Source code
Revision control
Copy as Markdown
Other Tools
// SPDX-License-Identifier: MPL-2.0
//! Implementation of the Prio3 VDAF [[draft-irtf-cfrg-vdaf-08]].
//!
//! **WARNING:** This code has not undergone significant security analysis. Use at your own risk.
//!
//! Prio3 is based on the Prio system desigend by Dan Boneh and Henry Corrigan-Gibbs and presented
//! at NSDI 2017 [[CGB17]]. However, it incorporates a few techniques from Boneh et al., CRYPTO
//! 2019 [[BBCG+19]], that lead to substantial improvements in terms of run time and communication
//! cost. The security of the construction was analyzed in [[DPRS23]].
//!
//! Prio3 is a transformation of a Fully Linear Proof (FLP) system [[draft-irtf-cfrg-vdaf-08]] into
//! a VDAF. The base type, [`Prio3`], supports a wide variety of aggregation functions, some of
//! which are instantiated here:
//!
//! - [`Prio3Count`] for aggregating a counter (*)
//! - [`Prio3Sum`] for copmputing the sum of integers (*)
//! - [`Prio3SumVec`] for aggregating a vector of integers
//! - [`Prio3Histogram`] for estimating a distribution via a histogram (*)
//!
//! Additional types can be constructed from [`Prio3`] as needed.
//!
//! (*) denotes that the type is specified in [[draft-irtf-cfrg-vdaf-08]].
//!
use super::xof::XofTurboShake128;
#[cfg(feature = "experimental")]
use super::AggregatorWithNoise;
use crate::codec::{CodecError, Decode, Encode, ParameterizedDecode};
#[cfg(feature = "experimental")]
use crate::dp::DifferentialPrivacyStrategy;
use crate::field::{decode_fieldvec, FftFriendlyFieldElement, FieldElement};
use crate::field::{Field128, Field64};
#[cfg(feature = "multithreaded")]
use crate::flp::gadgets::ParallelSumMultithreaded;
#[cfg(feature = "experimental")]
use crate::flp::gadgets::PolyEval;
use crate::flp::gadgets::{Mul, ParallelSum};
#[cfg(feature = "experimental")]
use crate::flp::types::fixedpoint_l2::{
compatible_float::CompatibleFloat, FixedPointBoundedL2VecSum,
};
use crate::flp::types::{Average, Count, Histogram, Sum, SumVec};
use crate::flp::Type;
#[cfg(feature = "experimental")]
use crate::flp::TypeWithNoise;
use crate::prng::Prng;
use crate::vdaf::xof::{IntoFieldVec, Seed, Xof};
use crate::vdaf::{
Aggregatable, AggregateShare, Aggregator, Client, Collector, OutputShare, PrepareTransition,
Share, ShareDecodingParameter, Vdaf, VdafError,
};
#[cfg(feature = "experimental")]
use fixed::traits::Fixed;
use std::convert::TryFrom;
use std::fmt::Debug;
use std::io::Cursor;
use std::iter::{self, IntoIterator};
use std::marker::PhantomData;
use subtle::{Choice, ConstantTimeEq};
const DST_MEASUREMENT_SHARE: u16 = 1;
const DST_PROOF_SHARE: u16 = 2;
const DST_JOINT_RANDOMNESS: u16 = 3;
const DST_PROVE_RANDOMNESS: u16 = 4;
const DST_QUERY_RANDOMNESS: u16 = 5;
const DST_JOINT_RAND_SEED: u16 = 6;
const DST_JOINT_RAND_PART: u16 = 7;
/// The count type. Each measurement is an integer in `[0,2)` and the aggregate result is the sum.
pub type Prio3Count = Prio3<Count<Field64>, XofTurboShake128, 16>;
impl Prio3Count {
/// Construct an instance of Prio3Count with the given number of aggregators.
pub fn new_count(num_aggregators: u8) -> Result<Self, VdafError> {
Prio3::new(num_aggregators, 1, 0x00000000, Count::new())
}
}
/// The count-vector type. Each measurement is a vector of integers in `[0,2^bits)` and the
/// aggregate is the element-wise sum.
pub type Prio3SumVec =
Prio3<SumVec<Field128, ParallelSum<Field128, Mul<Field128>>>, XofTurboShake128, 16>;
impl Prio3SumVec {
/// Construct an instance of Prio3SumVec with the given number of aggregators. `bits` defines
/// the bit width of each summand of the measurement; `len` defines the length of the
/// measurement vector.
pub fn new_sum_vec(
num_aggregators: u8,
bits: usize,
len: usize,
chunk_length: usize,
) -> Result<Self, VdafError> {
Prio3::new(
num_aggregators,
1,
0x00000002,
SumVec::new(bits, len, chunk_length)?,
)
}
}
/// Like [`Prio3SumVec`] except this type uses multithreading to improve sharding and preparation
/// time. Note that the improvement is only noticeable for very large input lengths.
#[cfg(feature = "multithreaded")]
#[cfg_attr(docsrs, doc(cfg(feature = "multithreaded")))]
pub type Prio3SumVecMultithreaded = Prio3<
SumVec<Field128, ParallelSumMultithreaded<Field128, Mul<Field128>>>,
XofTurboShake128,
16,
>;
#[cfg(feature = "multithreaded")]
impl Prio3SumVecMultithreaded {
/// Construct an instance of Prio3SumVecMultithreaded with the given number of
/// aggregators. `bits` defines the bit width of each summand of the measurement; `len` defines
/// the length of the measurement vector.
pub fn new_sum_vec_multithreaded(
num_aggregators: u8,
bits: usize,
len: usize,
chunk_length: usize,
) -> Result<Self, VdafError> {
Prio3::new(
num_aggregators,
1,
0x00000002,
SumVec::new(bits, len, chunk_length)?,
)
}
}
/// The sum type. Each measurement is an integer in `[0,2^bits)` for some `0 < bits < 64` and the
/// aggregate is the sum.
pub type Prio3Sum = Prio3<Sum<Field128>, XofTurboShake128, 16>;
impl Prio3Sum {
/// Construct an instance of Prio3Sum with the given number of aggregators and required bit
/// length. The bit length must not exceed 64.
pub fn new_sum(num_aggregators: u8, bits: usize) -> Result<Self, VdafError> {
if bits > 64 {
return Err(VdafError::Uncategorized(format!(
"bit length ({bits}) exceeds limit for aggregate type (64)"
)));
}
Prio3::new(num_aggregators, 1, 0x00000001, Sum::new(bits)?)
}
}
/// The fixed point vector sum type. Each measurement is a vector of fixed point numbers
/// and the aggregate is the sum represented as 64-bit floats. The preparation phase
/// ensures the L2 norm of the input vector is < 1.
///
/// This is useful for aggregating gradients in a federated version of
/// The bound on input norms is required for differential privacy. The fixed point representation
/// allows an easy conversion to the integer type used in internal computation, while leaving
/// conversion to the client. The model itself will have floating point parameters, so the output
/// sum has that type as well.
#[cfg(feature = "experimental")]
#[cfg_attr(docsrs, doc(cfg(feature = "experimental")))]
pub type Prio3FixedPointBoundedL2VecSum<Fx> = Prio3<
FixedPointBoundedL2VecSum<
Fx,
ParallelSum<Field128, PolyEval<Field128>>,
ParallelSum<Field128, Mul<Field128>>,
>,
XofTurboShake128,
16,
>;
#[cfg(feature = "experimental")]
impl<Fx: Fixed + CompatibleFloat> Prio3FixedPointBoundedL2VecSum<Fx> {
/// Construct an instance of this VDAF with the given number of aggregators and number of
/// vector entries.
pub fn new_fixedpoint_boundedl2_vec_sum(
num_aggregators: u8,
entries: usize,
) -> Result<Self, VdafError> {
check_num_aggregators(num_aggregators)?;
Prio3::new(
num_aggregators,
1,
0xFFFF0000,
FixedPointBoundedL2VecSum::new(entries)?,
)
}
}
/// The fixed point vector sum type. Each measurement is a vector of fixed point numbers
/// and the aggregate is the sum represented as 64-bit floats. The verification function
/// ensures the L2 norm of the input vector is < 1.
#[cfg(all(feature = "experimental", feature = "multithreaded"))]
#[cfg_attr(
docsrs,
doc(cfg(all(feature = "experimental", feature = "multithreaded")))
)]
pub type Prio3FixedPointBoundedL2VecSumMultithreaded<Fx> = Prio3<
FixedPointBoundedL2VecSum<
Fx,
ParallelSumMultithreaded<Field128, PolyEval<Field128>>,
ParallelSumMultithreaded<Field128, Mul<Field128>>,
>,
XofTurboShake128,
16,
>;
#[cfg(all(feature = "experimental", feature = "multithreaded"))]
impl<Fx: Fixed + CompatibleFloat> Prio3FixedPointBoundedL2VecSumMultithreaded<Fx> {
/// Construct an instance of this VDAF with the given number of aggregators and number of
/// vector entries.
pub fn new_fixedpoint_boundedl2_vec_sum_multithreaded(
num_aggregators: u8,
entries: usize,
) -> Result<Self, VdafError> {
check_num_aggregators(num_aggregators)?;
Prio3::new(
num_aggregators,
1,
0xFFFF0000,
FixedPointBoundedL2VecSum::new(entries)?,
)
}
}
/// The histogram type. Each measurement is an integer in `[0, length)` and the result is a
/// histogram counting the number of occurrences of each measurement.
pub type Prio3Histogram =
Prio3<Histogram<Field128, ParallelSum<Field128, Mul<Field128>>>, XofTurboShake128, 16>;
impl Prio3Histogram {
/// Constructs an instance of Prio3Histogram with the given number of aggregators,
/// number of buckets, and parallel sum gadget chunk length.
pub fn new_histogram(
num_aggregators: u8,
length: usize,
chunk_length: usize,
) -> Result<Self, VdafError> {
Prio3::new(
num_aggregators,
1,
0x00000003,
Histogram::new(length, chunk_length)?,
)
}
}
/// Like [`Prio3Histogram`] except this type uses multithreading to improve sharding and preparation
/// time. Note that this improvement is only noticeable for very large input lengths.
#[cfg(feature = "multithreaded")]
#[cfg_attr(docsrs, doc(cfg(feature = "multithreaded")))]
pub type Prio3HistogramMultithreaded = Prio3<
Histogram<Field128, ParallelSumMultithreaded<Field128, Mul<Field128>>>,
XofTurboShake128,
16,
>;
#[cfg(feature = "multithreaded")]
impl Prio3HistogramMultithreaded {
/// Construct an instance of Prio3HistogramMultithreaded with the given number of aggregators,
/// number of buckets, and parallel sum gadget chunk length.
pub fn new_histogram_multithreaded(
num_aggregators: u8,
length: usize,
chunk_length: usize,
) -> Result<Self, VdafError> {
Prio3::new(
num_aggregators,
1,
0x00000003,
Histogram::new(length, chunk_length)?,
)
}
}
/// The average type. Each measurement is an integer in `[0,2^bits)` for some `0 < bits < 64` and
/// the aggregate is the arithmetic average.
pub type Prio3Average = Prio3<Average<Field128>, XofTurboShake128, 16>;
impl Prio3Average {
/// Construct an instance of Prio3Average with the given number of aggregators and required bit
/// length. The bit length must not exceed 64.
pub fn new_average(num_aggregators: u8, bits: usize) -> Result<Self, VdafError> {
check_num_aggregators(num_aggregators)?;
if bits > 64 {
return Err(VdafError::Uncategorized(format!(
"bit length ({bits}) exceeds limit for aggregate type (64)"
)));
}
Ok(Prio3 {
num_aggregators,
num_proofs: 1,
algorithm_id: 0xFFFF0000,
typ: Average::new(bits)?,
phantom: PhantomData,
})
}
}
/// The base type for Prio3.
///
/// An instance of Prio3 is determined by:
///
/// - a [`Type`] that defines the set of valid input measurements; and
/// - a [`Xof`] for deriving vectors of field elements from seeds.
///
/// New instances can be defined by aliasing the base type. For example, [`Prio3Count`] is an alias
/// for `Prio3<Count<Field64>, XofTurboShake128, 16>`.
///
/// ```
/// use prio::vdaf::{
/// Aggregator, Client, Collector, PrepareTransition,
/// prio3::Prio3,
/// };
/// use rand::prelude::*;
///
/// let num_shares = 2;
/// let vdaf = Prio3::new_count(num_shares).unwrap();
///
/// let mut out_shares = vec![vec![]; num_shares.into()];
/// let mut rng = thread_rng();
/// let verify_key = rng.gen();
/// let measurements = [false, true, true, true, false];
/// for measurement in measurements {
/// // Shard
/// let nonce = rng.gen::<[u8; 16]>();
/// let (public_share, input_shares) = vdaf.shard(&measurement, &nonce).unwrap();
///
/// // Prepare
/// let mut prep_states = vec![];
/// let mut prep_shares = vec![];
/// for (agg_id, input_share) in input_shares.iter().enumerate() {
/// let (state, share) = vdaf.prepare_init(
/// &verify_key,
/// agg_id,
/// &(),
/// &nonce,
/// &public_share,
/// input_share
/// ).unwrap();
/// prep_states.push(state);
/// prep_shares.push(share);
/// }
/// let prep_msg = vdaf.prepare_shares_to_prepare_message(&(), prep_shares).unwrap();
///
/// for (agg_id, state) in prep_states.into_iter().enumerate() {
/// let out_share = match vdaf.prepare_next(state, prep_msg.clone()).unwrap() {
/// PrepareTransition::Finish(out_share) => out_share,
/// _ => panic!("unexpected transition"),
/// };
/// out_shares[agg_id].push(out_share);
/// }
/// }
///
/// // Aggregate
/// let agg_shares = out_shares.into_iter()
/// .map(|o| vdaf.aggregate(&(), o).unwrap());
///
/// // Unshard
/// let agg_res = vdaf.unshard(&(), agg_shares, measurements.len()).unwrap();
/// assert_eq!(agg_res, 3);
/// ```
#[derive(Clone, Debug)]
pub struct Prio3<T, P, const SEED_SIZE: usize>
where
T: Type,
P: Xof<SEED_SIZE>,
{
num_aggregators: u8,
num_proofs: u8,
algorithm_id: u32,
typ: T,
phantom: PhantomData<P>,
}
impl<T, P, const SEED_SIZE: usize> Prio3<T, P, SEED_SIZE>
where
T: Type,
P: Xof<SEED_SIZE>,
{
/// Construct an instance of this Prio3 VDAF with the given number of aggregators, number of
/// proofs to generate and verify, the algorithm ID, and the underlying type.
pub fn new(
num_aggregators: u8,
num_proofs: u8,
algorithm_id: u32,
typ: T,
) -> Result<Self, VdafError> {
check_num_aggregators(num_aggregators)?;
if num_proofs == 0 {
return Err(VdafError::Uncategorized(
"num_proofs must be at least 1".to_string(),
));
}
Ok(Self {
num_aggregators,
num_proofs,
algorithm_id,
typ,
phantom: PhantomData,
})
}
/// The output length of the underlying FLP.
pub fn output_len(&self) -> usize {
self.typ.output_len()
}
/// The verifier length of the underlying FLP.
pub fn verifier_len(&self) -> usize {
self.typ.verifier_len()
}
#[inline]
fn num_proofs(&self) -> usize {
self.num_proofs.into()
}
fn derive_prove_rands(&self, prove_rand_seed: &Seed<SEED_SIZE>) -> Vec<T::Field> {
P::seed_stream(
prove_rand_seed,
&self.domain_separation_tag(DST_PROVE_RANDOMNESS),
&[self.num_proofs],
)
.into_field_vec(self.typ.prove_rand_len() * self.num_proofs())
}
fn derive_joint_rand_seed<'a>(
&self,
joint_rand_parts: impl Iterator<Item = &'a Seed<SEED_SIZE>>,
) -> Seed<SEED_SIZE> {
let mut xof = P::init(
&[0; SEED_SIZE],
&self.domain_separation_tag(DST_JOINT_RAND_SEED),
);
for part in joint_rand_parts {
xof.update(part.as_ref());
}
xof.into_seed()
}
fn derive_joint_rands<'a>(
&self,
joint_rand_parts: impl Iterator<Item = &'a Seed<SEED_SIZE>>,
) -> (Seed<SEED_SIZE>, Vec<T::Field>) {
let joint_rand_seed = self.derive_joint_rand_seed(joint_rand_parts);
let joint_rands = P::seed_stream(
&joint_rand_seed,
&self.domain_separation_tag(DST_JOINT_RANDOMNESS),
&[self.num_proofs],
)
.into_field_vec(self.typ.joint_rand_len() * self.num_proofs());
(joint_rand_seed, joint_rands)
}
fn derive_helper_proofs_share(
&self,
proofs_share_seed: &Seed<SEED_SIZE>,
agg_id: u8,
) -> Prng<T::Field, P::SeedStream> {
Prng::from_seed_stream(P::seed_stream(
proofs_share_seed,
&self.domain_separation_tag(DST_PROOF_SHARE),
&[self.num_proofs, agg_id],
))
}
fn derive_query_rands(&self, verify_key: &[u8; SEED_SIZE], nonce: &[u8; 16]) -> Vec<T::Field> {
let mut xof = P::init(
verify_key,
&self.domain_separation_tag(DST_QUERY_RANDOMNESS),
);
xof.update(&[self.num_proofs]);
xof.update(nonce);
xof.into_seed_stream()
.into_field_vec(self.typ.query_rand_len() * self.num_proofs())
}
fn random_size(&self) -> usize {
if self.typ.joint_rand_len() == 0 {
// Two seeds per helper for measurement and proof shares, plus one seed for proving
// randomness.
(usize::from(self.num_aggregators - 1) * 2 + 1) * SEED_SIZE
} else {
(
// Two seeds per helper for measurement and proof shares
usize::from(self.num_aggregators - 1) * 2
// One seed for proving randomness
+ 1
// One seed per aggregator for joint randomness blinds
+ usize::from(self.num_aggregators)
) * SEED_SIZE
}
}
#[allow(clippy::type_complexity)]
pub(crate) fn shard_with_random<const N: usize>(
&self,
measurement: &T::Measurement,
nonce: &[u8; N],
random: &[u8],
) -> Result<
(
Prio3PublicShare<SEED_SIZE>,
Vec<Prio3InputShare<T::Field, SEED_SIZE>>,
),
VdafError,
> {
if random.len() != self.random_size() {
return Err(VdafError::Uncategorized(
"incorrect random input length".to_string(),
));
}
let mut random_seeds = random.chunks_exact(SEED_SIZE);
let num_aggregators = self.num_aggregators;
let encoded_measurement = self.typ.encode_measurement(measurement)?;
// Generate the measurement shares and compute the joint randomness.
let mut helper_shares = Vec::with_capacity(num_aggregators as usize - 1);
let mut helper_joint_rand_parts = if self.typ.joint_rand_len() > 0 {
Some(Vec::with_capacity(num_aggregators as usize - 1))
} else {
None
};
let mut leader_measurement_share = encoded_measurement.clone();
for agg_id in 1..num_aggregators {
// The Option from the ChunksExact iterator is okay to unwrap because we checked that
// the randomness slice is long enough for this VDAF. The slice-to-array conversion
// Result is okay to unwrap because the ChunksExact iterator always returns slices of
// the correct length.
let measurement_share_seed = random_seeds.next().unwrap().try_into().unwrap();
let proof_share_seed = random_seeds.next().unwrap().try_into().unwrap();
let measurement_share_prng: Prng<T::Field, _> = Prng::from_seed_stream(P::seed_stream(
&Seed(measurement_share_seed),
&self.domain_separation_tag(DST_MEASUREMENT_SHARE),
&[agg_id],
));
let joint_rand_blind = if let Some(helper_joint_rand_parts) =
helper_joint_rand_parts.as_mut()
{
let joint_rand_blind = random_seeds.next().unwrap().try_into().unwrap();
let mut joint_rand_part_xof = P::init(
&joint_rand_blind,
&self.domain_separation_tag(DST_JOINT_RAND_PART),
);
joint_rand_part_xof.update(&[agg_id]); // Aggregator ID
joint_rand_part_xof.update(nonce);
let mut encoding_buffer = Vec::with_capacity(T::Field::ENCODED_SIZE);
for (x, y) in leader_measurement_share
.iter_mut()
.zip(measurement_share_prng)
{
*x -= y;
y.encode(&mut encoding_buffer).map_err(|_| {
VdafError::Uncategorized("failed to encode measurement share".to_string())
})?;
joint_rand_part_xof.update(&encoding_buffer);
encoding_buffer.clear();
}
helper_joint_rand_parts.push(joint_rand_part_xof.into_seed());
Some(joint_rand_blind)
} else {
for (x, y) in leader_measurement_share
.iter_mut()
.zip(measurement_share_prng)
{
*x -= y;
}
None
};
let helper =
HelperShare::from_seeds(measurement_share_seed, proof_share_seed, joint_rand_blind);
helper_shares.push(helper);
}
let mut leader_blind_opt = None;
let public_share = Prio3PublicShare {
joint_rand_parts: helper_joint_rand_parts
.as_ref()
.map(
|helper_joint_rand_parts| -> Result<Vec<Seed<SEED_SIZE>>, VdafError> {
let leader_blind_bytes = random_seeds.next().unwrap().try_into().unwrap();
let leader_blind = Seed::from_bytes(leader_blind_bytes);
let mut joint_rand_part_xof = P::init(
leader_blind.as_ref(),
&self.domain_separation_tag(DST_JOINT_RAND_PART),
);
joint_rand_part_xof.update(&[0]); // Aggregator ID
joint_rand_part_xof.update(nonce);
let mut encoding_buffer = Vec::with_capacity(T::Field::ENCODED_SIZE);
for x in leader_measurement_share.iter() {
x.encode(&mut encoding_buffer).map_err(|_| {
VdafError::Uncategorized(
"failed to encode measurement share".to_string(),
)
})?;
joint_rand_part_xof.update(&encoding_buffer);
encoding_buffer.clear();
}
leader_blind_opt = Some(leader_blind);
let leader_joint_rand_seed_part = joint_rand_part_xof.into_seed();
let mut vec = Vec::with_capacity(self.num_aggregators());
vec.push(leader_joint_rand_seed_part);
vec.extend(helper_joint_rand_parts.iter().cloned());
Ok(vec)
},
)
.transpose()?,
};
// Compute the joint randomness.
let joint_rands = public_share
.joint_rand_parts
.as_ref()
.map(|joint_rand_parts| self.derive_joint_rands(joint_rand_parts.iter()).1)
.unwrap_or_default();
// Generate the proofs.
let prove_rands = self.derive_prove_rands(&Seed::from_bytes(
random_seeds.next().unwrap().try_into().unwrap(),
));
let mut leader_proofs_share = Vec::with_capacity(self.typ.proof_len() * self.num_proofs());
for p in 0..self.num_proofs() {
let prove_rand =
&prove_rands[p * self.typ.prove_rand_len()..(p + 1) * self.typ.prove_rand_len()];
let joint_rand =
&joint_rands[p * self.typ.joint_rand_len()..(p + 1) * self.typ.joint_rand_len()];
leader_proofs_share.append(&mut self.typ.prove(
&encoded_measurement,
prove_rand,
joint_rand,
)?);
}
// Generate the proof shares and distribute the joint randomness seed hints.
for (j, helper) in helper_shares.iter_mut().enumerate() {
for (x, y) in
leader_proofs_share
.iter_mut()
.zip(self.derive_helper_proofs_share(
&helper.proofs_share,
u8::try_from(j).unwrap() + 1,
))
.take(self.typ.proof_len() * self.num_proofs())
{
*x -= y;
}
}
// Prep the output messages.
let mut out = Vec::with_capacity(num_aggregators as usize);
out.push(Prio3InputShare {
measurement_share: Share::Leader(leader_measurement_share),
proofs_share: Share::Leader(leader_proofs_share),
joint_rand_blind: leader_blind_opt,
});
for helper in helper_shares.into_iter() {
out.push(Prio3InputShare {
measurement_share: Share::Helper(helper.measurement_share),
proofs_share: Share::Helper(helper.proofs_share),
joint_rand_blind: helper.joint_rand_blind,
});
}
Ok((public_share, out))
}
fn role_try_from(&self, agg_id: usize) -> Result<u8, VdafError> {
if agg_id >= self.num_aggregators as usize {
return Err(VdafError::Uncategorized("unexpected aggregator id".into()));
}
Ok(u8::try_from(agg_id).unwrap())
}
}
impl<T, P, const SEED_SIZE: usize> Vdaf for Prio3<T, P, SEED_SIZE>
where
T: Type,
P: Xof<SEED_SIZE>,
{
type Measurement = T::Measurement;
type AggregateResult = T::AggregateResult;
type AggregationParam = ();
type PublicShare = Prio3PublicShare<SEED_SIZE>;
type InputShare = Prio3InputShare<T::Field, SEED_SIZE>;
type OutputShare = OutputShare<T::Field>;
type AggregateShare = AggregateShare<T::Field>;
fn algorithm_id(&self) -> u32 {
self.algorithm_id
}
fn num_aggregators(&self) -> usize {
self.num_aggregators as usize
}
}
/// Message broadcast by the [`Client`] to every [`Aggregator`] during the Sharding phase.
#[derive(Clone, Debug)]
pub struct Prio3PublicShare<const SEED_SIZE: usize> {
/// Contributions to the joint randomness from every aggregator's share.
joint_rand_parts: Option<Vec<Seed<SEED_SIZE>>>,
}
impl<const SEED_SIZE: usize> Encode for Prio3PublicShare<SEED_SIZE> {
fn encode(&self, bytes: &mut Vec<u8>) -> Result<(), CodecError> {
if let Some(joint_rand_parts) = self.joint_rand_parts.as_ref() {
for part in joint_rand_parts.iter() {
part.encode(bytes)?;
}
}
Ok(())
}
fn encoded_len(&self) -> Option<usize> {
if let Some(joint_rand_parts) = self.joint_rand_parts.as_ref() {
// Each seed has the same size.
Some(SEED_SIZE * joint_rand_parts.len())
} else {
Some(0)
}
}
}
impl<const SEED_SIZE: usize> PartialEq for Prio3PublicShare<SEED_SIZE> {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).into()
}
}
impl<const SEED_SIZE: usize> Eq for Prio3PublicShare<SEED_SIZE> {}
impl<const SEED_SIZE: usize> ConstantTimeEq for Prio3PublicShare<SEED_SIZE> {
fn ct_eq(&self, other: &Self) -> Choice {
// We allow short-circuiting on the presence or absence of the joint_rand_parts.
option_ct_eq(
self.joint_rand_parts.as_deref(),
other.joint_rand_parts.as_deref(),
)
}
}
impl<T, P, const SEED_SIZE: usize> ParameterizedDecode<Prio3<T, P, SEED_SIZE>>
for Prio3PublicShare<SEED_SIZE>
where
T: Type,
P: Xof<SEED_SIZE>,
{
fn decode_with_param(
decoding_parameter: &Prio3<T, P, SEED_SIZE>,
bytes: &mut Cursor<&[u8]>,
) -> Result<Self, CodecError> {
if decoding_parameter.typ.joint_rand_len() > 0 {
let joint_rand_parts = iter::repeat_with(|| Seed::<SEED_SIZE>::decode(bytes))
.take(decoding_parameter.num_aggregators.into())
.collect::<Result<Vec<_>, _>>()?;
Ok(Self {
joint_rand_parts: Some(joint_rand_parts),
})
} else {
Ok(Self {
joint_rand_parts: None,
})
}
}
}
/// Message sent by the [`Client`] to each [`Aggregator`] during the Sharding phase.
#[derive(Clone, Debug)]
pub struct Prio3InputShare<F, const SEED_SIZE: usize> {
/// The measurement share.
measurement_share: Share<F, SEED_SIZE>,
/// The proof share.
proofs_share: Share<F, SEED_SIZE>,
/// Blinding seed used by the Aggregator to compute the joint randomness. This field is optional
/// because not every [`Type`] requires joint randomness.
joint_rand_blind: Option<Seed<SEED_SIZE>>,
}
impl<F: ConstantTimeEq, const SEED_SIZE: usize> PartialEq for Prio3InputShare<F, SEED_SIZE> {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).into()
}
}
impl<F: ConstantTimeEq, const SEED_SIZE: usize> Eq for Prio3InputShare<F, SEED_SIZE> {}
impl<F: ConstantTimeEq, const SEED_SIZE: usize> ConstantTimeEq for Prio3InputShare<F, SEED_SIZE> {
fn ct_eq(&self, other: &Self) -> Choice {
// We allow short-circuiting on the presence or absence of the joint_rand_blind.
option_ct_eq(
self.joint_rand_blind.as_ref(),
other.joint_rand_blind.as_ref(),
) & self.measurement_share.ct_eq(&other.measurement_share)
& self.proofs_share.ct_eq(&other.proofs_share)
}
}
impl<F: FftFriendlyFieldElement, const SEED_SIZE: usize> Encode for Prio3InputShare<F, SEED_SIZE> {
fn encode(&self, bytes: &mut Vec<u8>) -> Result<(), CodecError> {
if matches!(
(&self.measurement_share, &self.proofs_share),
(Share::Leader(_), Share::Helper(_)) | (Share::Helper(_), Share::Leader(_))
) {
panic!("tried to encode input share with ambiguous encoding")
}
self.measurement_share.encode(bytes)?;
self.proofs_share.encode(bytes)?;
if let Some(ref blind) = self.joint_rand_blind {
blind.encode(bytes)?;
}
Ok(())
}
fn encoded_len(&self) -> Option<usize> {
let mut len = self.measurement_share.encoded_len()? + self.proofs_share.encoded_len()?;
if let Some(ref blind) = self.joint_rand_blind {
len += blind.encoded_len()?;
}
Some(len)
}
}
impl<'a, T, P, const SEED_SIZE: usize> ParameterizedDecode<(&'a Prio3<T, P, SEED_SIZE>, usize)>
for Prio3InputShare<T::Field, SEED_SIZE>
where
T: Type,
P: Xof<SEED_SIZE>,
{
fn decode_with_param(
(prio3, agg_id): &(&'a Prio3<T, P, SEED_SIZE>, usize),
bytes: &mut Cursor<&[u8]>,
) -> Result<Self, CodecError> {
let agg_id = prio3
.role_try_from(*agg_id)
.map_err(|e| CodecError::Other(Box::new(e)))?;
let (input_decoder, proof_decoder) = if agg_id == 0 {
(
ShareDecodingParameter::Leader(prio3.typ.input_len()),
ShareDecodingParameter::Leader(prio3.typ.proof_len() * prio3.num_proofs()),
)
} else {
(
ShareDecodingParameter::Helper,
ShareDecodingParameter::Helper,
)
};
let measurement_share = Share::decode_with_param(&input_decoder, bytes)?;
let proofs_share = Share::decode_with_param(&proof_decoder, bytes)?;
let joint_rand_blind = if prio3.typ.joint_rand_len() > 0 {
let blind = Seed::decode(bytes)?;
Some(blind)
} else {
None
};
Ok(Prio3InputShare {
measurement_share,
proofs_share,
joint_rand_blind,
})
}
}
#[derive(Clone, Debug)]
/// Message broadcast by each [`Aggregator`] in each round of the Preparation phase.
pub struct Prio3PrepareShare<F, const SEED_SIZE: usize> {
/// A share of the FLP verifier message. (See [`Type`].)
verifiers: Vec<F>,
/// A part of the joint randomness seed.
joint_rand_part: Option<Seed<SEED_SIZE>>,
}
impl<F: ConstantTimeEq, const SEED_SIZE: usize> PartialEq for Prio3PrepareShare<F, SEED_SIZE> {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).into()
}
}
impl<F: ConstantTimeEq, const SEED_SIZE: usize> Eq for Prio3PrepareShare<F, SEED_SIZE> {}
impl<F: ConstantTimeEq, const SEED_SIZE: usize> ConstantTimeEq for Prio3PrepareShare<F, SEED_SIZE> {
fn ct_eq(&self, other: &Self) -> Choice {
// We allow short-circuiting on the presence or absence of the joint_rand_part.
option_ct_eq(
self.joint_rand_part.as_ref(),
other.joint_rand_part.as_ref(),
) & self.verifiers.ct_eq(&other.verifiers)
}
}
impl<F: FftFriendlyFieldElement, const SEED_SIZE: usize> Encode
for Prio3PrepareShare<F, SEED_SIZE>
{
fn encode(&self, bytes: &mut Vec<u8>) -> Result<(), CodecError> {
for x in &self.verifiers {
x.encode(bytes)?;
}
if let Some(ref seed) = self.joint_rand_part {
seed.encode(bytes)?;
}
Ok(())
}
fn encoded_len(&self) -> Option<usize> {
// Each element of the verifier has the same size.
let mut len = F::ENCODED_SIZE * self.verifiers.len();
if let Some(ref seed) = self.joint_rand_part {
len += seed.encoded_len()?;
}
Some(len)
}
}
impl<F: FftFriendlyFieldElement, const SEED_SIZE: usize>
ParameterizedDecode<Prio3PrepareState<F, SEED_SIZE>> for Prio3PrepareShare<F, SEED_SIZE>
{
fn decode_with_param(
decoding_parameter: &Prio3PrepareState<F, SEED_SIZE>,
bytes: &mut Cursor<&[u8]>,
) -> Result<Self, CodecError> {
let mut verifiers = Vec::with_capacity(decoding_parameter.verifiers_len);
for _ in 0..decoding_parameter.verifiers_len {
verifiers.push(F::decode(bytes)?);
}
let joint_rand_part = if decoding_parameter.joint_rand_seed.is_some() {
Some(Seed::decode(bytes)?)
} else {
None
};
Ok(Prio3PrepareShare {
verifiers,
joint_rand_part,
})
}
}
#[derive(Clone, Debug)]
/// Result of combining a round of [`Prio3PrepareShare`] messages.
pub struct Prio3PrepareMessage<const SEED_SIZE: usize> {
/// The joint randomness seed computed by the Aggregators.
joint_rand_seed: Option<Seed<SEED_SIZE>>,
}
impl<const SEED_SIZE: usize> PartialEq for Prio3PrepareMessage<SEED_SIZE> {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).into()
}
}
impl<const SEED_SIZE: usize> Eq for Prio3PrepareMessage<SEED_SIZE> {}
impl<const SEED_SIZE: usize> ConstantTimeEq for Prio3PrepareMessage<SEED_SIZE> {
fn ct_eq(&self, other: &Self) -> Choice {
// We allow short-circuiting on the presnce or absence of the joint_rand_seed.
option_ct_eq(
self.joint_rand_seed.as_ref(),
other.joint_rand_seed.as_ref(),
)
}
}
impl<const SEED_SIZE: usize> Encode for Prio3PrepareMessage<SEED_SIZE> {
fn encode(&self, bytes: &mut Vec<u8>) -> Result<(), CodecError> {
if let Some(ref seed) = self.joint_rand_seed {
seed.encode(bytes)?;
}
Ok(())
}
fn encoded_len(&self) -> Option<usize> {
if let Some(ref seed) = self.joint_rand_seed {
seed.encoded_len()
} else {
Some(0)
}
}
}
impl<F: FftFriendlyFieldElement, const SEED_SIZE: usize>
ParameterizedDecode<Prio3PrepareState<F, SEED_SIZE>> for Prio3PrepareMessage<SEED_SIZE>
{
fn decode_with_param(
decoding_parameter: &Prio3PrepareState<F, SEED_SIZE>,
bytes: &mut Cursor<&[u8]>,
) -> Result<Self, CodecError> {
let joint_rand_seed = if decoding_parameter.joint_rand_seed.is_some() {
Some(Seed::decode(bytes)?)
} else {
None
};
Ok(Prio3PrepareMessage { joint_rand_seed })
}
}
impl<T, P, const SEED_SIZE: usize> Client<16> for Prio3<T, P, SEED_SIZE>
where
T: Type,
P: Xof<SEED_SIZE>,
{
#[allow(clippy::type_complexity)]
fn shard(
&self,
measurement: &T::Measurement,
nonce: &[u8; 16],
) -> Result<(Self::PublicShare, Vec<Prio3InputShare<T::Field, SEED_SIZE>>), VdafError> {
let mut random = vec![0u8; self.random_size()];
getrandom::getrandom(&mut random)?;
self.shard_with_random(measurement, nonce, &random)
}
}
/// State of each [`Aggregator`] during the Preparation phase.
#[derive(Clone)]
pub struct Prio3PrepareState<F, const SEED_SIZE: usize> {
measurement_share: Share<F, SEED_SIZE>,
joint_rand_seed: Option<Seed<SEED_SIZE>>,
agg_id: u8,
verifiers_len: usize,
}
impl<F: ConstantTimeEq, const SEED_SIZE: usize> PartialEq for Prio3PrepareState<F, SEED_SIZE> {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).into()
}
}
impl<F: ConstantTimeEq, const SEED_SIZE: usize> Eq for Prio3PrepareState<F, SEED_SIZE> {}
impl<F: ConstantTimeEq, const SEED_SIZE: usize> ConstantTimeEq for Prio3PrepareState<F, SEED_SIZE> {
fn ct_eq(&self, other: &Self) -> Choice {
// We allow short-circuiting on the presence or absence of the joint_rand_seed, as well as
// the aggregator ID & verifier length parameters.
if self.agg_id != other.agg_id || self.verifiers_len != other.verifiers_len {
return Choice::from(0);
}
option_ct_eq(
self.joint_rand_seed.as_ref(),
other.joint_rand_seed.as_ref(),
) & self.measurement_share.ct_eq(&other.measurement_share)
}
}
impl<F, const SEED_SIZE: usize> Debug for Prio3PrepareState<F, SEED_SIZE> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Prio3PrepareState")
.field("measurement_share", &"[redacted]")
.field(
"joint_rand_seed",
match self.joint_rand_seed {
Some(_) => &"Some([redacted])",
None => &"None",
},
)
.field("agg_id", &self.agg_id)
.field("verifiers_len", &self.verifiers_len)
.finish()
}
}
impl<F: FftFriendlyFieldElement, const SEED_SIZE: usize> Encode
for Prio3PrepareState<F, SEED_SIZE>
{
/// Append the encoded form of this object to the end of `bytes`, growing the vector as needed.
fn encode(&self, bytes: &mut Vec<u8>) -> Result<(), CodecError> {
self.measurement_share.encode(bytes)?;
if let Some(ref seed) = self.joint_rand_seed {
seed.encode(bytes)?;
}
Ok(())
}
fn encoded_len(&self) -> Option<usize> {
let mut len = self.measurement_share.encoded_len()?;
if let Some(ref seed) = self.joint_rand_seed {
len += seed.encoded_len()?;
}
Some(len)
}
}
impl<'a, T, P, const SEED_SIZE: usize> ParameterizedDecode<(&'a Prio3<T, P, SEED_SIZE>, usize)>
for Prio3PrepareState<T::Field, SEED_SIZE>
where
T: Type,
P: Xof<SEED_SIZE>,
{
fn decode_with_param(
(prio3, agg_id): &(&'a Prio3<T, P, SEED_SIZE>, usize),
bytes: &mut Cursor<&[u8]>,
) -> Result<Self, CodecError> {
let agg_id = prio3
.role_try_from(*agg_id)
.map_err(|e| CodecError::Other(Box::new(e)))?;
let share_decoder = if agg_id == 0 {
ShareDecodingParameter::Leader(prio3.typ.input_len())
} else {
ShareDecodingParameter::Helper
};
let measurement_share = Share::decode_with_param(&share_decoder, bytes)?;
let joint_rand_seed = if prio3.typ.joint_rand_len() > 0 {
Some(Seed::decode(bytes)?)
} else {
None
};
Ok(Self {
measurement_share,
joint_rand_seed,
agg_id,
verifiers_len: prio3.typ.verifier_len() * prio3.num_proofs(),
})
}
}
impl<T, P, const SEED_SIZE: usize> Aggregator<SEED_SIZE, 16> for Prio3<T, P, SEED_SIZE>
where
T: Type,
P: Xof<SEED_SIZE>,
{
type PrepareState = Prio3PrepareState<T::Field, SEED_SIZE>;
type PrepareShare = Prio3PrepareShare<T::Field, SEED_SIZE>;
type PrepareMessage = Prio3PrepareMessage<SEED_SIZE>;
/// Begins the Prep process with the other aggregators. The result of this process is
/// the aggregator's output share.
#[allow(clippy::type_complexity)]
fn prepare_init(
&self,
verify_key: &[u8; SEED_SIZE],
agg_id: usize,
_agg_param: &Self::AggregationParam,
nonce: &[u8; 16],
public_share: &Self::PublicShare,
msg: &Prio3InputShare<T::Field, SEED_SIZE>,
) -> Result<
(
Prio3PrepareState<T::Field, SEED_SIZE>,
Prio3PrepareShare<T::Field, SEED_SIZE>,
),
VdafError,
> {
let agg_id = self.role_try_from(agg_id)?;
// Create a reference to the (expanded) measurement share.
let expanded_measurement_share: Option<Vec<T::Field>> = match msg.measurement_share {
Share::Leader(_) => None,
Share::Helper(ref seed) => Some(
P::seed_stream(
seed,
&self.domain_separation_tag(DST_MEASUREMENT_SHARE),
&[agg_id],
)
.into_field_vec(self.typ.input_len()),
),
};
let measurement_share = match msg.measurement_share {
Share::Leader(ref data) => data,
Share::Helper(_) => expanded_measurement_share.as_ref().unwrap(),
};
// Create a reference to the (expanded) proof share.
let expanded_proofs_share: Option<Vec<T::Field>> = match msg.proofs_share {
Share::Leader(_) => None,
Share::Helper(ref proof_shares_seed) => Some(
self.derive_helper_proofs_share(proof_shares_seed, agg_id)
.take(self.typ.proof_len() * self.num_proofs())
.collect(),
),
};
let proofs_share = match msg.proofs_share {
Share::Leader(ref data) => data,
Share::Helper(_) => expanded_proofs_share.as_ref().unwrap(),
};
// Compute the joint randomness.
let (joint_rand_seed, joint_rand_part, joint_rands) = if self.typ.joint_rand_len() > 0 {
let mut joint_rand_part_xof = P::init(
msg.joint_rand_blind.as_ref().unwrap().as_ref(),
&self.domain_separation_tag(DST_JOINT_RAND_PART),
);
joint_rand_part_xof.update(&[agg_id]);
joint_rand_part_xof.update(nonce);
let mut encoding_buffer = Vec::with_capacity(T::Field::ENCODED_SIZE);
for x in measurement_share {
x.encode(&mut encoding_buffer).map_err(|_| {
VdafError::Uncategorized("failed to encode measurement share".to_string())
})?;
joint_rand_part_xof.update(&encoding_buffer);
encoding_buffer.clear();
}
let own_joint_rand_part = joint_rand_part_xof.into_seed();
// Make an iterator over the joint randomness parts, but use this aggregator's
// contribution, computed from the input share, in lieu of the the corresponding part
// from the public share.
//
// The locally computed part should match the part from the public share for honestly
// generated reports. If they do not match, the joint randomness seed check during the
// next round of preparation should fail.
let corrected_joint_rand_parts = public_share
.joint_rand_parts
.iter()
.flatten()
.take(agg_id as usize)
.chain(iter::once(&own_joint_rand_part))
.chain(
public_share
.joint_rand_parts
.iter()
.flatten()
.skip(agg_id as usize + 1),
);
let (joint_rand_seed, joint_rands) =
self.derive_joint_rands(corrected_joint_rand_parts);
(
Some(joint_rand_seed),
Some(own_joint_rand_part),
joint_rands,
)
} else {
(None, None, Vec::new())
};
// Run the query-generation algorithm.
let query_rands = self.derive_query_rands(verify_key, nonce);
let mut verifiers_share = Vec::with_capacity(self.typ.verifier_len() * self.num_proofs());
for p in 0..self.num_proofs() {
let query_rand =
&query_rands[p * self.typ.query_rand_len()..(p + 1) * self.typ.query_rand_len()];
let joint_rand =
&joint_rands[p * self.typ.joint_rand_len()..(p + 1) * self.typ.joint_rand_len()];
let proof_share =
&proofs_share[p * self.typ.proof_len()..(p + 1) * self.typ.proof_len()];
verifiers_share.append(&mut self.typ.query(
measurement_share,
proof_share,
query_rand,
joint_rand,
self.num_aggregators as usize,
)?);
}
Ok((
Prio3PrepareState {
measurement_share: msg.measurement_share.clone(),
joint_rand_seed,
agg_id,
verifiers_len: verifiers_share.len(),
},
Prio3PrepareShare {
verifiers: verifiers_share,
joint_rand_part,
},
))
}
fn prepare_shares_to_prepare_message<
M: IntoIterator<Item = Prio3PrepareShare<T::Field, SEED_SIZE>>,
>(
&self,
_: &Self::AggregationParam,
inputs: M,
) -> Result<Prio3PrepareMessage<SEED_SIZE>, VdafError> {
let mut verifiers = vec![T::Field::zero(); self.typ.verifier_len() * self.num_proofs()];
let mut joint_rand_parts = Vec::with_capacity(self.num_aggregators());
let mut count = 0;
for share in inputs.into_iter() {
count += 1;
if share.verifiers.len() != verifiers.len() {
return Err(VdafError::Uncategorized(format!(
"unexpected verifier share length: got {}; want {}",
share.verifiers.len(),
verifiers.len(),
)));
}
if self.typ.joint_rand_len() > 0 {
let joint_rand_seed_part = share.joint_rand_part.unwrap();
joint_rand_parts.push(joint_rand_seed_part);
}
for (x, y) in verifiers.iter_mut().zip(share.verifiers) {
*x += y;
}
}
if count != self.num_aggregators {
return Err(VdafError::Uncategorized(format!(
"unexpected message count: got {}; want {}",
count, self.num_aggregators,
)));
}
// Check the proof verifiers.
for verifier in verifiers.chunks(self.typ.verifier_len()) {
if !self.typ.decide(verifier)? {
return Err(VdafError::Uncategorized(
"proof verifier check failed".into(),
));
}
}
let joint_rand_seed = if self.typ.joint_rand_len() > 0 {
Some(self.derive_joint_rand_seed(joint_rand_parts.iter()))
} else {
None
};
Ok(Prio3PrepareMessage { joint_rand_seed })
}
fn prepare_next(
&self,
step: Prio3PrepareState<T::Field, SEED_SIZE>,
msg: Prio3PrepareMessage<SEED_SIZE>,
) -> Result<PrepareTransition<Self, SEED_SIZE, 16>, VdafError> {
if self.typ.joint_rand_len() > 0 {
// Check that the joint randomness was correct.
if step
.joint_rand_seed
.as_ref()
.unwrap()
.ct_ne(msg.joint_rand_seed.as_ref().unwrap())
.into()
{
return Err(VdafError::Uncategorized(
"joint randomness mismatch".to_string(),
));
}
}
// Compute the output share.
let measurement_share = match step.measurement_share {
Share::Leader(data) => data,
Share::Helper(seed) => {
let dst = self.domain_separation_tag(DST_MEASUREMENT_SHARE);
P::seed_stream(&seed, &dst, &[step.agg_id]).into_field_vec(self.typ.input_len())
}
};
let output_share = match self.typ.truncate(measurement_share) {
Ok(data) => OutputShare(data),
Err(err) => {
return Err(VdafError::from(err));
}
};
Ok(PrepareTransition::Finish(output_share))
}
/// Aggregates a sequence of output shares into an aggregate share.
fn aggregate<It: IntoIterator<Item = OutputShare<T::Field>>>(
&self,
_agg_param: &(),
output_shares: It,
) -> Result<AggregateShare<T::Field>, VdafError> {
let mut agg_share = AggregateShare(vec![T::Field::zero(); self.typ.output_len()]);
for output_share in output_shares.into_iter() {
agg_share.accumulate(&output_share)?;
}
Ok(agg_share)
}
}
#[cfg(feature = "experimental")]
impl<T, P, S, const SEED_SIZE: usize> AggregatorWithNoise<SEED_SIZE, 16, S>
for Prio3<T, P, SEED_SIZE>
where
T: TypeWithNoise<S>,
P: Xof<SEED_SIZE>,
S: DifferentialPrivacyStrategy,
{
fn add_noise_to_agg_share(
&self,
dp_strategy: &S,
_agg_param: &Self::AggregationParam,
agg_share: &mut Self::AggregateShare,
num_measurements: usize,
) -> Result<(), VdafError> {
self.typ
.add_noise_to_result(dp_strategy, &mut agg_share.0, num_measurements)?;
Ok(())
}
}
impl<T, P, const SEED_SIZE: usize> Collector for Prio3<T, P, SEED_SIZE>
where
T: Type,
P: Xof<SEED_SIZE>,
{
/// Combines aggregate shares into the aggregate result.
fn unshard<It: IntoIterator<Item = AggregateShare<T::Field>>>(
&self,
_agg_param: &Self::AggregationParam,
agg_shares: It,
num_measurements: usize,
) -> Result<T::AggregateResult, VdafError> {
let mut agg = AggregateShare(vec![T::Field::zero(); self.typ.output_len()]);
for agg_share in agg_shares.into_iter() {
agg.merge(&agg_share)?;
}
Ok(self.typ.decode_result(&agg.0, num_measurements)?)
}
}
#[derive(Clone)]
struct HelperShare<const SEED_SIZE: usize> {
measurement_share: Seed<SEED_SIZE>,
proofs_share: Seed<SEED_SIZE>,
joint_rand_blind: Option<Seed<SEED_SIZE>>,
}
impl<const SEED_SIZE: usize> HelperShare<SEED_SIZE> {
fn from_seeds(
measurement_share: [u8; SEED_SIZE],
proof_share: [u8; SEED_SIZE],
joint_rand_blind: Option<[u8; SEED_SIZE]>,
) -> Self {
HelperShare {
measurement_share: Seed::from_bytes(measurement_share),
proofs_share: Seed::from_bytes(proof_share),
joint_rand_blind: joint_rand_blind.map(Seed::from_bytes),
}
}
}
fn check_num_aggregators(num_aggregators: u8) -> Result<(), VdafError> {
if num_aggregators == 0 {
return Err(VdafError::Uncategorized(format!(
"at least one aggregator is required; got {num_aggregators}"
)));
} else if num_aggregators > 254 {
return Err(VdafError::Uncategorized(format!(
"number of aggregators must not exceed 254; got {num_aggregators}"
)));
}
Ok(())
}
impl<'a, F, T, P, const SEED_SIZE: usize> ParameterizedDecode<(&'a Prio3<T, P, SEED_SIZE>, &'a ())>
for OutputShare<F>
where
F: FieldElement,
T: Type,
P: Xof<SEED_SIZE>,
{
fn decode_with_param(
(vdaf, _): &(&'a Prio3<T, P, SEED_SIZE>, &'a ()),
bytes: &mut Cursor<&[u8]>,
) -> Result<Self, CodecError> {
decode_fieldvec(vdaf.output_len(), bytes).map(Self)
}
}
impl<'a, F, T, P, const SEED_SIZE: usize> ParameterizedDecode<(&'a Prio3<T, P, SEED_SIZE>, &'a ())>
for AggregateShare<F>
where
F: FieldElement,
T: Type,
P: Xof<SEED_SIZE>,
{
fn decode_with_param(
(vdaf, _): &(&'a Prio3<T, P, SEED_SIZE>, &'a ()),
bytes: &mut Cursor<&[u8]>,
) -> Result<Self, CodecError> {
decode_fieldvec(vdaf.output_len(), bytes).map(Self)
}
}
// This function determines equality between two optional, constant-time comparable values. It
// short-circuits on the existence (but not contents) of the values -- a timing side-channel may
// reveal whether the values match on Some or None.
#[inline]
fn option_ct_eq<T>(left: Option<&T>, right: Option<&T>) -> Choice
where
T: ConstantTimeEq + ?Sized,
{
match (left, right) {
(Some(left), Some(right)) => left.ct_eq(right),
(None, None) => Choice::from(1),
_ => Choice::from(0),
}
}
/// This is a polyfill for `usize::ilog2()`, which is only available in Rust 1.67 and later. It is
/// based on the implementation in the standard library. It can be removed when the MSRV has been
/// advanced past 1.67.
///
/// # Panics
///
/// This function will panic if `input` is zero.
fn ilog2(input: usize) -> u32 {
if input == 0 {
panic!("Tried to take the logarithm of zero");
}
(usize::BITS - 1) - input.leading_zeros()
}
/// Finds the optimal choice of chunk length for [`Prio3Histogram`] or [`Prio3SumVec`], given its
/// encoded measurement length. For [`Prio3Histogram`], the measurement length is equal to the
/// length parameter. For [`Prio3SumVec`], the measurement length is equal to the product of the
/// length and bits parameters.
pub fn optimal_chunk_length(measurement_length: usize) -> usize {
if measurement_length <= 1 {
return 1;
}
/// Candidate set of parameter choices for the parallel sum optimization.
struct Candidate {
gadget_calls: usize,
chunk_length: usize,
}
let max_log2 = ilog2(measurement_length + 1);
let best_opt = (1..=max_log2)
.rev()
.map(|log2| {
let gadget_calls = (1 << log2) - 1;
let chunk_length = (measurement_length + gadget_calls - 1) / gadget_calls;
Candidate {
gadget_calls,
chunk_length,
}
})
.min_by_key(|candidate| {
// Compute the proof length, in field elements, for either Prio3Histogram or Prio3SumVec
(candidate.chunk_length * 2)
+ 2 * ((1 + candidate.gadget_calls).next_power_of_two() - 1)
});
// Unwrap safety: max_log2 must be at least 1, because smaller measurement_length inputs are
// dealt with separately. Thus, the range iterator that the search is over will be nonempty,
// and min_by_key() will always return Some.
best_opt.unwrap().chunk_length
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(feature = "experimental")]
use crate::flp::gadgets::ParallelSumGadget;
use crate::vdaf::{
equality_comparison_test, fieldvec_roundtrip_test,
test_utils::{run_vdaf, run_vdaf_prepare},
};
use assert_matches::assert_matches;
#[cfg(feature = "experimental")]
use fixed::{
types::extra::{U15, U31, U63},
FixedI16, FixedI32, FixedI64,
};
#[cfg(feature = "experimental")]
use fixed_macro::fixed;
use rand::prelude::*;
#[test]
fn test_prio3_count() {
let prio3 = Prio3::new_count(2).unwrap();
assert_eq!(
run_vdaf(&prio3, &(), [true, false, false, true, true]).unwrap(),
3
);
let mut nonce = [0; 16];
let mut verify_key = [0; 16];
thread_rng().fill(&mut verify_key[..]);
thread_rng().fill(&mut nonce[..]);
let (public_share, input_shares) = prio3.shard(&false, &nonce).unwrap();
run_vdaf_prepare(&prio3, &verify_key, &(), &nonce, public_share, input_shares).unwrap();
let (public_share, input_shares) = prio3.shard(&true, &nonce).unwrap();
run_vdaf_prepare(&prio3, &verify_key, &(), &nonce, public_share, input_shares).unwrap();
test_serialization(&prio3, &true, &nonce).unwrap();
let prio3_extra_helper = Prio3::new_count(3).unwrap();
assert_eq!(
run_vdaf(&prio3_extra_helper, &(), [true, false, false, true, true]).unwrap(),
3,
);
}
#[test]
fn test_prio3_sum() {
let prio3 = Prio3::new_sum(3, 16).unwrap();
assert_eq!(
run_vdaf(&prio3, &(), [0, (1 << 16) - 1, 0, 1, 1]).unwrap(),
(1 << 16) + 1
);
let mut verify_key = [0; 16];
thread_rng().fill(&mut verify_key[..]);
let nonce = [0; 16];
let (public_share, mut input_shares) = prio3.shard(&1, &nonce).unwrap();
input_shares[0].joint_rand_blind.as_mut().unwrap().0[0] ^= 255;
let result = run_vdaf_prepare(&prio3, &verify_key, &(), &nonce, public_share, input_shares);
assert_matches!(result, Err(VdafError::Uncategorized(_)));
let (public_share, mut input_shares) = prio3.shard(&1, &nonce).unwrap();
assert_matches!(input_shares[0].measurement_share, Share::Leader(ref mut data) => {
data[0] += Field128::one();
});
let result = run_vdaf_prepare(&prio3, &verify_key, &(), &nonce, public_share, input_shares);
assert_matches!(result, Err(VdafError::Uncategorized(_)));
let (public_share, mut input_shares) = prio3.shard(&1, &nonce).unwrap();
assert_matches!(input_shares[0].proofs_share, Share::Leader(ref mut data) => {
data[0] += Field128::one();
});
let result = run_vdaf_prepare(&prio3, &verify_key, &(), &nonce, public_share, input_shares);
assert_matches!(result, Err(VdafError::Uncategorized(_)));
test_serialization(&prio3, &1, &nonce).unwrap();
}
#[test]
fn test_prio3_sum_vec() {
let prio3 = Prio3::new_sum_vec(2, 2, 20, 4).unwrap();
assert_eq!(
run_vdaf(
&prio3,
&(),
[
vec![0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1],
vec![0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 3, 0, 3, 0, 0, 0, 1, 0, 0],
vec![1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1],
]
)
.unwrap(),
vec![1, 3, 1, 0, 3, 1, 0, 1, 2, 2, 3, 3, 1, 5, 1, 2, 1, 3, 0, 2],
);
}
#[test]
fn test_prio3_sum_vec_multiproof() {
let prio3 = Prio3::<
SumVec<Field128, ParallelSum<Field128, Mul<Field128>>>,
XofTurboShake128,
16,
>::new(2, 2, 0xFFFF0000, SumVec::new(2, 20, 4).unwrap())
.unwrap();
assert_eq!(
run_vdaf(
&prio3,
&(),
[
vec![0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1],
vec![0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 3, 0, 3, 0, 0, 0, 1, 0, 0],
vec![1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1],
]
)
.unwrap(),
vec![1, 3, 1, 0, 3, 1, 0, 1, 2, 2, 3, 3, 1, 5, 1, 2, 1, 3, 0, 2],
);
}
#[test]
#[cfg(feature = "multithreaded")]
fn test_prio3_sum_vec_multithreaded() {
let prio3 = Prio3::new_sum_vec_multithreaded(2, 2, 20, 4).unwrap();
assert_eq!(
run_vdaf(
&prio3,
&(),
[
vec![0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1],
vec![0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 3, 0, 3, 0, 0, 0, 1, 0, 0],
vec![1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1],
]
)
.unwrap(),
vec![1, 3, 1, 0, 3, 1, 0, 1, 2, 2, 3, 3, 1, 5, 1, 2, 1, 3, 0, 2],
);
}
#[test]
#[cfg(feature = "experimental")]
fn test_prio3_bounded_fpvec_sum_unaligned() {
type P<Fx> = Prio3FixedPointBoundedL2VecSum<Fx>;
#[cfg(feature = "multithreaded")]
type PM<Fx> = Prio3FixedPointBoundedL2VecSumMultithreaded<Fx>;
let ctor_32 = P::<FixedI32<U31>>::new_fixedpoint_boundedl2_vec_sum;
#[cfg(feature = "multithreaded")]
let ctor_mt_32 = PM::<FixedI32<U31>>::new_fixedpoint_boundedl2_vec_sum_multithreaded;
{
const SIZE: usize = 5;
let fp32_0 = fixed!(0: I1F31);
// 32 bit fixedpoint, non-power-of-2 vector, single-threaded
{
let prio3_32 = ctor_32(2, SIZE).unwrap();
test_fixed_vec::<_, _, _, SIZE>(fp32_0, prio3_32);
}
// 32 bit fixedpoint, non-power-of-2 vector, multi-threaded
#[cfg(feature = "multithreaded")]
{
let prio3_mt_32 = ctor_mt_32(2, SIZE).unwrap();
test_fixed_vec::<_, _, _, SIZE>(fp32_0, prio3_mt_32);
}
}
fn test_fixed_vec<Fx, PE, M, const SIZE: usize>(
fp_0: Fx,
prio3: Prio3<FixedPointBoundedL2VecSum<Fx, PE, M>, XofTurboShake128, 16>,
) where
Fx: Fixed + CompatibleFloat + std::ops::Neg<Output = Fx>,
PE: Eq + ParallelSumGadget<Field128, PolyEval<Field128>> + Clone + 'static,
M: Eq + ParallelSumGadget<Field128, Mul<Field128>> + Clone + 'static,
{
let fp_vec = vec![fp_0; SIZE];
let measurements = [fp_vec.clone(), fp_vec];
assert_eq!(
run_vdaf(&prio3, &(), measurements).unwrap(),
vec![0.0; SIZE]
);
}
}
#[test]
#[cfg(feature = "experimental")]
fn test_prio3_bounded_fpvec_sum() {
type P<Fx> = Prio3FixedPointBoundedL2VecSum<Fx>;
let ctor_16 = P::<FixedI16<U15>>::new_fixedpoint_boundedl2_vec_sum;
let ctor_32 = P::<FixedI32<U31>>::new_fixedpoint_boundedl2_vec_sum;
let ctor_64 = P::<FixedI64<U63>>::new_fixedpoint_boundedl2_vec_sum;
#[cfg(feature = "multithreaded")]
type PM<Fx> = Prio3FixedPointBoundedL2VecSumMultithreaded<Fx>;
#[cfg(feature = "multithreaded")]
let ctor_mt_16 = PM::<FixedI16<U15>>::new_fixedpoint_boundedl2_vec_sum_multithreaded;
#[cfg(feature = "multithreaded")]
let ctor_mt_32 = PM::<FixedI32<U31>>::new_fixedpoint_boundedl2_vec_sum_multithreaded;
#[cfg(feature = "multithreaded")]
let ctor_mt_64 = PM::<FixedI64<U63>>::new_fixedpoint_boundedl2_vec_sum_multithreaded;
{
// 16 bit fixedpoint
let fp16_4_inv = fixed!(0.25: I1F15);
let fp16_8_inv = fixed!(0.125: I1F15);
let fp16_16_inv = fixed!(0.0625: I1F15);
// two aggregators, three entries per vector.
{
let prio3_16 = ctor_16(2, 3).unwrap();
test_fixed(fp16_4_inv, fp16_8_inv, fp16_16_inv, prio3_16);
}
#[cfg(feature = "multithreaded")]
{
let prio3_16_mt = ctor_mt_16(2, 3).unwrap();
test_fixed(fp16_4_inv, fp16_8_inv, fp16_16_inv, prio3_16_mt);
}
}
{
// 32 bit fixedpoint
let fp32_4_inv = fixed!(0.25: I1F31);
let fp32_8_inv = fixed!(0.125: I1F31);
let fp32_16_inv = fixed!(0.0625: I1F31);
{
let prio3_32 = ctor_32(2, 3).unwrap();
test_fixed(fp32_4_inv, fp32_8_inv, fp32_16_inv, prio3_32);
}
#[cfg(feature = "multithreaded")]
{
let prio3_32_mt = ctor_mt_32(2, 3).unwrap();
test_fixed(fp32_4_inv, fp32_8_inv, fp32_16_inv, prio3_32_mt);
}
}
{
// 64 bit fixedpoint
let fp64_4_inv = fixed!(0.25: I1F63);
let fp64_8_inv = fixed!(0.125: I1F63);
let fp64_16_inv = fixed!(0.0625: I1F63);
{
let prio3_64 = ctor_64(2, 3).unwrap();
test_fixed(fp64_4_inv, fp64_8_inv, fp64_16_inv, prio3_64);
}
#[cfg(feature = "multithreaded")]
{
let prio3_64_mt = ctor_mt_64(2, 3).unwrap();
test_fixed(fp64_4_inv, fp64_8_inv, fp64_16_inv, prio3_64_mt);
}
}
fn test_fixed<Fx, PE, M>(
fp_4_inv: Fx,
fp_8_inv: Fx,
fp_16_inv: Fx,
prio3: Prio3<FixedPointBoundedL2VecSum<Fx, PE, M>, XofTurboShake128, 16>,
) where
Fx: Fixed + CompatibleFloat + std::ops::Neg<Output = Fx>,
PE: Eq + ParallelSumGadget<Field128, PolyEval<Field128>> + Clone + 'static,
M: Eq + ParallelSumGadget<Field128, Mul<Field128>> + Clone + 'static,
{
let fp_vec1 = vec![fp_4_inv, fp_8_inv, fp_16_inv];
let fp_vec2 = vec![fp_4_inv, fp_8_inv, fp_16_inv];
let fp_vec3 = vec![-fp_4_inv, -fp_8_inv, -fp_16_inv];
let fp_vec4 = vec![-fp_4_inv, -fp_8_inv, -fp_16_inv];
let fp_vec5 = vec![fp_4_inv, -fp_8_inv, -fp_16_inv];
let fp_vec6 = vec![fp_4_inv, fp_8_inv, fp_16_inv];
// positive entries
let fp_list = [fp_vec1, fp_vec2];
assert_eq!(
run_vdaf(&prio3, &(), fp_list).unwrap(),
vec!(0.5, 0.25, 0.125),
);
// negative entries
let fp_list2 = [fp_vec3, fp_vec4];
assert_eq!(
run_vdaf(&prio3, &(), fp_list2).unwrap(),
vec!(-0.5, -0.25, -0.125),
);
// both
let fp_list3 = [fp_vec5, fp_vec6];
assert_eq!(
run_vdaf(&prio3, &(), fp_list3).unwrap(),
vec!(0.5, 0.0, 0.0),
);
let mut verify_key = [0; 16];
let mut nonce = [0; 16];
thread_rng().fill(&mut verify_key);
thread_rng().fill(&mut nonce);
let (public_share, mut input_shares) = prio3
.shard(&vec![fp_4_inv, fp_8_inv, fp_16_inv], &nonce)
.unwrap();
input_shares[0].joint_rand_blind.as_mut().unwrap().0[0] ^= 255;
let result =
run_vdaf_prepare(&prio3, &verify_key, &(), &nonce, public_share, input_shares);
assert_matches!(result, Err(VdafError::Uncategorized(_)));
let (public_share, mut input_shares) = prio3
.shard(&vec![fp_4_inv, fp_8_inv, fp_16_inv], &nonce)
.unwrap();
assert_matches!(input_shares[0].measurement_share, Share::Leader(ref mut data) => {
data[0] += Field128::one();
});
let result =
run_vdaf_prepare(&prio3, &verify_key, &(), &nonce, public_share, input_shares);
assert_matches!(result, Err(VdafError::Uncategorized(_)));
let (public_share, mut input_shares) = prio3
.shard(&vec![fp_4_inv, fp_8_inv, fp_16_inv], &nonce)
.unwrap();
assert_matches!(input_shares[0].proofs_share, Share::Leader(ref mut data) => {
data[0] += Field128::one();
});
let result =
run_vdaf_prepare(&prio3, &verify_key, &(), &nonce, public_share, input_shares);
assert_matches!(result, Err(VdafError::Uncategorized(_)));
test_serialization(&prio3, &vec![fp_4_inv, fp_8_inv, fp_16_inv], &nonce).unwrap();
}
}
#[test]
fn test_prio3_histogram() {
let prio3 = Prio3::new_histogram(2, 4, 2).unwrap();
assert_eq!(
run_vdaf(&prio3, &(), [0, 1, 2, 3]).unwrap(),
vec![1, 1, 1, 1]
);
assert_eq!(run_vdaf(&prio3, &(), [0]).unwrap(), vec![1, 0, 0, 0]);
assert_eq!(run_vdaf(&prio3, &(), [1]).unwrap(), vec![0, 1, 0, 0]);
assert_eq!(run_vdaf(&prio3, &(), [2]).unwrap(), vec![0, 0, 1, 0]);
assert_eq!(run_vdaf(&prio3, &(), [3]).unwrap(), vec![0, 0, 0, 1]);
test_serialization(&prio3, &3, &[0; 16]).unwrap();
}
#[test]
#[cfg(feature = "multithreaded")]
fn test_prio3_histogram_multithreaded() {
let prio3 = Prio3::new_histogram_multithreaded(2, 4, 2).unwrap();
assert_eq!(
run_vdaf(&prio3, &(), [0, 1, 2, 3]).unwrap(),
vec![1, 1, 1, 1]
);
assert_eq!(run_vdaf(&prio3, &(), [0]).unwrap(), vec![1, 0, 0, 0]);
assert_eq!(run_vdaf(&prio3, &(), [1]).unwrap(), vec![0, 1, 0, 0]);
assert_eq!(run_vdaf(&prio3, &(), [2]).unwrap(), vec![0, 0, 1, 0]);
assert_eq!(run_vdaf(&prio3, &(), [3]).unwrap(), vec![0, 0, 0, 1]);
test_serialization(&prio3, &3, &[0; 16]).unwrap();
}
#[test]
fn test_prio3_average() {
let prio3 = Prio3::new_average(2, 64).unwrap();
assert_eq!(run_vdaf(&prio3, &(), [17, 8]).unwrap(), 12.5f64);
assert_eq!(run_vdaf(&prio3, &(), [1, 1, 1, 1]).unwrap(), 1f64);
assert_eq!(run_vdaf(&prio3, &(), [0, 0, 0, 1]).unwrap(), 0.25f64);
assert_eq!(
run_vdaf(&prio3, &(), [1, 11, 111, 1111, 3, 8]).unwrap(),
207.5f64
);
}
#[test]
fn test_prio3_input_share() {
let prio3 = Prio3::new_sum(5, 16).unwrap();
let (_public_share, input_shares) = prio3.shard(&1, &[0; 16]).unwrap();
// Check that seed shares are distinct.
for (i, x) in input_shares.iter().enumerate() {
for (j, y) in input_shares.iter().enumerate() {
if i != j {
if let (Share::Helper(left), Share::Helper(right)) =
(&x.measurement_share, &y.measurement_share)
{
assert_ne!(left, right);
}
if let (Share::Helper(left), Share::Helper(right)) =
(&x.proofs_share, &y.proofs_share)
{
assert_ne!(left, right);
}
assert_ne!(x.joint_rand_blind, y.joint_rand_blind);
}
}
}
}
fn test_serialization<T, P, const SEED_SIZE: usize>(
prio3: &Prio3<T, P, SEED_SIZE>,
measurement: &T::Measurement,
nonce: &[u8; 16],
) -> Result<(), VdafError>
where
T: Type,
P: Xof<SEED_SIZE>,
{
let mut verify_key = [0; SEED_SIZE];
thread_rng().fill(&mut verify_key[..]);
let (public_share, input_shares) = prio3.shard(measurement, nonce)?;
let encoded_public_share = public_share.get_encoded().unwrap();
let decoded_public_share =
Prio3PublicShare::get_decoded_with_param(prio3, &encoded_public_share)
.expect("failed to decode public share");
assert_eq!(decoded_public_share, public_share);
assert_eq!(
public_share.encoded_len().unwrap(),
encoded_public_share.len()
);
for (agg_id, input_share) in input_shares.iter().enumerate() {
let encoded_input_share = input_share.get_encoded().unwrap();
let decoded_input_share =
Prio3InputShare::get_decoded_with_param(&(prio3, agg_id), &encoded_input_share)
.expect("failed to decode input share");
assert_eq!(&decoded_input_share, input_share);
assert_eq!(
input_share.encoded_len().unwrap(),
encoded_input_share.len()
);
}
let mut prepare_shares = Vec::new();
let mut last_prepare_state = None;
for (agg_id, input_share) in input_shares.iter().enumerate() {
let (prepare_state, prepare_share) =
prio3.prepare_init(&verify_key, agg_id, &(), nonce, &public_share, input_share)?;
let encoded_prepare_state = prepare_state.get_encoded().unwrap();
let decoded_prepare_state =
Prio3PrepareState::get_decoded_with_param(&(prio3, agg_id), &encoded_prepare_state)
.expect("failed to decode prepare state");
assert_eq!(decoded_prepare_state, prepare_state);
assert_eq!(
prepare_state.encoded_len().unwrap(),
encoded_prepare_state.len()
);
let encoded_prepare_share = prepare_share.get_encoded().unwrap();
let decoded_prepare_share =
Prio3PrepareShare::get_decoded_with_param(&prepare_state, &encoded_prepare_share)
.expect("failed to decode prepare share");
assert_eq!(decoded_prepare_share, prepare_share);
assert_eq!(
prepare_share.encoded_len().unwrap(),
encoded_prepare_share.len()
);
prepare_shares.push(prepare_share);
last_prepare_state = Some(prepare_state);
}
let prepare_message = prio3
.prepare_shares_to_prepare_message(&(), prepare_shares)
.unwrap();
let encoded_prepare_message = prepare_message.get_encoded().unwrap();
let decoded_prepare_message = Prio3PrepareMessage::get_decoded_with_param(
&last_prepare_state.unwrap(),
&encoded_prepare_message,
)
.expect("failed to decode prepare message");
assert_eq!(decoded_prepare_message, prepare_message);
assert_eq!(
prepare_message.encoded_len().unwrap(),
encoded_prepare_message.len()
);
Ok(())
}
#[test]
fn roundtrip_output_share() {
let vdaf = Prio3::new_count(2).unwrap();
fieldvec_roundtrip_test::<Field64, Prio3Count, OutputShare<Field64>>(&vdaf, &(), 1);
let vdaf = Prio3::new_sum(2, 17).unwrap();
fieldvec_roundtrip_test::<Field128, Prio3Sum, OutputShare<Field128>>(&vdaf, &(), 1);
let vdaf = Prio3::new_histogram(2, 12, 3).unwrap();
fieldvec_roundtrip_test::<Field128, Prio3Histogram, OutputShare<Field128>>(&vdaf, &(), 12);
}
#[test]
fn roundtrip_aggregate_share() {
let vdaf = Prio3::new_count(2).unwrap();
fieldvec_roundtrip_test::<Field64, Prio3Count, AggregateShare<Field64>>(&vdaf, &(), 1);
let vdaf = Prio3::new_sum(2, 17).unwrap();
fieldvec_roundtrip_test::<Field128, Prio3Sum, AggregateShare<Field128>>(&vdaf, &(), 1);
let vdaf = Prio3::new_histogram(2, 12, 3).unwrap();
fieldvec_roundtrip_test::<Field128, Prio3Histogram, AggregateShare<Field128>>(
&vdaf,
&(),
12,
);
}
#[test]
fn public_share_equality_test() {
equality_comparison_test(&[
Prio3PublicShare {
joint_rand_parts: Some(Vec::from([Seed([0])])),
},
Prio3PublicShare {
joint_rand_parts: Some(Vec::from([Seed([1])])),
},
Prio3PublicShare {
joint_rand_parts: None,
},
])
}
#[test]
fn input_share_equality_test() {
equality_comparison_test(&[
// Default.
Prio3InputShare {
measurement_share: Share::Leader(Vec::from([0])),
proofs_share: Share::Leader(Vec::from([1])),
joint_rand_blind: Some(Seed([2])),
},
// Modified measurement share.
Prio3InputShare {
measurement_share: Share::Leader(Vec::from([100])),
proofs_share: Share::Leader(Vec::from([1])),
joint_rand_blind: Some(Seed([2])),
},
// Modified proof share.
Prio3InputShare {
measurement_share: Share::Leader(Vec::from([0])),
proofs_share: Share::Leader(Vec::from([101])),
joint_rand_blind: Some(Seed([2])),
},
// Modified joint_rand_blind.
Prio3InputShare {
measurement_share: Share::Leader(Vec::from([0])),
proofs_share: Share::Leader(Vec::from([1])),
joint_rand_blind: Some(Seed([102])),
},
// Missing joint_rand_blind.
Prio3InputShare {
measurement_share: Share::Leader(Vec::from([0])),
proofs_share: Share::Leader(Vec::from([1])),
joint_rand_blind: None,
},
])
}
#[test]
fn prepare_share_equality_test() {
equality_comparison_test(&[
// Default.
Prio3PrepareShare {
verifiers: Vec::from([0]),
joint_rand_part: Some(Seed([1])),
},
// Modified verifier.
Prio3PrepareShare {
verifiers: Vec::from([100]),
joint_rand_part: Some(Seed([1])),
},
// Modified joint_rand_part.
Prio3PrepareShare {
verifiers: Vec::from([0]),
joint_rand_part: Some(Seed([101])),
},
// Missing joint_rand_part.
Prio3PrepareShare {
verifiers: Vec::from([0]),
joint_rand_part: None,
},
])
}
#[test]
fn prepare_message_equality_test() {
equality_comparison_test(&[
// Default.
Prio3PrepareMessage {
joint_rand_seed: Some(Seed([0])),
},
// Modified joint_rand_seed.
Prio3PrepareMessage {
joint_rand_seed: Some(Seed([100])),
},
// Missing joint_rand_seed.
Prio3PrepareMessage {
joint_rand_seed: None,
},
])
}
#[test]
fn prepare_state_equality_test() {
equality_comparison_test(&[
// Default.
Prio3PrepareState {
measurement_share: Share::Leader(Vec::from([0])),
joint_rand_seed: Some(Seed([1])),
agg_id: 2,
verifiers_len: 3,
},
// Modified measurement share.
Prio3PrepareState {
measurement_share: Share::Leader(Vec::from([100])),
joint_rand_seed: Some(Seed([1])),
agg_id: 2,
verifiers_len: 3,
},
// Modified joint_rand_seed.
Prio3PrepareState {
measurement_share: Share::Leader(Vec::from([0])),
joint_rand_seed: Some(Seed([101])),
agg_id: 2,
verifiers_len: 3,
},
// Missing joint_rand_seed.
Prio3PrepareState {
measurement_share: Share::Leader(Vec::from([0])),
joint_rand_seed: None,
agg_id: 2,
verifiers_len: 3,
},
// Modified agg_id.
Prio3PrepareState {
measurement_share: Share::Leader(Vec::from([0])),
joint_rand_seed: Some(Seed([1])),
agg_id: 102,
verifiers_len: 3,
},
// Modified verifier_len.
Prio3PrepareState {
measurement_share: Share::Leader(Vec::from([0])),
joint_rand_seed: Some(Seed([1])),
agg_id: 2,
verifiers_len: 103,
},
])
}
#[test]
fn test_optimal_chunk_length() {
// nonsense argument, but make sure it doesn't panic.
optimal_chunk_length(0);
// edge cases on either side of power-of-two jumps
assert_eq!(optimal_chunk_length(1), 1);
assert_eq!(optimal_chunk_length(2), 2);
assert_eq!(optimal_chunk_length(3), 1);
assert_eq!(optimal_chunk_length(18), 6);
assert_eq!(optimal_chunk_length(19), 3);
// additional arbitrary test cases
assert_eq!(optimal_chunk_length(40), 6);
assert_eq!(optimal_chunk_length(10_000), 79);
assert_eq!(optimal_chunk_length(100_000), 393);
// confirm that the chunk lengths are truly optimal
for measurement_length in [2, 3, 4, 5, 18, 19, 40] {
let optimal_chunk_length = optimal_chunk_length(measurement_length);
let optimal_proof_length = Histogram::<Field128, ParallelSum<_, _>>::new(
measurement_length,
optimal_chunk_length,
)
.unwrap()
.proof_len();
for chunk_length in 1..=measurement_length {
let proof_length =
Histogram::<Field128, ParallelSum<_, _>>::new(measurement_length, chunk_length)
.unwrap()
.proof_len();
assert!(proof_length >= optimal_proof_length);
}
}
}
}