Source code

Revision control

Copy as Markdown

Other Tools

// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The `BlockRngCore` trait and implementation helpers
//!
//! The [`BlockRngCore`] trait exists to assist in the implementation of RNGs
//! which generate a block of data in a cache instead of returning generated
//! values directly.
//!
//! Usage of this trait is optional, but provides two advantages:
//! implementations only need to concern themselves with generation of the
//! block, not the various [`RngCore`] methods (especially [`fill_bytes`], where
//! the optimal implementations are not trivial), and this allows
//! `ReseedingRng` (see [`rand`](https://docs.rs/rand) crate) perform periodic
//! reseeding with very low overhead.
//!
//! # Example
//!
//! ```no_run
//! use rand_core::{RngCore, SeedableRng};
//! use rand_core::block::{BlockRngCore, BlockRng};
//!
//! struct MyRngCore;
//!
//! impl BlockRngCore for MyRngCore {
//! type Item = u32;
//! type Results = [u32; 16];
//!
//! fn generate(&mut self, results: &mut Self::Results) {
//! unimplemented!()
//! }
//! }
//!
//! impl SeedableRng for MyRngCore {
//! type Seed = [u8; 32];
//! fn from_seed(seed: Self::Seed) -> Self {
//! unimplemented!()
//! }
//! }
//!
//! // optionally, also implement CryptoRng for MyRngCore
//!
//! // Final RNG.
//! let mut rng = BlockRng::<MyRngCore>::seed_from_u64(0);
//! println!("First value: {}", rng.next_u32());
//! ```
//!
//! [`BlockRngCore`]: crate::block::BlockRngCore
//! [`fill_bytes`]: RngCore::fill_bytes
use crate::impls::{fill_via_u32_chunks, fill_via_u64_chunks};
use crate::{CryptoRng, Error, RngCore, SeedableRng};
use core::convert::AsRef;
use core::fmt;
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
/// A trait for RNGs which do not generate random numbers individually, but in
/// blocks (typically `[u32; N]`). This technique is commonly used by
/// cryptographic RNGs to improve performance.
///
/// See the [module][crate::block] documentation for details.
pub trait BlockRngCore {
/// Results element type, e.g. `u32`.
type Item;
/// Results type. This is the 'block' an RNG implementing `BlockRngCore`
/// generates, which will usually be an array like `[u32; 16]`.
type Results: AsRef<[Self::Item]> + AsMut<[Self::Item]> + Default;
/// Generate a new block of results.
fn generate(&mut self, results: &mut Self::Results);
}
/// A wrapper type implementing [`RngCore`] for some type implementing
/// [`BlockRngCore`] with `u32` array buffer; i.e. this can be used to implement
/// a full RNG from just a `generate` function.
///
/// The `core` field may be accessed directly but the results buffer may not.
/// PRNG implementations can simply use a type alias
/// (`pub type MyRng = BlockRng<MyRngCore>;`) but might prefer to use a
/// wrapper type (`pub struct MyRng(BlockRng<MyRngCore>);`); the latter must
/// re-implement `RngCore` but hides the implementation details and allows
/// extra functionality to be defined on the RNG
/// (e.g. `impl MyRng { fn set_stream(...){...} }`).
///
/// `BlockRng` has heavily optimized implementations of the [`RngCore`] methods
/// reading values from the results buffer, as well as
/// calling [`BlockRngCore::generate`] directly on the output array when
/// [`fill_bytes`] / [`try_fill_bytes`] is called on a large array. These methods
/// also handle the bookkeeping of when to generate a new batch of values.
///
/// No whole generated `u32` values are thrown away and all values are consumed
/// in-order. [`next_u32`] simply takes the next available `u32` value.
/// [`next_u64`] is implemented by combining two `u32` values, least
/// significant first. [`fill_bytes`] and [`try_fill_bytes`] consume a whole
/// number of `u32` values, converting each `u32` to a byte slice in
/// little-endian order. If the requested byte length is not a multiple of 4,
/// some bytes will be discarded.
///
/// See also [`BlockRng64`] which uses `u64` array buffers. Currently there is
/// no direct support for other buffer types.
///
/// For easy initialization `BlockRng` also implements [`SeedableRng`].
///
/// [`next_u32`]: RngCore::next_u32
/// [`next_u64`]: RngCore::next_u64
/// [`fill_bytes`]: RngCore::fill_bytes
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
#[derive(Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde1",
serde(
bound = "for<'x> R: Serialize + Deserialize<'x> + Sized, for<'x> R::Results: Serialize + Deserialize<'x>"
)
)]
pub struct BlockRng<R: BlockRngCore + ?Sized> {
results: R::Results,
index: usize,
/// The *core* part of the RNG, implementing the `generate` function.
pub core: R,
}
// Custom Debug implementation that does not expose the contents of `results`.
impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng<R> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("BlockRng")
.field("core", &self.core)
.field("result_len", &self.results.as_ref().len())
.field("index", &self.index)
.finish()
}
}
impl<R: BlockRngCore> BlockRng<R> {
/// Create a new `BlockRng` from an existing RNG implementing
/// `BlockRngCore`. Results will be generated on first use.
#[inline]
pub fn new(core: R) -> BlockRng<R> {
let results_empty = R::Results::default();
BlockRng {
core,
index: results_empty.as_ref().len(),
results: results_empty,
}
}
/// Get the index into the result buffer.
///
/// If this is equal to or larger than the size of the result buffer then
/// the buffer is "empty" and `generate()` must be called to produce new
/// results.
#[inline(always)]
pub fn index(&self) -> usize {
self.index
}
/// Reset the number of available results.
/// This will force a new set of results to be generated on next use.
#[inline]
pub fn reset(&mut self) {
self.index = self.results.as_ref().len();
}
/// Generate a new set of results immediately, setting the index to the
/// given value.
#[inline]
pub fn generate_and_set(&mut self, index: usize) {
assert!(index < self.results.as_ref().len());
self.core.generate(&mut self.results);
self.index = index;
}
}
impl<R: BlockRngCore<Item = u32>> RngCore for BlockRng<R>
where
<R as BlockRngCore>::Results: AsRef<[u32]> + AsMut<[u32]>,
{
#[inline]
fn next_u32(&mut self) -> u32 {
if self.index >= self.results.as_ref().len() {
self.generate_and_set(0);
}
let value = self.results.as_ref()[self.index];
self.index += 1;
value
}
#[inline]
fn next_u64(&mut self) -> u64 {
let read_u64 = |results: &[u32], index| {
let data = &results[index..=index + 1];
u64::from(data[1]) << 32 | u64::from(data[0])
};
let len = self.results.as_ref().len();
let index = self.index;
if index < len - 1 {
self.index += 2;
// Read an u64 from the current index
read_u64(self.results.as_ref(), index)
} else if index >= len {
self.generate_and_set(2);
read_u64(self.results.as_ref(), 0)
} else {
let x = u64::from(self.results.as_ref()[len - 1]);
self.generate_and_set(1);
let y = u64::from(self.results.as_ref()[0]);
(y << 32) | x
}
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
let mut read_len = 0;
while read_len < dest.len() {
if self.index >= self.results.as_ref().len() {
self.generate_and_set(0);
}
let (consumed_u32, filled_u8) =
fill_via_u32_chunks(&self.results.as_ref()[self.index..], &mut dest[read_len..]);
self.index += consumed_u32;
read_len += filled_u8;
}
}
#[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}
impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng<R> {
type Seed = R::Seed;
#[inline(always)]
fn from_seed(seed: Self::Seed) -> Self {
Self::new(R::from_seed(seed))
}
#[inline(always)]
fn seed_from_u64(seed: u64) -> Self {
Self::new(R::seed_from_u64(seed))
}
#[inline(always)]
fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
Ok(Self::new(R::from_rng(rng)?))
}
}
/// A wrapper type implementing [`RngCore`] for some type implementing
/// [`BlockRngCore`] with `u64` array buffer; i.e. this can be used to implement
/// a full RNG from just a `generate` function.
///
/// This is similar to [`BlockRng`], but specialized for algorithms that operate
/// on `u64` values.
///
/// No whole generated `u64` values are thrown away and all values are consumed
/// in-order. [`next_u64`] simply takes the next available `u64` value.
/// [`next_u32`] is however a bit special: half of a `u64` is consumed, leaving
/// the other half in the buffer. If the next function called is [`next_u32`]
/// then the other half is then consumed, however both [`next_u64`] and
/// [`fill_bytes`] discard the rest of any half-consumed `u64`s when called.
///
/// [`fill_bytes`] and [`try_fill_bytes`] consume a whole number of `u64`
/// values. If the requested length is not a multiple of 8, some bytes will be
/// discarded.
///
/// [`next_u32`]: RngCore::next_u32
/// [`next_u64`]: RngCore::next_u64
/// [`fill_bytes`]: RngCore::fill_bytes
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
#[derive(Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct BlockRng64<R: BlockRngCore + ?Sized> {
results: R::Results,
index: usize,
half_used: bool, // true if only half of the previous result is used
/// The *core* part of the RNG, implementing the `generate` function.
pub core: R,
}
// Custom Debug implementation that does not expose the contents of `results`.
impl<R: BlockRngCore + fmt::Debug> fmt::Debug for BlockRng64<R> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("BlockRng64")
.field("core", &self.core)
.field("result_len", &self.results.as_ref().len())
.field("index", &self.index)
.field("half_used", &self.half_used)
.finish()
}
}
impl<R: BlockRngCore> BlockRng64<R> {
/// Create a new `BlockRng` from an existing RNG implementing
/// `BlockRngCore`. Results will be generated on first use.
#[inline]
pub fn new(core: R) -> BlockRng64<R> {
let results_empty = R::Results::default();
BlockRng64 {
core,
index: results_empty.as_ref().len(),
half_used: false,
results: results_empty,
}
}
/// Get the index into the result buffer.
///
/// If this is equal to or larger than the size of the result buffer then
/// the buffer is "empty" and `generate()` must be called to produce new
/// results.
#[inline(always)]
pub fn index(&self) -> usize {
self.index
}
/// Reset the number of available results.
/// This will force a new set of results to be generated on next use.
#[inline]
pub fn reset(&mut self) {
self.index = self.results.as_ref().len();
self.half_used = false;
}
/// Generate a new set of results immediately, setting the index to the
/// given value.
#[inline]
pub fn generate_and_set(&mut self, index: usize) {
assert!(index < self.results.as_ref().len());
self.core.generate(&mut self.results);
self.index = index;
self.half_used = false;
}
}
impl<R: BlockRngCore<Item = u64>> RngCore for BlockRng64<R>
where
<R as BlockRngCore>::Results: AsRef<[u64]> + AsMut<[u64]>,
{
#[inline]
fn next_u32(&mut self) -> u32 {
let mut index = self.index - self.half_used as usize;
if index >= self.results.as_ref().len() {
self.core.generate(&mut self.results);
self.index = 0;
index = 0;
// `self.half_used` is by definition `false`
self.half_used = false;
}
let shift = 32 * (self.half_used as usize);
self.half_used = !self.half_used;
self.index += self.half_used as usize;
(self.results.as_ref()[index] >> shift) as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
if self.index >= self.results.as_ref().len() {
self.core.generate(&mut self.results);
self.index = 0;
}
let value = self.results.as_ref()[self.index];
self.index += 1;
self.half_used = false;
value
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
let mut read_len = 0;
self.half_used = false;
while read_len < dest.len() {
if self.index as usize >= self.results.as_ref().len() {
self.core.generate(&mut self.results);
self.index = 0;
}
let (consumed_u64, filled_u8) = fill_via_u64_chunks(
&self.results.as_ref()[self.index as usize..],
&mut dest[read_len..],
);
self.index += consumed_u64;
read_len += filled_u8;
}
}
#[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}
impl<R: BlockRngCore + SeedableRng> SeedableRng for BlockRng64<R> {
type Seed = R::Seed;
#[inline(always)]
fn from_seed(seed: Self::Seed) -> Self {
Self::new(R::from_seed(seed))
}
#[inline(always)]
fn seed_from_u64(seed: u64) -> Self {
Self::new(R::seed_from_u64(seed))
}
#[inline(always)]
fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
Ok(Self::new(R::from_rng(rng)?))
}
}
impl<R: BlockRngCore + CryptoRng> CryptoRng for BlockRng<R> {}
#[cfg(test)]
mod test {
use crate::{SeedableRng, RngCore};
use crate::block::{BlockRng, BlockRng64, BlockRngCore};
#[derive(Debug, Clone)]
struct DummyRng {
counter: u32,
}
impl BlockRngCore for DummyRng {
type Item = u32;
type Results = [u32; 16];
fn generate(&mut self, results: &mut Self::Results) {
for r in results {
*r = self.counter;
self.counter = self.counter.wrapping_add(3511615421);
}
}
}
impl SeedableRng for DummyRng {
type Seed = [u8; 4];
fn from_seed(seed: Self::Seed) -> Self {
DummyRng { counter: u32::from_le_bytes(seed) }
}
}
#[test]
fn blockrng_next_u32_vs_next_u64() {
let mut rng1 = BlockRng::<DummyRng>::from_seed([1, 2, 3, 4]);
let mut rng2 = rng1.clone();
let mut rng3 = rng1.clone();
let mut a = [0; 16];
(&mut a[..4]).copy_from_slice(&rng1.next_u32().to_le_bytes());
(&mut a[4..12]).copy_from_slice(&rng1.next_u64().to_le_bytes());
(&mut a[12..]).copy_from_slice(&rng1.next_u32().to_le_bytes());
let mut b = [0; 16];
(&mut b[..4]).copy_from_slice(&rng2.next_u32().to_le_bytes());
(&mut b[4..8]).copy_from_slice(&rng2.next_u32().to_le_bytes());
(&mut b[8..]).copy_from_slice(&rng2.next_u64().to_le_bytes());
assert_eq!(a, b);
let mut c = [0; 16];
(&mut c[..8]).copy_from_slice(&rng3.next_u64().to_le_bytes());
(&mut c[8..12]).copy_from_slice(&rng3.next_u32().to_le_bytes());
(&mut c[12..]).copy_from_slice(&rng3.next_u32().to_le_bytes());
assert_eq!(a, c);
}
#[derive(Debug, Clone)]
struct DummyRng64 {
counter: u64,
}
impl BlockRngCore for DummyRng64 {
type Item = u64;
type Results = [u64; 8];
fn generate(&mut self, results: &mut Self::Results) {
for r in results {
*r = self.counter;
self.counter = self.counter.wrapping_add(2781463553396133981);
}
}
}
impl SeedableRng for DummyRng64 {
type Seed = [u8; 8];
fn from_seed(seed: Self::Seed) -> Self {
DummyRng64 { counter: u64::from_le_bytes(seed) }
}
}
#[test]
fn blockrng64_next_u32_vs_next_u64() {
let mut rng1 = BlockRng64::<DummyRng64>::from_seed([1, 2, 3, 4, 5, 6, 7, 8]);
let mut rng2 = rng1.clone();
let mut rng3 = rng1.clone();
let mut a = [0; 16];
(&mut a[..4]).copy_from_slice(&rng1.next_u32().to_le_bytes());
(&mut a[4..12]).copy_from_slice(&rng1.next_u64().to_le_bytes());
(&mut a[12..]).copy_from_slice(&rng1.next_u32().to_le_bytes());
let mut b = [0; 16];
(&mut b[..4]).copy_from_slice(&rng2.next_u32().to_le_bytes());
(&mut b[4..8]).copy_from_slice(&rng2.next_u32().to_le_bytes());
(&mut b[8..]).copy_from_slice(&rng2.next_u64().to_le_bytes());
assert_ne!(a, b);
assert_eq!(&a[..4], &b[..4]);
assert_eq!(&a[4..12], &b[8..]);
let mut c = [0; 16];
(&mut c[..8]).copy_from_slice(&rng3.next_u64().to_le_bytes());
(&mut c[8..12]).copy_from_slice(&rng3.next_u32().to_le_bytes());
(&mut c[12..]).copy_from_slice(&rng3.next_u32().to_le_bytes());
assert_eq!(b, c);
}
}