();
(dfa, start_id)
});
let &(ref dfa, mut sid) = Lazy::get(&WORD);
while at > 0 {
at -= 1;
let byte = haystack[at];
sid = dfa.next_state(sid, byte);
if dfa.is_special_state(sid) {
if dfa.is_match_state(sid) {
return Ok(true);
} else if dfa.is_dead_state(sid) {
return Ok(false);
}
}
}
Ok(dfa.is_match_state(dfa.next_eoi_state(sid)))
}
}
*/
/// A module that looks for word codepoints using regex-syntax's data tables.
#[cfg(all(
feature = "unicode-word-boundary",
feature = "syntax",
feature = "unicode-perl",
))]
mod is_word_char {
use regex_syntax::try_is_word_character;
use crate::util::utf8;
pub(super) fn check() -> Result<(), super::UnicodeWordBoundaryError> {
Ok(())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn fwd(
haystack: &[u8],
at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
Ok(match utf8::decode(&haystack[at..]) {
None | Some(Err(_)) => false,
Some(Ok(ch)) => try_is_word_character(ch).expect(
"since unicode-word-boundary, syntax and unicode-perl \
are all enabled, it is expected that \
try_is_word_character succeeds",
),
})
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn rev(
haystack: &[u8],
at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
Ok(match utf8::decode_last(&haystack[..at]) {
None | Some(Err(_)) => false,
Some(Ok(ch)) => try_is_word_character(ch).expect(
"since unicode-word-boundary, syntax and unicode-perl \
are all enabled, it is expected that \
try_is_word_character succeeds",
),
})
}
}
/// A module that looks for word codepoints using regex-automata's data tables
/// (which are only compiled when regex-syntax's tables aren't available).
///
/// Note that the cfg should match the one in src/util/unicode_data/mod.rs for
/// perl_word.
#[cfg(all(
feature = "unicode-word-boundary",
not(all(feature = "syntax", feature = "unicode-perl")),
))]
mod is_word_char {
use crate::util::utf8;
pub(super) fn check() -> Result<(), super::UnicodeWordBoundaryError> {
Ok(())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn fwd(
haystack: &[u8],
at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
Ok(match utf8::decode(&haystack[at..]) {
None | Some(Err(_)) => false,
Some(Ok(ch)) => is_word_character(ch),
})
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn rev(
haystack: &[u8],
at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
Ok(match utf8::decode_last(&haystack[..at]) {
None | Some(Err(_)) => false,
Some(Ok(ch)) => is_word_character(ch),
})
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn is_word_character(c: char) -> bool {
use crate::util::{unicode_data::perl_word::PERL_WORD, utf8};
// MSRV(1.59): Use 'u8::try_from(c)' instead.
if u8::try_from(u32::from(c)).map_or(false, utf8::is_word_byte) {
return true;
}
PERL_WORD
.binary_search_by(|&(start, end)| {
use core::cmp::Ordering;
if start <= c && c <= end {
Ordering::Equal
} else if start > c {
Ordering::Greater
} else {
Ordering::Less
}
})
.is_ok()
}
}
/// A module that always returns an error if Unicode word boundaries are
/// disabled. When this feature is disabled, then regex-automata will not
/// include its own data tables even if regex-syntax is disabled.
#[cfg(not(feature = "unicode-word-boundary"))]
mod is_word_char {
pub(super) fn check() -> Result<(), super::UnicodeWordBoundaryError> {
Err(super::UnicodeWordBoundaryError::new())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn fwd(
_bytes: &[u8],
_at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
Err(super::UnicodeWordBoundaryError::new())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(super) fn rev(
_bytes: &[u8],
_at: usize,
) -> Result<bool, super::UnicodeWordBoundaryError> {
Err(super::UnicodeWordBoundaryError::new())
}
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! testlook {
($look:expr, $haystack:expr, $at:expr) => {
LookMatcher::default().matches($look, $haystack.as_bytes(), $at)
};
}
#[test]
fn look_matches_start_line() {
let look = Look::StartLF;
assert!(testlook!(look, "", 0));
assert!(testlook!(look, "\n", 0));
assert!(testlook!(look, "\n", 1));
assert!(testlook!(look, "a", 0));
assert!(testlook!(look, "\na", 1));
assert!(!testlook!(look, "a", 1));
assert!(!testlook!(look, "a\na", 1));
}
#[test]
fn look_matches_end_line() {
let look = Look::EndLF;
assert!(testlook!(look, "", 0));
assert!(testlook!(look, "\n", 1));
assert!(testlook!(look, "\na", 0));
assert!(testlook!(look, "\na", 2));
assert!(testlook!(look, "a\na", 1));
assert!(!testlook!(look, "a", 0));
assert!(!testlook!(look, "\na", 1));
assert!(!testlook!(look, "a\na", 0));
assert!(!testlook!(look, "a\na", 2));
}
#[test]
fn look_matches_start_text() {
let look = Look::Start;
assert!(testlook!(look, "", 0));
assert!(testlook!(look, "\n", 0));
assert!(testlook!(look, "a", 0));
assert!(!testlook!(look, "\n", 1));
assert!(!testlook!(look, "\na", 1));
assert!(!testlook!(look, "a", 1));
assert!(!testlook!(look, "a\na", 1));
}
#[test]
fn look_matches_end_text() {
let look = Look::End;
assert!(testlook!(look, "", 0));
assert!(testlook!(look, "\n", 1));
assert!(testlook!(look, "\na", 2));
assert!(!testlook!(look, "\na", 0));
assert!(!testlook!(look, "a\na", 1));
assert!(!testlook!(look, "a", 0));
assert!(!testlook!(look, "\na", 1));
assert!(!testlook!(look, "a\na", 0));
assert!(!testlook!(look, "a\na", 2));
}
#[test]
#[cfg(all(not(miri), feature = "unicode-word-boundary"))]
fn look_matches_word_unicode() {
let look = Look::WordUnicode;
// \xF0\x9D\x9B\x83 = 𝛃 (in \w)
// \xF0\x90\x86\x80 = 𐆀 (not in \w)
// Simple ASCII word boundaries.
assert!(testlook!(look, "a", 0));
assert!(testlook!(look, "a", 1));
assert!(testlook!(look, "a ", 1));
assert!(testlook!(look, " a ", 1));
assert!(testlook!(look, " a ", 2));
// Unicode word boundaries with a non-ASCII codepoint.
assert!(testlook!(look, "𝛃", 0));
assert!(testlook!(look, "𝛃", 4));
assert!(testlook!(look, "𝛃 ", 4));
assert!(testlook!(look, " 𝛃 ", 1));
assert!(testlook!(look, " 𝛃 ", 5));
// Unicode word boundaries between non-ASCII codepoints.
assert!(testlook!(look, "𝛃𐆀", 0));
assert!(testlook!(look, "𝛃𐆀", 4));
// Non word boundaries for ASCII.
assert!(!testlook!(look, "", 0));
assert!(!testlook!(look, "ab", 1));
assert!(!testlook!(look, "a ", 2));
assert!(!testlook!(look, " a ", 0));
assert!(!testlook!(look, " a ", 3));
// Non word boundaries with a non-ASCII codepoint.
assert!(!testlook!(look, "𝛃b", 4));
assert!(!testlook!(look, "𝛃 ", 5));
assert!(!testlook!(look, " 𝛃 ", 0));
assert!(!testlook!(look, " 𝛃 ", 6));
assert!(!testlook!(look, "𝛃", 1));
assert!(!testlook!(look, "𝛃", 2));
assert!(!testlook!(look, "𝛃", 3));
// Non word boundaries with non-ASCII codepoints.
assert!(!testlook!(look, "𝛃𐆀", 1));
assert!(!testlook!(look, "𝛃𐆀", 2));
assert!(!testlook!(look, "𝛃𐆀", 3));
assert!(!testlook!(look, "𝛃𐆀", 5));
assert!(!testlook!(look, "𝛃𐆀", 6));
assert!(!testlook!(look, "𝛃𐆀", 7));
assert!(!testlook!(look, "𝛃𐆀", 8));
}
#[test]
fn look_matches_word_ascii() {
let look = Look::WordAscii;
// \xF0\x9D\x9B\x83 = 𝛃 (in \w)
// \xF0\x90\x86\x80 = 𐆀 (not in \w)
// Simple ASCII word boundaries.
assert!(testlook!(look, "a", 0));
assert!(testlook!(look, "a", 1));
assert!(testlook!(look, "a ", 1));
assert!(testlook!(look, " a ", 1));
assert!(testlook!(look, " a ", 2));
// Unicode word boundaries with a non-ASCII codepoint. Since this is
// an ASCII word boundary, none of these match.
assert!(!testlook!(look, "𝛃", 0));
assert!(!testlook!(look, "𝛃", 4));
assert!(!testlook!(look, "𝛃 ", 4));
assert!(!testlook!(look, " 𝛃 ", 1));
assert!(!testlook!(look, " 𝛃 ", 5));
// Unicode word boundaries between non-ASCII codepoints. Again, since
// this is an ASCII word boundary, none of these match.
assert!(!testlook!(look, "𝛃𐆀", 0));
assert!(!testlook!(look, "𝛃𐆀", 4));
// Non word boundaries for ASCII.
assert!(!testlook!(look, "", 0));
assert!(!testlook!(look, "ab", 1));
assert!(!testlook!(look, "a ", 2));
assert!(!testlook!(look, " a ", 0));
assert!(!testlook!(look, " a ", 3));
// Non word boundaries with a non-ASCII codepoint.
assert!(testlook!(look, "𝛃b", 4));
assert!(!testlook!(look, "𝛃 ", 5));
assert!(!testlook!(look, " 𝛃 ", 0));
assert!(!testlook!(look, " 𝛃 ", 6));
assert!(!testlook!(look, "𝛃", 1));
assert!(!testlook!(look, "𝛃", 2));
assert!(!testlook!(look, "𝛃", 3));
// Non word boundaries with non-ASCII codepoints.
assert!(!testlook!(look, "𝛃𐆀", 1));
assert!(!testlook!(look, "𝛃𐆀", 2));
assert!(!testlook!(look, "𝛃𐆀", 3));
assert!(!testlook!(look, "𝛃𐆀", 5));
assert!(!testlook!(look, "𝛃𐆀", 6));
assert!(!testlook!(look, "𝛃𐆀", 7));
assert!(!testlook!(look, "𝛃𐆀", 8));
}
#[test]
#[cfg(all(not(miri), feature = "unicode-word-boundary"))]
fn look_matches_word_unicode_negate() {
let look = Look::WordUnicodeNegate;
// \xF0\x9D\x9B\x83 = 𝛃 (in \w)
// \xF0\x90\x86\x80 = 𐆀 (not in \w)
// Simple ASCII word boundaries.
assert!(!testlook!(look, "a", 0));
assert!(!testlook!(look, "a", 1));
assert!(!testlook!(look, "a ", 1));
assert!(!testlook!(look, " a ", 1));
assert!(!testlook!(look, " a ", 2));
// Unicode word boundaries with a non-ASCII codepoint.
assert!(!testlook!(look, "𝛃", 0));
assert!(!testlook!(look, "𝛃", 4));
assert!(!testlook!(look, "𝛃 ", 4));
assert!(!testlook!(look, " 𝛃 ", 1));
assert!(!testlook!(look, " 𝛃 ", 5));
// Unicode word boundaries between non-ASCII codepoints.
assert!(!testlook!(look, "𝛃𐆀", 0));
assert!(!testlook!(look, "𝛃𐆀", 4));
// Non word boundaries for ASCII.
assert!(testlook!(look, "", 0));
assert!(testlook!(look, "ab", 1));
assert!(testlook!(look, "a ", 2));
assert!(testlook!(look, " a ", 0));
assert!(testlook!(look, " a ", 3));
// Non word boundaries with a non-ASCII codepoint.
assert!(testlook!(look, "𝛃b", 4));
assert!(testlook!(look, "𝛃 ", 5));
assert!(testlook!(look, " 𝛃 ", 0));
assert!(testlook!(look, " 𝛃 ", 6));
// These don't match because they could otherwise return an offset that
// splits the UTF-8 encoding of a codepoint.
assert!(!testlook!(look, "𝛃", 1));
assert!(!testlook!(look, "𝛃", 2));
assert!(!testlook!(look, "𝛃", 3));
// Non word boundaries with non-ASCII codepoints. These also don't
// match because they could otherwise return an offset that splits the
// UTF-8 encoding of a codepoint.
assert!(!testlook!(look, "𝛃𐆀", 1));
assert!(!testlook!(look, "𝛃𐆀", 2));
assert!(!testlook!(look, "𝛃𐆀", 3));
assert!(!testlook!(look, "𝛃𐆀", 5));
assert!(!testlook!(look, "𝛃𐆀", 6));
assert!(!testlook!(look, "𝛃𐆀", 7));
// But this one does, since 𐆀 isn't a word codepoint, and 8 is the end
// of the haystack. So the "end" of the haystack isn't a word and 𐆀
// isn't a word, thus, \B matches.
assert!(testlook!(look, "𝛃𐆀", 8));
}
#[test]
fn look_matches_word_ascii_negate() {
let look = Look::WordAsciiNegate;
// \xF0\x9D\x9B\x83 = 𝛃 (in \w)
// \xF0\x90\x86\x80 = 𐆀 (not in \w)
// Simple ASCII word boundaries.
assert!(!testlook!(look, "a", 0));
assert!(!testlook!(look, "a", 1));
assert!(!testlook!(look, "a ", 1));
assert!(!testlook!(look, " a ", 1));
assert!(!testlook!(look, " a ", 2));
// Unicode word boundaries with a non-ASCII codepoint. Since this is
// an ASCII word boundary, none of these match.
assert!(testlook!(look, "𝛃", 0));
assert!(testlook!(look, "𝛃", 4));
assert!(testlook!(look, "𝛃 ", 4));
assert!(testlook!(look, " 𝛃 ", 1));
assert!(testlook!(look, " 𝛃 ", 5));
// Unicode word boundaries between non-ASCII codepoints. Again, since
// this is an ASCII word boundary, none of these match.
assert!(testlook!(look, "𝛃𐆀", 0));
assert!(testlook!(look, "𝛃𐆀", 4));
// Non word boundaries for ASCII.
assert!(testlook!(look, "", 0));
assert!(testlook!(look, "ab", 1));
assert!(testlook!(look, "a ", 2));
assert!(testlook!(look, " a ", 0));
assert!(testlook!(look, " a ", 3));
// Non word boundaries with a non-ASCII codepoint.
assert!(!testlook!(look, "𝛃b", 4));
assert!(testlook!(look, "𝛃 ", 5));
assert!(testlook!(look, " 𝛃 ", 0));
assert!(testlook!(look, " 𝛃 ", 6));
assert!(testlook!(look, "𝛃", 1));
assert!(testlook!(look, "𝛃", 2));
assert!(testlook!(look, "𝛃", 3));
// Non word boundaries with non-ASCII codepoints.
assert!(testlook!(look, "𝛃𐆀", 1));
assert!(testlook!(look, "𝛃𐆀", 2));
assert!(testlook!(look, "𝛃𐆀", 3));
assert!(testlook!(look, "𝛃𐆀", 5));
assert!(testlook!(look, "𝛃𐆀", 6));
assert!(testlook!(look, "𝛃𐆀", 7));
assert!(testlook!(look, "𝛃𐆀", 8));
}
#[test]
fn look_set() {
let mut f = LookSet::default();
assert!(!f.contains(Look::Start));
assert!(!f.contains(Look::End));
assert!(!f.contains(Look::StartLF));
assert!(!f.contains(Look::EndLF));
assert!(!f.contains(Look::WordUnicode));
assert!(!f.contains(Look::WordUnicodeNegate));
assert!(!f.contains(Look::WordAscii));
assert!(!f.contains(Look::WordAsciiNegate));
f = f.insert(Look::Start);
assert!(f.contains(Look::Start));
f = f.remove(Look::Start);
assert!(!f.contains(Look::Start));
f = f.insert(Look::End);
assert!(f.contains(Look::End));
f = f.remove(Look::End);
assert!(!f.contains(Look::End));
f = f.insert(Look::StartLF);
assert!(f.contains(Look::StartLF));
f = f.remove(Look::StartLF);
assert!(!f.contains(Look::StartLF));
f = f.insert(Look::EndLF);
assert!(f.contains(Look::EndLF));
f = f.remove(Look::EndLF);
assert!(!f.contains(Look::EndLF));
f = f.insert(Look::StartCRLF);
assert!(f.contains(Look::StartCRLF));
f = f.remove(Look::StartCRLF);
assert!(!f.contains(Look::StartCRLF));
f = f.insert(Look::EndCRLF);
assert!(f.contains(Look::EndCRLF));
f = f.remove(Look::EndCRLF);
assert!(!f.contains(Look::EndCRLF));
f = f.insert(Look::WordUnicode);
assert!(f.contains(Look::WordUnicode));
f = f.remove(Look::WordUnicode);
assert!(!f.contains(Look::WordUnicode));
f = f.insert(Look::WordUnicodeNegate);
assert!(f.contains(Look::WordUnicodeNegate));
f = f.remove(Look::WordUnicodeNegate);
assert!(!f.contains(Look::WordUnicodeNegate));
f = f.insert(Look::WordAscii);
assert!(f.contains(Look::WordAscii));
f = f.remove(Look::WordAscii);
assert!(!f.contains(Look::WordAscii));
f = f.insert(Look::WordAsciiNegate);
assert!(f.contains(Look::WordAsciiNegate));
f = f.remove(Look::WordAsciiNegate);
assert!(!f.contains(Look::WordAsciiNegate));
}
#[test]
fn look_set_iter() {
let set = LookSet::empty();
assert_eq!(0, set.iter().count());
let set = LookSet::full();
assert_eq!(10, set.iter().count());
let set =
LookSet::empty().insert(Look::StartLF).insert(Look::WordUnicode);
assert_eq!(2, set.iter().count());
let set = LookSet::empty().insert(Look::StartLF);
assert_eq!(1, set.iter().count());
let set = LookSet::empty().insert(Look::WordAsciiNegate);
assert_eq!(1, set.iter().count());
}
#[test]
#[cfg(feature = "alloc")]
fn look_set_debug() {
let res = alloc::format!("{:?}", LookSet::empty());
assert_eq!("∅", res);
let res = alloc::format!("{:?}", LookSet::full());
assert_eq!("Az^$rRbB𝛃𝚩", res);
}
}