Source code

Revision control

Copy as Markdown

Other Tools

//! The hypergeometric distribution.
use crate::Distribution;
use rand::Rng;
use rand::distributions::uniform::Uniform;
use core::fmt;
#[allow(unused_imports)]
use num_traits::Float;
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
enum SamplingMethod {
InverseTransform{ initial_p: f64, initial_x: i64 },
RejectionAcceptance{
m: f64,
a: f64,
lambda_l: f64,
lambda_r: f64,
x_l: f64,
x_r: f64,
p1: f64,
p2: f64,
p3: f64
},
}
/// The hypergeometric distribution `Hypergeometric(N, K, n)`.
///
/// This is the distribution of successes in samples of size `n` drawn without
/// replacement from a population of size `N` containing `K` success states.
/// It has the density function:
/// `f(k) = binomial(K, k) * binomial(N-K, n-k) / binomial(N, n)`,
/// where `binomial(a, b) = a! / (b! * (a - b)!)`.
///
/// The [binomial distribution](crate::Binomial) is the analogous distribution
/// for sampling with replacement. It is a good approximation when the population
/// size is much larger than the sample size.
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Hypergeometric};
///
/// let hypergeo = Hypergeometric::new(60, 24, 7).unwrap();
/// let v = hypergeo.sample(&mut rand::thread_rng());
/// println!("{} is from a hypergeometric distribution", v);
/// ```
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Hypergeometric {
n1: u64,
n2: u64,
k: u64,
offset_x: i64,
sign_x: i64,
sampling_method: SamplingMethod,
}
/// Error type returned from `Hypergeometric::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `total_population_size` is too large, causing floating point underflow.
PopulationTooLarge,
/// `population_with_feature > total_population_size`.
ProbabilityTooLarge,
/// `sample_size > total_population_size`.
SampleSizeTooLarge,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::PopulationTooLarge => "total_population_size is too large causing underflow in geometric distribution",
Error::ProbabilityTooLarge => "population_with_feature > total_population_size in geometric distribution",
Error::SampleSizeTooLarge => "sample_size > total_population_size in geometric distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}
// evaluate fact(numerator.0)*fact(numerator.1) / fact(denominator.0)*fact(denominator.1)
fn fraction_of_products_of_factorials(numerator: (u64, u64), denominator: (u64, u64)) -> f64 {
let min_top = u64::min(numerator.0, numerator.1);
let min_bottom = u64::min(denominator.0, denominator.1);
// the factorial of this will cancel out:
let min_all = u64::min(min_top, min_bottom);
let max_top = u64::max(numerator.0, numerator.1);
let max_bottom = u64::max(denominator.0, denominator.1);
let max_all = u64::max(max_top, max_bottom);
let mut result = 1.0;
for i in (min_all + 1)..=max_all {
if i <= min_top {
result *= i as f64;
}
if i <= min_bottom {
result /= i as f64;
}
if i <= max_top {
result *= i as f64;
}
if i <= max_bottom {
result /= i as f64;
}
}
result
}
fn ln_of_factorial(v: f64) -> f64 {
// the paper calls for ln(v!), but also wants to pass in fractions,
// so we need to use Stirling's approximation to fill in the gaps:
v * v.ln() - v
}
impl Hypergeometric {
/// Constructs a new `Hypergeometric` with the shape parameters
/// `N = total_population_size`,
/// `K = population_with_feature`,
/// `n = sample_size`.
#[allow(clippy::many_single_char_names)] // Same names as in the reference.
pub fn new(total_population_size: u64, population_with_feature: u64, sample_size: u64) -> Result<Self, Error> {
if population_with_feature > total_population_size {
return Err(Error::ProbabilityTooLarge);
}
if sample_size > total_population_size {
return Err(Error::SampleSizeTooLarge);
}
// set-up constants as function of original parameters
let n = total_population_size;
let (mut sign_x, mut offset_x) = (1, 0);
let (n1, n2) = {
// switch around success and failure states if necessary to ensure n1 <= n2
let population_without_feature = n - population_with_feature;
if population_with_feature > population_without_feature {
sign_x = -1;
offset_x = sample_size as i64;
(population_without_feature, population_with_feature)
} else {
(population_with_feature, population_without_feature)
}
};
// when sampling more than half the total population, take the smaller
// group as sampled instead (we can then return n1-x instead).
//
// Note: the boundary condition given in the paper is `sample_size < n / 2`;
// we're deviating here, because when n is even, it doesn't matter whether
// we switch here or not, but when n is odd `n/2 < n - n/2`, so switching
// when `k == n/2`, we'd actually be taking the _larger_ group as sampled.
let k = if sample_size <= n / 2 {
sample_size
} else {
offset_x += n1 as i64 * sign_x;
sign_x *= -1;
n - sample_size
};
// Algorithm H2PE has bounded runtime only if `M - max(0, k-n2) >= 10`,
// where `M` is the mode of the distribution.
// Use algorithm HIN for the remaining parameter space.
//
// Voratas Kachitvichyanukul and Bruce W. Schmeiser. 1985. Computer
// generation of hypergeometric random variates.
// J. Statist. Comput. Simul. Vol.22 (August 1985), 127-145
const HIN_THRESHOLD: f64 = 10.0;
let m = ((k + 1) as f64 * (n1 + 1) as f64 / (n + 2) as f64).floor();
let sampling_method = if m - f64::max(0.0, k as f64 - n2 as f64) < HIN_THRESHOLD {
let (initial_p, initial_x) = if k < n2 {
(fraction_of_products_of_factorials((n2, n - k), (n, n2 - k)), 0)
} else {
(fraction_of_products_of_factorials((n1, k), (n, k - n2)), (k - n2) as i64)
};
if initial_p <= 0.0 || !initial_p.is_finite() {
return Err(Error::PopulationTooLarge);
}
SamplingMethod::InverseTransform { initial_p, initial_x }
} else {
let a = ln_of_factorial(m) +
ln_of_factorial(n1 as f64 - m) +
ln_of_factorial(k as f64 - m) +
ln_of_factorial((n2 - k) as f64 + m);
let numerator = (n - k) as f64 * k as f64 * n1 as f64 * n2 as f64;
let denominator = (n - 1) as f64 * n as f64 * n as f64;
let d = 1.5 * (numerator / denominator).sqrt() + 0.5;
let x_l = m - d + 0.5;
let x_r = m + d + 0.5;
let k_l = f64::exp(a -
ln_of_factorial(x_l) -
ln_of_factorial(n1 as f64 - x_l) -
ln_of_factorial(k as f64 - x_l) -
ln_of_factorial((n2 - k) as f64 + x_l));
let k_r = f64::exp(a -
ln_of_factorial(x_r - 1.0) -
ln_of_factorial(n1 as f64 - x_r + 1.0) -
ln_of_factorial(k as f64 - x_r + 1.0) -
ln_of_factorial((n2 - k) as f64 + x_r - 1.0));
let numerator = x_l * ((n2 - k) as f64 + x_l);
let denominator = (n1 as f64 - x_l + 1.0) * (k as f64 - x_l + 1.0);
let lambda_l = -((numerator / denominator).ln());
let numerator = (n1 as f64 - x_r + 1.0) * (k as f64 - x_r + 1.0);
let denominator = x_r * ((n2 - k) as f64 + x_r);
let lambda_r = -((numerator / denominator).ln());
// the paper literally gives `p2 + kL/lambdaL` where it (probably)
// should have been `p2 <- p1 + kL/lambdaL`; another print error?!
let p1 = 2.0 * d;
let p2 = p1 + k_l / lambda_l;
let p3 = p2 + k_r / lambda_r;
SamplingMethod::RejectionAcceptance {
m, a, lambda_l, lambda_r, x_l, x_r, p1, p2, p3
}
};
Ok(Hypergeometric { n1, n2, k, offset_x, sign_x, sampling_method })
}
}
impl Distribution<u64> for Hypergeometric {
#[allow(clippy::many_single_char_names)] // Same names as in the reference.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
use SamplingMethod::*;
let Hypergeometric { n1, n2, k, sign_x, offset_x, sampling_method } = *self;
let x = match sampling_method {
InverseTransform { initial_p: mut p, initial_x: mut x } => {
let mut u = rng.gen::<f64>();
while u > p && x < k as i64 { // the paper erroneously uses `until n < p`, which doesn't make any sense
u -= p;
p *= ((n1 as i64 - x as i64) * (k as i64 - x as i64)) as f64;
p /= ((x as i64 + 1) * (n2 as i64 - k as i64 + 1 + x as i64)) as f64;
x += 1;
}
x
},
RejectionAcceptance { m, a, lambda_l, lambda_r, x_l, x_r, p1, p2, p3 } => {
let distr_region_select = Uniform::new(0.0, p3);
loop {
let (y, v) = loop {
let u = distr_region_select.sample(rng);
let v = rng.gen::<f64>(); // for the accept/reject decision
if u <= p1 {
// Region 1, central bell
let y = (x_l + u).floor();
break (y, v);
} else if u <= p2 {
// Region 2, left exponential tail
let y = (x_l + v.ln() / lambda_l).floor();
if y as i64 >= i64::max(0, k as i64 - n2 as i64) {
let v = v * (u - p1) * lambda_l;
break (y, v);
}
} else {
// Region 3, right exponential tail
let y = (x_r - v.ln() / lambda_r).floor();
if y as u64 <= u64::min(n1, k) {
let v = v * (u - p2) * lambda_r;
break (y, v);
}
}
};
// Step 4: Acceptance/Rejection Comparison
if m < 100.0 || y <= 50.0 {
// Step 4.1: evaluate f(y) via recursive relationship
let mut f = 1.0;
if m < y {
for i in (m as u64 + 1)..=(y as u64) {
f *= (n1 - i + 1) as f64 * (k - i + 1) as f64;
f /= i as f64 * (n2 - k + i) as f64;
}
} else {
for i in (y as u64 + 1)..=(m as u64) {
f *= i as f64 * (n2 - k + i) as f64;
f /= (n1 - i) as f64 * (k - i) as f64;
}
}
if v <= f { break y as i64; }
} else {
// Step 4.2: Squeezing
let y1 = y + 1.0;
let ym = y - m;
let yn = n1 as f64 - y + 1.0;
let yk = k as f64 - y + 1.0;
let nk = n2 as f64 - k as f64 + y1;
let r = -ym / y1;
let s = ym / yn;
let t = ym / yk;
let e = -ym / nk;
let g = yn * yk / (y1 * nk) - 1.0;
let dg = if g < 0.0 {
1.0 + g
} else {
1.0
};
let gu = g * (1.0 + g * (-0.5 + g / 3.0));
let gl = gu - g.powi(4) / (4.0 * dg);
let xm = m + 0.5;
let xn = n1 as f64 - m + 0.5;
let xk = k as f64 - m + 0.5;
let nm = n2 as f64 - k as f64 + xm;
let ub = xm * r * (1.0 + r * (-0.5 + r / 3.0)) +
xn * s * (1.0 + s * (-0.5 + s / 3.0)) +
xk * t * (1.0 + t * (-0.5 + t / 3.0)) +
nm * e * (1.0 + e * (-0.5 + e / 3.0)) +
y * gu - m * gl + 0.0034;
let av = v.ln();
if av > ub { continue; }
let dr = if r < 0.0 {
xm * r.powi(4) / (1.0 + r)
} else {
xm * r.powi(4)
};
let ds = if s < 0.0 {
xn * s.powi(4) / (1.0 + s)
} else {
xn * s.powi(4)
};
let dt = if t < 0.0 {
xk * t.powi(4) / (1.0 + t)
} else {
xk * t.powi(4)
};
let de = if e < 0.0 {
nm * e.powi(4) / (1.0 + e)
} else {
nm * e.powi(4)
};
if av < ub - 0.25*(dr + ds + dt + de) + (y + m)*(gl - gu) - 0.0078 {
break y as i64;
}
// Step 4.3: Final Acceptance/Rejection Test
let av_critical = a -
ln_of_factorial(y) -
ln_of_factorial(n1 as f64 - y) -
ln_of_factorial(k as f64 - y) -
ln_of_factorial((n2 - k) as f64 + y);
if v.ln() <= av_critical {
break y as i64;
}
}
}
}
};
(offset_x + sign_x * x) as u64
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_hypergeometric_invalid_params() {
assert!(Hypergeometric::new(100, 101, 5).is_err());
assert!(Hypergeometric::new(100, 10, 101).is_err());
assert!(Hypergeometric::new(100, 101, 101).is_err());
assert!(Hypergeometric::new(100, 10, 5).is_ok());
}
fn test_hypergeometric_mean_and_variance<R: Rng>(n: u64, k: u64, s: u64, rng: &mut R)
{
let distr = Hypergeometric::new(n, k, s).unwrap();
let expected_mean = s as f64 * k as f64 / n as f64;
let expected_variance = {
let numerator = (s * k * (n - k) * (n - s)) as f64;
let denominator = (n * n * (n - 1)) as f64;
numerator / denominator
};
let mut results = [0.0; 1000];
for i in results.iter_mut() {
*i = distr.sample(rng) as f64;
}
let mean = results.iter().sum::<f64>() / results.len() as f64;
assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0);
let variance =
results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() / results.len() as f64;
assert!((variance - expected_variance).abs() < expected_variance / 10.0);
}
#[test]
fn test_hypergeometric() {
let mut rng = crate::test::rng(737);
// exercise algorithm HIN:
test_hypergeometric_mean_and_variance(500, 400, 30, &mut rng);
test_hypergeometric_mean_and_variance(250, 200, 230, &mut rng);
test_hypergeometric_mean_and_variance(100, 20, 6, &mut rng);
test_hypergeometric_mean_and_variance(50, 10, 47, &mut rng);
// exercise algorithm H2PE
test_hypergeometric_mean_and_variance(5000, 2500, 500, &mut rng);
test_hypergeometric_mean_and_variance(10100, 10000, 1000, &mut rng);
test_hypergeometric_mean_and_variance(100100, 100, 10000, &mut rng);
}
}