Source code
Revision control
Copy as Markdown
Other Tools
//! Parsers recognizing numbers, complete input version
use crate::branch::alt;
use crate::bytes::complete::tag;
use crate::character::complete::{char, digit1, sign};
use crate::combinator::{cut, map, opt, recognize};
use crate::error::ParseError;
use crate::error::{make_error, ErrorKind};
use crate::internal::*;
use crate::lib::std::ops::{Range, RangeFrom, RangeTo};
use crate::sequence::{pair, tuple};
use crate::traits::{
AsBytes, AsChar, Compare, InputIter, InputLength, InputTake, InputTakeAtPosition, Offset, Slice,
};
/// Recognizes an unsigned 1 byte integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_u8;
///
/// let parser = |s| {
/// be_u8(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"\x03abcefg"[..], 0x00)));
/// assert_eq!(parser(&b""[..]), Err(Err::Error((&[][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_u8<I, E: ParseError<I>>(input: I) -> IResult<I, u8, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 1;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let res = input.iter_elements().next().unwrap();
Ok((input.slice(bound..), res))
}
}
/// Recognizes a big endian unsigned 2 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_u16;
///
/// let parser = |s| {
/// be_u16(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"abcefg"[..], 0x0003)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_u16<I, E: ParseError<I>>(input: I) -> IResult<I, u16, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 2;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u16;
for byte in input.iter_elements().take(bound) {
res = (res << 8) + byte as u16;
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a big endian unsigned 3 byte integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_u24;
///
/// let parser = |s| {
/// be_u24(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03\x05abcefg"[..]), Ok((&b"abcefg"[..], 0x000305)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_u24<I, E: ParseError<I>>(input: I) -> IResult<I, u32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 3;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u32;
for byte in input.iter_elements().take(bound) {
res = (res << 8) + byte as u32;
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a big endian unsigned 4 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_u32;
///
/// let parser = |s| {
/// be_u32(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03\x05\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x00030507)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_u32<I, E: ParseError<I>>(input: I) -> IResult<I, u32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 4;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u32;
for byte in input.iter_elements().take(bound) {
res = (res << 8) + byte as u32;
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a big endian unsigned 8 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_u64;
///
/// let parser = |s| {
/// be_u64(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x0001020304050607)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_u64<I, E: ParseError<I>>(input: I) -> IResult<I, u64, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 8;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u64;
for byte in input.iter_elements().take(bound) {
res = (res << 8) + byte as u64;
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a big endian unsigned 16 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_u128;
///
/// let parser = |s| {
/// be_u128(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x00010203040506070001020304050607)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_u128<I, E: ParseError<I>>(input: I) -> IResult<I, u128, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 16;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u128;
for byte in input.iter_elements().take(bound) {
res = (res << 8) + byte as u128;
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a signed 1 byte integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_i8;
///
/// let parser = |s| {
/// be_i8(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"\x03abcefg"[..], 0x00)));
/// assert_eq!(parser(&b""[..]), Err(Err::Error((&[][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_i8<I, E: ParseError<I>>(input: I) -> IResult<I, i8, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
be_u8.map(|x| x as i8).parse(input)
}
/// Recognizes a big endian signed 2 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_i16;
///
/// let parser = |s| {
/// be_i16(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"abcefg"[..], 0x0003)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_i16<I, E: ParseError<I>>(input: I) -> IResult<I, i16, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
be_u16.map(|x| x as i16).parse(input)
}
/// Recognizes a big endian signed 3 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_i24;
///
/// let parser = |s| {
/// be_i24(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03\x05abcefg"[..]), Ok((&b"abcefg"[..], 0x000305)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_i24<I, E: ParseError<I>>(input: I) -> IResult<I, i32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
// Same as the unsigned version but we need to sign-extend manually here
be_u24
.map(|x| {
if x & 0x80_00_00 != 0 {
(x | 0xff_00_00_00) as i32
} else {
x as i32
}
})
.parse(input)
}
/// Recognizes a big endian signed 4 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_i32;
///
/// let parser = |s| {
/// be_i32(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03\x05\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x00030507)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_i32<I, E: ParseError<I>>(input: I) -> IResult<I, i32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
be_u32.map(|x| x as i32).parse(input)
}
/// Recognizes a big endian signed 8 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_i64;
///
/// let parser = |s| {
/// be_i64(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x0001020304050607)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_i64<I, E: ParseError<I>>(input: I) -> IResult<I, i64, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
be_u64.map(|x| x as i64).parse(input)
}
/// Recognizes a big endian signed 16 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_i128;
///
/// let parser = |s| {
/// be_i128(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x00010203040506070001020304050607)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_i128<I, E: ParseError<I>>(input: I) -> IResult<I, i128, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
be_u128.map(|x| x as i128).parse(input)
}
/// Recognizes an unsigned 1 byte integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_u8;
///
/// let parser = |s| {
/// le_u8(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"\x03abcefg"[..], 0x00)));
/// assert_eq!(parser(&b""[..]), Err(Err::Error((&[][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_u8<I, E: ParseError<I>>(input: I) -> IResult<I, u8, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 1;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let res = input.iter_elements().next().unwrap();
Ok((input.slice(bound..), res))
}
}
/// Recognizes a little endian unsigned 2 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_u16;
///
/// let parser = |s| {
/// le_u16(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"abcefg"[..], 0x0300)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_u16<I, E: ParseError<I>>(input: I) -> IResult<I, u16, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 2;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u16;
for (index, byte) in input.iter_indices().take(bound) {
res += (byte as u16) << (8 * index);
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a little endian unsigned 3 byte integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_u24;
///
/// let parser = |s| {
/// le_u24(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03\x05abcefg"[..]), Ok((&b"abcefg"[..], 0x050300)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_u24<I, E: ParseError<I>>(input: I) -> IResult<I, u32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 3;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u32;
for (index, byte) in input.iter_indices().take(bound) {
res += (byte as u32) << (8 * index);
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a little endian unsigned 4 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_u32;
///
/// let parser = |s| {
/// le_u32(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03\x05\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x07050300)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_u32<I, E: ParseError<I>>(input: I) -> IResult<I, u32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 4;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u32;
for (index, byte) in input.iter_indices().take(bound) {
res += (byte as u32) << (8 * index);
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a little endian unsigned 8 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_u64;
///
/// let parser = |s| {
/// le_u64(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x0706050403020100)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_u64<I, E: ParseError<I>>(input: I) -> IResult<I, u64, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 8;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u64;
for (index, byte) in input.iter_indices().take(bound) {
res += (byte as u64) << (8 * index);
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a little endian unsigned 16 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_u128;
///
/// let parser = |s| {
/// le_u128(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x07060504030201000706050403020100)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_u128<I, E: ParseError<I>>(input: I) -> IResult<I, u128, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 16;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let mut res = 0u128;
for (index, byte) in input.iter_indices().take(bound) {
res += (byte as u128) << (8 * index);
}
Ok((input.slice(bound..), res))
}
}
/// Recognizes a signed 1 byte integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_i8;
///
/// let parser = |s| {
/// le_i8(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"\x03abcefg"[..], 0x00)));
/// assert_eq!(parser(&b""[..]), Err(Err::Error((&[][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_i8<I, E: ParseError<I>>(input: I) -> IResult<I, i8, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
be_u8.map(|x| x as i8).parse(input)
}
/// Recognizes a little endian signed 2 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_i16;
///
/// let parser = |s| {
/// le_i16(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"abcefg"[..], 0x0300)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_i16<I, E: ParseError<I>>(input: I) -> IResult<I, i16, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
le_u16.map(|x| x as i16).parse(input)
}
/// Recognizes a little endian signed 3 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_i24;
///
/// let parser = |s| {
/// le_i24(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03\x05abcefg"[..]), Ok((&b"abcefg"[..], 0x050300)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_i24<I, E: ParseError<I>>(input: I) -> IResult<I, i32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
// Same as the unsigned version but we need to sign-extend manually here
le_u24
.map(|x| {
if x & 0x80_00_00 != 0 {
(x | 0xff_00_00_00) as i32
} else {
x as i32
}
})
.parse(input)
}
/// Recognizes a little endian signed 4 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_i32;
///
/// let parser = |s| {
/// le_i32(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03\x05\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x07050300)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_i32<I, E: ParseError<I>>(input: I) -> IResult<I, i32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
le_u32.map(|x| x as i32).parse(input)
}
/// Recognizes a little endian signed 8 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_i64;
///
/// let parser = |s| {
/// le_i64(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x0706050403020100)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_i64<I, E: ParseError<I>>(input: I) -> IResult<I, i64, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
le_u64.map(|x| x as i64).parse(input)
}
/// Recognizes a little endian signed 16 bytes integer.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_i128;
///
/// let parser = |s| {
/// le_i128(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x07060504030201000706050403020100)));
/// assert_eq!(parser(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_i128<I, E: ParseError<I>>(input: I) -> IResult<I, i128, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
le_u128.map(|x| x as i128).parse(input)
}
/// Recognizes an unsigned 1 byte integer
///
/// Note that endianness does not apply to 1 byte numbers.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::u8;
///
/// let parser = |s| {
/// u8(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"\x03abcefg"[..], 0x00)));
/// assert_eq!(parser(&b""[..]), Err(Err::Error((&[][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn u8<I, E: ParseError<I>>(input: I) -> IResult<I, u8, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
let bound: usize = 1;
if input.input_len() < bound {
Err(Err::Error(make_error(input, ErrorKind::Eof)))
} else {
let res = input.iter_elements().next().unwrap();
Ok((input.slice(bound..), res))
}
}
/// Recognizes an unsigned 2 bytes integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian u16 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian u16 integer.
/// *complete version*: returns an error if there is not enough input data
///
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::u16;
///
/// let be_u16 = |s| {
/// u16(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_u16(&b"\x00\x03abcefg"[..]), Ok((&b"abcefg"[..], 0x0003)));
/// assert_eq!(be_u16(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_u16 = |s| {
/// u16(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_u16(&b"\x00\x03abcefg"[..]), Ok((&b"abcefg"[..], 0x0300)));
/// assert_eq!(le_u16(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn u16<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, u16, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_u16,
crate::number::Endianness::Little => le_u16,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_u16,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_u16,
}
}
/// Recognizes an unsigned 3 byte integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian u24 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian u24 integer.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::u24;
///
/// let be_u24 = |s| {
/// u24(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_u24(&b"\x00\x03\x05abcefg"[..]), Ok((&b"abcefg"[..], 0x000305)));
/// assert_eq!(be_u24(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_u24 = |s| {
/// u24(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_u24(&b"\x00\x03\x05abcefg"[..]), Ok((&b"abcefg"[..], 0x050300)));
/// assert_eq!(le_u24(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn u24<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, u32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_u24,
crate::number::Endianness::Little => le_u24,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_u24,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_u24,
}
}
/// Recognizes an unsigned 4 byte integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian u32 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian u32 integer.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::u32;
///
/// let be_u32 = |s| {
/// u32(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_u32(&b"\x00\x03\x05\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x00030507)));
/// assert_eq!(be_u32(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_u32 = |s| {
/// u32(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_u32(&b"\x00\x03\x05\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x07050300)));
/// assert_eq!(le_u32(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn u32<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, u32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_u32,
crate::number::Endianness::Little => le_u32,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_u32,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_u32,
}
}
/// Recognizes an unsigned 8 byte integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian u64 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian u64 integer.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::u64;
///
/// let be_u64 = |s| {
/// u64(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_u64(&b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x0001020304050607)));
/// assert_eq!(be_u64(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_u64 = |s| {
/// u64(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_u64(&b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x0706050403020100)));
/// assert_eq!(le_u64(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn u64<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, u64, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_u64,
crate::number::Endianness::Little => le_u64,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_u64,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_u64,
}
}
/// Recognizes an unsigned 16 byte integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian u128 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian u128 integer.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::u128;
///
/// let be_u128 = |s| {
/// u128(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_u128(&b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x00010203040506070001020304050607)));
/// assert_eq!(be_u128(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_u128 = |s| {
/// u128(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_u128(&b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x07060504030201000706050403020100)));
/// assert_eq!(le_u128(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn u128<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, u128, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_u128,
crate::number::Endianness::Little => le_u128,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_u128,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_u128,
}
}
/// Recognizes a signed 1 byte integer
///
/// Note that endianness does not apply to 1 byte numbers.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::i8;
///
/// let parser = |s| {
/// i8(s)
/// };
///
/// assert_eq!(parser(&b"\x00\x03abcefg"[..]), Ok((&b"\x03abcefg"[..], 0x00)));
/// assert_eq!(parser(&b""[..]), Err(Err::Error((&[][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn i8<I, E: ParseError<I>>(i: I) -> IResult<I, i8, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
u8.map(|x| x as i8).parse(i)
}
/// Recognizes a signed 2 byte integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian i16 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian i16 integer.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::i16;
///
/// let be_i16 = |s| {
/// i16(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_i16(&b"\x00\x03abcefg"[..]), Ok((&b"abcefg"[..], 0x0003)));
/// assert_eq!(be_i16(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_i16 = |s| {
/// i16(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_i16(&b"\x00\x03abcefg"[..]), Ok((&b"abcefg"[..], 0x0300)));
/// assert_eq!(le_i16(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn i16<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, i16, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_i16,
crate::number::Endianness::Little => le_i16,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_i16,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_i16,
}
}
/// Recognizes a signed 3 byte integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian i24 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian i24 integer.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::i24;
///
/// let be_i24 = |s| {
/// i24(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_i24(&b"\x00\x03\x05abcefg"[..]), Ok((&b"abcefg"[..], 0x000305)));
/// assert_eq!(be_i24(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_i24 = |s| {
/// i24(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_i24(&b"\x00\x03\x05abcefg"[..]), Ok((&b"abcefg"[..], 0x050300)));
/// assert_eq!(le_i24(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn i24<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, i32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_i24,
crate::number::Endianness::Little => le_i24,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_i24,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_i24,
}
}
/// Recognizes a signed 4 byte integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian i32 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian i32 integer.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::i32;
///
/// let be_i32 = |s| {
/// i32(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_i32(&b"\x00\x03\x05\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x00030507)));
/// assert_eq!(be_i32(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_i32 = |s| {
/// i32(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_i32(&b"\x00\x03\x05\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x07050300)));
/// assert_eq!(le_i32(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn i32<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, i32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_i32,
crate::number::Endianness::Little => le_i32,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_i32,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_i32,
}
}
/// Recognizes a signed 8 byte integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian i64 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian i64 integer.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::i64;
///
/// let be_i64 = |s| {
/// i64(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_i64(&b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x0001020304050607)));
/// assert_eq!(be_i64(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_i64 = |s| {
/// i64(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_i64(&b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x0706050403020100)));
/// assert_eq!(le_i64(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn i64<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, i64, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_i64,
crate::number::Endianness::Little => le_i64,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_i64,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_i64,
}
}
/// Recognizes a signed 16 byte integer
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian i128 integer,
/// otherwise if `nom::number::Endianness::Little` parse a little endian i128 integer.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::i128;
///
/// let be_i128 = |s| {
/// i128(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_i128(&b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x00010203040506070001020304050607)));
/// assert_eq!(be_i128(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
///
/// let le_i128 = |s| {
/// i128(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_i128(&b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"[..]), Ok((&b"abcefg"[..], 0x07060504030201000706050403020100)));
/// assert_eq!(le_i128(&b"\x01"[..]), Err(Err::Error((&[0x01][..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn i128<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, i128, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_i128,
crate::number::Endianness::Little => le_i128,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_i128,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_i128,
}
}
/// Recognizes a big endian 4 bytes floating point number.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_f32;
///
/// let parser = |s| {
/// be_f32(s)
/// };
///
/// assert_eq!(parser(&[0x41, 0x48, 0x00, 0x00][..]), Ok((&b""[..], 12.5)));
/// assert_eq!(parser(&b"abc"[..]), Err(Err::Error((&b"abc"[..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_f32<I, E: ParseError<I>>(input: I) -> IResult<I, f32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match be_u32(input) {
Err(e) => Err(e),
Ok((i, o)) => Ok((i, f32::from_bits(o))),
}
}
/// Recognizes a big endian 8 bytes floating point number.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::be_f64;
///
/// let parser = |s| {
/// be_f64(s)
/// };
///
/// assert_eq!(parser(&[0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00][..]), Ok((&b""[..], 12.5)));
/// assert_eq!(parser(&b"abc"[..]), Err(Err::Error((&b"abc"[..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn be_f64<I, E: ParseError<I>>(input: I) -> IResult<I, f64, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match be_u64(input) {
Err(e) => Err(e),
Ok((i, o)) => Ok((i, f64::from_bits(o))),
}
}
/// Recognizes a little endian 4 bytes floating point number.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_f32;
///
/// let parser = |s| {
/// le_f32(s)
/// };
///
/// assert_eq!(parser(&[0x00, 0x00, 0x48, 0x41][..]), Ok((&b""[..], 12.5)));
/// assert_eq!(parser(&b"abc"[..]), Err(Err::Error((&b"abc"[..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_f32<I, E: ParseError<I>>(input: I) -> IResult<I, f32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match le_u32(input) {
Err(e) => Err(e),
Ok((i, o)) => Ok((i, f32::from_bits(o))),
}
}
/// Recognizes a little endian 8 bytes floating point number.
///
/// *Complete version*: Returns an error if there is not enough input data.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::le_f64;
///
/// let parser = |s| {
/// le_f64(s)
/// };
///
/// assert_eq!(parser(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40][..]), Ok((&b""[..], 12.5)));
/// assert_eq!(parser(&b"abc"[..]), Err(Err::Error((&b"abc"[..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn le_f64<I, E: ParseError<I>>(input: I) -> IResult<I, f64, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match le_u64(input) {
Err(e) => Err(e),
Ok((i, o)) => Ok((i, f64::from_bits(o))),
}
}
/// Recognizes a 4 byte floating point number
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian f32 float,
/// otherwise if `nom::number::Endianness::Little` parse a little endian f32 float.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::f32;
///
/// let be_f32 = |s| {
/// f32(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_f32(&[0x41, 0x48, 0x00, 0x00][..]), Ok((&b""[..], 12.5)));
/// assert_eq!(be_f32(&b"abc"[..]), Err(Err::Error((&b"abc"[..], ErrorKind::Eof))));
///
/// let le_f32 = |s| {
/// f32(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_f32(&[0x00, 0x00, 0x48, 0x41][..]), Ok((&b""[..], 12.5)));
/// assert_eq!(le_f32(&b"abc"[..]), Err(Err::Error((&b"abc"[..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn f32<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, f32, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_f32,
crate::number::Endianness::Little => le_f32,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_f32,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_f32,
}
}
/// Recognizes an 8 byte floating point number
///
/// If the parameter is `nom::number::Endianness::Big`, parse a big endian f64 float,
/// otherwise if `nom::number::Endianness::Little` parse a little endian f64 float.
/// *complete version*: returns an error if there is not enough input data
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::f64;
///
/// let be_f64 = |s| {
/// f64(nom::number::Endianness::Big)(s)
/// };
///
/// assert_eq!(be_f64(&[0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00][..]), Ok((&b""[..], 12.5)));
/// assert_eq!(be_f64(&b"abc"[..]), Err(Err::Error((&b"abc"[..], ErrorKind::Eof))));
///
/// let le_f64 = |s| {
/// f64(nom::number::Endianness::Little)(s)
/// };
///
/// assert_eq!(le_f64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40][..]), Ok((&b""[..], 12.5)));
/// assert_eq!(le_f64(&b"abc"[..]), Err(Err::Error((&b"abc"[..], ErrorKind::Eof))));
/// ```
#[inline]
pub fn f64<I, E: ParseError<I>>(endian: crate::number::Endianness) -> fn(I) -> IResult<I, f64, E>
where
I: Slice<RangeFrom<usize>> + InputIter<Item = u8> + InputLength,
{
match endian {
crate::number::Endianness::Big => be_f64,
crate::number::Endianness::Little => le_f64,
#[cfg(target_endian = "big")]
crate::number::Endianness::Native => be_f64,
#[cfg(target_endian = "little")]
crate::number::Endianness::Native => le_f64,
}
}
/// Recognizes a hex-encoded integer.
///
/// *Complete version*: Will parse until the end of input if it has less than 8 bytes.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::hex_u32;
///
/// let parser = |s| {
/// hex_u32(s)
/// };
///
/// assert_eq!(parser(&b"01AE"[..]), Ok((&b""[..], 0x01AE)));
/// assert_eq!(parser(&b"abc"[..]), Ok((&b""[..], 0x0ABC)));
/// assert_eq!(parser(&b"ggg"[..]), Err(Err::Error((&b"ggg"[..], ErrorKind::IsA))));
/// ```
#[inline]
pub fn hex_u32<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u32, E> {
let (i, o) = crate::bytes::complete::is_a(&b"0123456789abcdefABCDEF"[..])(input)?;
// Do not parse more than 8 characters for a u32
let (parsed, remaining) = if o.len() <= 8 {
(o, i)
} else {
(&input[..8], &input[8..])
};
let res = parsed
.iter()
.rev()
.enumerate()
.map(|(k, &v)| {
let digit = v as char;
digit.to_digit(16).unwrap_or(0) << (k * 4)
})
.sum();
Ok((remaining, res))
}
/// Recognizes floating point number in a byte string and returns the corresponding slice.
///
/// *Complete version*: Can parse until the end of input.
///
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::recognize_float;
///
/// let parser = |s| {
/// recognize_float(s)
/// };
///
/// assert_eq!(parser("11e-1"), Ok(("", "11e-1")));
/// assert_eq!(parser("123E-02"), Ok(("", "123E-02")));
/// assert_eq!(parser("123K-01"), Ok(("K-01", "123")));
/// assert_eq!(parser("abc"), Err(Err::Error(("abc", ErrorKind::Char))));
/// ```
#[rustfmt::skip]
pub fn recognize_float<T, E:ParseError<T>>(input: T) -> IResult<T, T, E>
where
T: Slice<RangeFrom<usize>> + Slice<RangeTo<usize>>,
T: Clone + Offset,
T: InputIter,
<T as InputIter>::Item: AsChar,
T: InputTakeAtPosition,
<T as InputTakeAtPosition>::Item: AsChar,
{
recognize(
tuple((
opt(alt((char('+'), char('-')))),
alt((
map(tuple((digit1, opt(pair(char('.'), opt(digit1))))), |_| ()),
map(tuple((char('.'), digit1)), |_| ())
)),
opt(tuple((
alt((char('e'), char('E'))),
opt(alt((char('+'), char('-')))),
cut(digit1)
)))
))
)(input)
}
// workaround until issues with minimal-lexical are fixed
#[doc(hidden)]
pub fn recognize_float_or_exceptions<T, E: ParseError<T>>(input: T) -> IResult<T, T, E>
where
T: Slice<RangeFrom<usize>> + Slice<RangeTo<usize>>,
T: Clone + Offset,
T: InputIter + InputTake + Compare<&'static str>,
<T as InputIter>::Item: AsChar,
T: InputTakeAtPosition,
<T as InputTakeAtPosition>::Item: AsChar,
{
alt((
|i: T| {
recognize_float::<_, E>(i.clone()).map_err(|e| match e {
crate::Err::Error(_) => crate::Err::Error(E::from_error_kind(i, ErrorKind::Float)),
crate::Err::Failure(_) => crate::Err::Failure(E::from_error_kind(i, ErrorKind::Float)),
crate::Err::Incomplete(needed) => crate::Err::Incomplete(needed),
})
},
|i: T| {
crate::bytes::complete::tag_no_case::<_, _, E>("nan")(i.clone())
.map_err(|_| crate::Err::Error(E::from_error_kind(i, ErrorKind::Float)))
},
|i: T| {
crate::bytes::complete::tag_no_case::<_, _, E>("inf")(i.clone())
.map_err(|_| crate::Err::Error(E::from_error_kind(i, ErrorKind::Float)))
},
|i: T| {
crate::bytes::complete::tag_no_case::<_, _, E>("infinity")(i.clone())
.map_err(|_| crate::Err::Error(E::from_error_kind(i, ErrorKind::Float)))
},
))(input)
}
/// Recognizes a floating point number in text format
///
/// It returns a tuple of (`sign`, `integer part`, `fraction part` and `exponent`) of the input
/// data.
///
/// *Complete version*: Can parse until the end of input.
///
pub fn recognize_float_parts<T, E: ParseError<T>>(input: T) -> IResult<T, (bool, T, T, i32), E>
where
T: Slice<RangeFrom<usize>> + Slice<RangeTo<usize>> + Slice<Range<usize>>,
T: Clone + Offset,
T: InputIter + InputTake,
<T as InputIter>::Item: AsChar + Copy,
T: InputTakeAtPosition + InputLength,
<T as InputTakeAtPosition>::Item: AsChar,
T: for<'a> Compare<&'a [u8]>,
T: AsBytes,
{
let (i, sign) = sign(input.clone())?;
//let (i, zeroes) = take_while(|c: <T as InputTakeAtPosition>::Item| c.as_char() == '0')(i)?;
let (i, zeroes) = match i.as_bytes().iter().position(|c| *c != b'0') {
Some(index) => i.take_split(index),
None => i.take_split(i.input_len()),
};
//let (i, mut integer) = digit0(i)?;
let (i, mut integer) = match i
.as_bytes()
.iter()
.position(|c| !(*c >= b'0' && *c <= b'9'))
{
Some(index) => i.take_split(index),
None => i.take_split(i.input_len()),
};
if integer.input_len() == 0 && zeroes.input_len() > 0 {
// keep the last zero if integer is empty
integer = zeroes.slice(zeroes.input_len() - 1..);
}
let (i, opt_dot) = opt(tag(&b"."[..]))(i)?;
let (i, fraction) = if opt_dot.is_none() {
let i2 = i.clone();
(i2, i.slice(..0))
} else {
// match number, trim right zeroes
let mut zero_count = 0usize;
let mut position = None;
for (pos, c) in i.as_bytes().iter().enumerate() {
if *c >= b'0' && *c <= b'9' {
if *c == b'0' {
zero_count += 1;
} else {
zero_count = 0;
}
} else {
position = Some(pos);
break;
}
}
let position = position.unwrap_or(i.input_len());
let index = if zero_count == 0 {
position
} else if zero_count == position {
position - zero_count + 1
} else {
position - zero_count
};
(i.slice(position..), i.slice(..index))
};
if integer.input_len() == 0 && fraction.input_len() == 0 {
return Err(Err::Error(E::from_error_kind(input, ErrorKind::Float)));
}
let i2 = i.clone();
let (i, e) = match i.as_bytes().iter().next() {
Some(b'e') => (i.slice(1..), true),
Some(b'E') => (i.slice(1..), true),
_ => (i, false),
};
let (i, exp) = if e {
cut(crate::character::complete::i32)(i)?
} else {
(i2, 0)
};
Ok((i, (sign, integer, fraction, exp)))
}
use crate::traits::ParseTo;
/// Recognizes floating point number in text format and returns a f32.
///
/// *Complete version*: Can parse until the end of input.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::float;
///
/// let parser = |s| {
/// float(s)
/// };
///
/// assert_eq!(parser("11e-1"), Ok(("", 1.1)));
/// assert_eq!(parser("123E-02"), Ok(("", 1.23)));
/// assert_eq!(parser("123K-01"), Ok(("K-01", 123.0)));
/// assert_eq!(parser("abc"), Err(Err::Error(("abc", ErrorKind::Float))));
/// ```
pub fn float<T, E: ParseError<T>>(input: T) -> IResult<T, f32, E>
where
T: Slice<RangeFrom<usize>> + Slice<RangeTo<usize>> + Slice<Range<usize>>,
T: Clone + Offset + ParseTo<f32> + Compare<&'static str>,
T: InputIter + InputLength + InputTake,
<T as InputIter>::Item: AsChar + Copy,
<T as InputIter>::IterElem: Clone,
T: InputTakeAtPosition,
<T as InputTakeAtPosition>::Item: AsChar,
T: AsBytes,
T: for<'a> Compare<&'a [u8]>,
{
/*
let (i, (sign, integer, fraction, exponent)) = recognize_float_parts(input)?;
let mut float: f32 = minimal_lexical::parse_float(
integer.as_bytes().iter(),
fraction.as_bytes().iter(),
exponent,
);
if !sign {
float = -float;
}
Ok((i, float))
*/
let (i, s) = recognize_float_or_exceptions(input)?;
match s.parse_to() {
Some(f) => Ok((i, f)),
None => Err(crate::Err::Error(E::from_error_kind(
i,
crate::error::ErrorKind::Float,
))),
}
}
/// Recognizes floating point number in text format and returns a f64.
///
/// *Complete version*: Can parse until the end of input.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::number::complete::double;
///
/// let parser = |s| {
/// double(s)
/// };
///
/// assert_eq!(parser("11e-1"), Ok(("", 1.1)));
/// assert_eq!(parser("123E-02"), Ok(("", 1.23)));
/// assert_eq!(parser("123K-01"), Ok(("K-01", 123.0)));
/// assert_eq!(parser("abc"), Err(Err::Error(("abc", ErrorKind::Float))));
/// ```
pub fn double<T, E: ParseError<T>>(input: T) -> IResult<T, f64, E>
where
T: Slice<RangeFrom<usize>> + Slice<RangeTo<usize>> + Slice<Range<usize>>,
T: Clone + Offset + ParseTo<f64> + Compare<&'static str>,
T: InputIter + InputLength + InputTake,
<T as InputIter>::Item: AsChar + Copy,
<T as InputIter>::IterElem: Clone,
T: InputTakeAtPosition,
<T as InputTakeAtPosition>::Item: AsChar,
T: AsBytes,
T: for<'a> Compare<&'a [u8]>,
{
/*
let (i, (sign, integer, fraction, exponent)) = recognize_float_parts(input)?;
let mut float: f64 = minimal_lexical::parse_float(
integer.as_bytes().iter(),
fraction.as_bytes().iter(),
exponent,
);
if !sign {
float = -float;
}
Ok((i, float))
*/
let (i, s) = recognize_float_or_exceptions(input)?;
match s.parse_to() {
Some(f) => Ok((i, f)),
None => Err(crate::Err::Error(E::from_error_kind(
i,
crate::error::ErrorKind::Float,
))),
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::error::ErrorKind;
use crate::internal::Err;
use proptest::prelude::*;
macro_rules! assert_parse(
($left: expr, $right: expr) => {
let res: $crate::IResult<_, _, (_, ErrorKind)> = $left;
assert_eq!(res, $right);
};
);
#[test]
fn i8_tests() {
assert_parse!(i8(&[0x00][..]), Ok((&b""[..], 0)));
assert_parse!(i8(&[0x7f][..]), Ok((&b""[..], 127)));
assert_parse!(i8(&[0xff][..]), Ok((&b""[..], -1)));
assert_parse!(i8(&[0x80][..]), Ok((&b""[..], -128)));
}
#[test]
fn be_i8_tests() {
assert_parse!(be_i8(&[0x00][..]), Ok((&b""[..], 0)));
assert_parse!(be_i8(&[0x7f][..]), Ok((&b""[..], 127)));
assert_parse!(be_i8(&[0xff][..]), Ok((&b""[..], -1)));
assert_parse!(be_i8(&[0x80][..]), Ok((&b""[..], -128)));
}
#[test]
fn be_i16_tests() {
assert_parse!(be_i16(&[0x00, 0x00][..]), Ok((&b""[..], 0)));
assert_parse!(be_i16(&[0x7f, 0xff][..]), Ok((&b""[..], 32_767_i16)));
assert_parse!(be_i16(&[0xff, 0xff][..]), Ok((&b""[..], -1)));
assert_parse!(be_i16(&[0x80, 0x00][..]), Ok((&b""[..], -32_768_i16)));
}
#[test]
fn be_u24_tests() {
assert_parse!(be_u24(&[0x00, 0x00, 0x00][..]), Ok((&b""[..], 0)));
assert_parse!(be_u24(&[0x00, 0xFF, 0xFF][..]), Ok((&b""[..], 65_535_u32)));
assert_parse!(
be_u24(&[0x12, 0x34, 0x56][..]),
Ok((&b""[..], 1_193_046_u32))
);
}
#[test]
fn be_i24_tests() {
assert_parse!(be_i24(&[0xFF, 0xFF, 0xFF][..]), Ok((&b""[..], -1_i32)));
assert_parse!(be_i24(&[0xFF, 0x00, 0x00][..]), Ok((&b""[..], -65_536_i32)));
assert_parse!(
be_i24(&[0xED, 0xCB, 0xAA][..]),
Ok((&b""[..], -1_193_046_i32))
);
}
#[test]
fn be_i32_tests() {
assert_parse!(be_i32(&[0x00, 0x00, 0x00, 0x00][..]), Ok((&b""[..], 0)));
assert_parse!(
be_i32(&[0x7f, 0xff, 0xff, 0xff][..]),
Ok((&b""[..], 2_147_483_647_i32))
);
assert_parse!(be_i32(&[0xff, 0xff, 0xff, 0xff][..]), Ok((&b""[..], -1)));
assert_parse!(
be_i32(&[0x80, 0x00, 0x00, 0x00][..]),
Ok((&b""[..], -2_147_483_648_i32))
);
}
#[test]
fn be_i64_tests() {
assert_parse!(
be_i64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00][..]),
Ok((&b""[..], 0))
);
assert_parse!(
be_i64(&[0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff][..]),
Ok((&b""[..], 9_223_372_036_854_775_807_i64))
);
assert_parse!(
be_i64(&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff][..]),
Ok((&b""[..], -1))
);
assert_parse!(
be_i64(&[0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00][..]),
Ok((&b""[..], -9_223_372_036_854_775_808_i64))
);
}
#[test]
fn be_i128_tests() {
assert_parse!(
be_i128(
&[
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00
][..]
),
Ok((&b""[..], 0))
);
assert_parse!(
be_i128(
&[
0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff
][..]
),
Ok((
&b""[..],
170_141_183_460_469_231_731_687_303_715_884_105_727_i128
))
);
assert_parse!(
be_i128(
&[
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff
][..]
),
Ok((&b""[..], -1))
);
assert_parse!(
be_i128(
&[
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00
][..]
),
Ok((
&b""[..],
-170_141_183_460_469_231_731_687_303_715_884_105_728_i128
))
);
}
#[test]
fn le_i8_tests() {
assert_parse!(le_i8(&[0x00][..]), Ok((&b""[..], 0)));
assert_parse!(le_i8(&[0x7f][..]), Ok((&b""[..], 127)));
assert_parse!(le_i8(&[0xff][..]), Ok((&b""[..], -1)));
assert_parse!(le_i8(&[0x80][..]), Ok((&b""[..], -128)));
}
#[test]
fn le_i16_tests() {
assert_parse!(le_i16(&[0x00, 0x00][..]), Ok((&b""[..], 0)));
assert_parse!(le_i16(&[0xff, 0x7f][..]), Ok((&b""[..], 32_767_i16)));
assert_parse!(le_i16(&[0xff, 0xff][..]), Ok((&b""[..], -1)));
assert_parse!(le_i16(&[0x00, 0x80][..]), Ok((&b""[..], -32_768_i16)));
}
#[test]
fn le_u24_tests() {
assert_parse!(le_u24(&[0x00, 0x00, 0x00][..]), Ok((&b""[..], 0)));
assert_parse!(le_u24(&[0xFF, 0xFF, 0x00][..]), Ok((&b""[..], 65_535_u32)));
assert_parse!(
le_u24(&[0x56, 0x34, 0x12][..]),
Ok((&b""[..], 1_193_046_u32))
);
}
#[test]
fn le_i24_tests() {
assert_parse!(le_i24(&[0xFF, 0xFF, 0xFF][..]), Ok((&b""[..], -1_i32)));
assert_parse!(le_i24(&[0x00, 0x00, 0xFF][..]), Ok((&b""[..], -65_536_i32)));
assert_parse!(
le_i24(&[0xAA, 0xCB, 0xED][..]),
Ok((&b""[..], -1_193_046_i32))
);
}
#[test]
fn le_i32_tests() {
assert_parse!(le_i32(&[0x00, 0x00, 0x00, 0x00][..]), Ok((&b""[..], 0)));
assert_parse!(
le_i32(&[0xff, 0xff, 0xff, 0x7f][..]),
Ok((&b""[..], 2_147_483_647_i32))
);
assert_parse!(le_i32(&[0xff, 0xff, 0xff, 0xff][..]), Ok((&b""[..], -1)));
assert_parse!(
le_i32(&[0x00, 0x00, 0x00, 0x80][..]),
Ok((&b""[..], -2_147_483_648_i32))
);
}
#[test]
fn le_i64_tests() {
assert_parse!(
le_i64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00][..]),
Ok((&b""[..], 0))
);
assert_parse!(
le_i64(&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f][..]),
Ok((&b""[..], 9_223_372_036_854_775_807_i64))
);
assert_parse!(
le_i64(&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff][..]),
Ok((&b""[..], -1))
);
assert_parse!(
le_i64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80][..]),
Ok((&b""[..], -9_223_372_036_854_775_808_i64))
);
}
#[test]
fn le_i128_tests() {
assert_parse!(
le_i128(
&[
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00
][..]
),
Ok((&b""[..], 0))
);
assert_parse!(
le_i128(
&[
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x7f
][..]
),
Ok((
&b""[..],
170_141_183_460_469_231_731_687_303_715_884_105_727_i128
))
);
assert_parse!(
le_i128(
&[
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff
][..]
),
Ok((&b""[..], -1))
);
assert_parse!(
le_i128(
&[
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x80
][..]
),
Ok((
&b""[..],
-170_141_183_460_469_231_731_687_303_715_884_105_728_i128
))
);
}
#[test]
fn be_f32_tests() {
assert_parse!(be_f32(&[0x00, 0x00, 0x00, 0x00][..]), Ok((&b""[..], 0_f32)));
assert_parse!(
be_f32(&[0x4d, 0x31, 0x1f, 0xd8][..]),
Ok((&b""[..], 185_728_392_f32))
);
}
#[test]
fn be_f64_tests() {
assert_parse!(
be_f64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00][..]),
Ok((&b""[..], 0_f64))
);
assert_parse!(
be_f64(&[0x41, 0xa6, 0x23, 0xfb, 0x10, 0x00, 0x00, 0x00][..]),
Ok((&b""[..], 185_728_392_f64))
);
}
#[test]
fn le_f32_tests() {
assert_parse!(le_f32(&[0x00, 0x00, 0x00, 0x00][..]), Ok((&b""[..], 0_f32)));
assert_parse!(
le_f32(&[0xd8, 0x1f, 0x31, 0x4d][..]),
Ok((&b""[..], 185_728_392_f32))
);
}
#[test]
fn le_f64_tests() {
assert_parse!(
le_f64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00][..]),
Ok((&b""[..], 0_f64))
);
assert_parse!(
le_f64(&[0x00, 0x00, 0x00, 0x10, 0xfb, 0x23, 0xa6, 0x41][..]),
Ok((&b""[..], 185_728_392_f64))
);
}
#[test]
fn hex_u32_tests() {
assert_parse!(
hex_u32(&b";"[..]),
Err(Err::Error(error_position!(&b";"[..], ErrorKind::IsA)))
);
assert_parse!(hex_u32(&b"ff;"[..]), Ok((&b";"[..], 255)));
assert_parse!(hex_u32(&b"1be2;"[..]), Ok((&b";"[..], 7138)));
assert_parse!(hex_u32(&b"c5a31be2;"[..]), Ok((&b";"[..], 3_315_801_058)));
assert_parse!(hex_u32(&b"C5A31be2;"[..]), Ok((&b";"[..], 3_315_801_058)));
assert_parse!(hex_u32(&b"00c5a31be2;"[..]), Ok((&b"e2;"[..], 12_952_347)));
assert_parse!(
hex_u32(&b"c5a31be201;"[..]),
Ok((&b"01;"[..], 3_315_801_058))
);
assert_parse!(hex_u32(&b"ffffffff;"[..]), Ok((&b";"[..], 4_294_967_295)));
assert_parse!(hex_u32(&b"0x1be2;"[..]), Ok((&b"x1be2;"[..], 0)));
assert_parse!(hex_u32(&b"12af"[..]), Ok((&b""[..], 0x12af)));
}
#[test]
#[cfg(feature = "std")]
fn float_test() {
let mut test_cases = vec![
"+3.14",
"3.14",
"-3.14",
"0",
"0.0",
"1.",
".789",
"-.5",
"1e7",
"-1E-7",
".3e-2",
"1.e4",
"1.2e4",
"12.34",
"-1.234E-12",
"-1.234e-12",
"0.00000000000000000087",
];
for test in test_cases.drain(..) {
let expected32 = str::parse::<f32>(test).unwrap();
let expected64 = str::parse::<f64>(test).unwrap();
println!("now parsing: {} -> {}", test, expected32);
let larger = format!("{}", test);
assert_parse!(recognize_float(&larger[..]), Ok(("", test)));
assert_parse!(float(larger.as_bytes()), Ok((&b""[..], expected32)));
assert_parse!(float(&larger[..]), Ok(("", expected32)));
assert_parse!(double(larger.as_bytes()), Ok((&b""[..], expected64)));
assert_parse!(double(&larger[..]), Ok(("", expected64)));
}
let remaining_exponent = "-1.234E-";
assert_parse!(
recognize_float(remaining_exponent),
Err(Err::Failure(("", ErrorKind::Digit)))
);
let (_i, nan) = float::<_, ()>("NaN").unwrap();
assert!(nan.is_nan());
let (_i, inf) = float::<_, ()>("inf").unwrap();
assert!(inf.is_infinite());
let (_i, inf) = float::<_, ()>("infinite").unwrap();
assert!(inf.is_infinite());
}
#[test]
fn configurable_endianness() {
use crate::number::Endianness;
fn be_tst16(i: &[u8]) -> IResult<&[u8], u16> {
u16(Endianness::Big)(i)
}
fn le_tst16(i: &[u8]) -> IResult<&[u8], u16> {
u16(Endianness::Little)(i)
}
assert_eq!(be_tst16(&[0x80, 0x00]), Ok((&b""[..], 32_768_u16)));
assert_eq!(le_tst16(&[0x80, 0x00]), Ok((&b""[..], 128_u16)));
fn be_tst32(i: &[u8]) -> IResult<&[u8], u32> {
u32(Endianness::Big)(i)
}
fn le_tst32(i: &[u8]) -> IResult<&[u8], u32> {
u32(Endianness::Little)(i)
}
assert_eq!(
be_tst32(&[0x12, 0x00, 0x60, 0x00]),
Ok((&b""[..], 302_014_464_u32))
);
assert_eq!(
le_tst32(&[0x12, 0x00, 0x60, 0x00]),
Ok((&b""[..], 6_291_474_u32))
);
fn be_tst64(i: &[u8]) -> IResult<&[u8], u64> {
u64(Endianness::Big)(i)
}
fn le_tst64(i: &[u8]) -> IResult<&[u8], u64> {
u64(Endianness::Little)(i)
}
assert_eq!(
be_tst64(&[0x12, 0x00, 0x60, 0x00, 0x12, 0x00, 0x80, 0x00]),
Ok((&b""[..], 1_297_142_246_100_992_000_u64))
);
assert_eq!(
le_tst64(&[0x12, 0x00, 0x60, 0x00, 0x12, 0x00, 0x80, 0x00]),
Ok((&b""[..], 36_028_874_334_666_770_u64))
);
fn be_tsti16(i: &[u8]) -> IResult<&[u8], i16> {
i16(Endianness::Big)(i)
}
fn le_tsti16(i: &[u8]) -> IResult<&[u8], i16> {
i16(Endianness::Little)(i)
}
assert_eq!(be_tsti16(&[0x00, 0x80]), Ok((&b""[..], 128_i16)));
assert_eq!(le_tsti16(&[0x00, 0x80]), Ok((&b""[..], -32_768_i16)));
fn be_tsti32(i: &[u8]) -> IResult<&[u8], i32> {
i32(Endianness::Big)(i)
}
fn le_tsti32(i: &[u8]) -> IResult<&[u8], i32> {
i32(Endianness::Little)(i)
}
assert_eq!(
be_tsti32(&[0x00, 0x12, 0x60, 0x00]),
Ok((&b""[..], 1_204_224_i32))
);
assert_eq!(
le_tsti32(&[0x00, 0x12, 0x60, 0x00]),
Ok((&b""[..], 6_296_064_i32))
);
fn be_tsti64(i: &[u8]) -> IResult<&[u8], i64> {
i64(Endianness::Big)(i)
}
fn le_tsti64(i: &[u8]) -> IResult<&[u8], i64> {
i64(Endianness::Little)(i)
}
assert_eq!(
be_tsti64(&[0x00, 0xFF, 0x60, 0x00, 0x12, 0x00, 0x80, 0x00]),
Ok((&b""[..], 71_881_672_479_506_432_i64))
);
assert_eq!(
le_tsti64(&[0x00, 0xFF, 0x60, 0x00, 0x12, 0x00, 0x80, 0x00]),
Ok((&b""[..], 36_028_874_334_732_032_i64))
);
}
#[cfg(feature = "std")]
fn parse_f64(i: &str) -> IResult<&str, f64, ()> {
match recognize_float_or_exceptions(i) {
Err(e) => Err(e),
Ok((i, s)) => {
if s.is_empty() {
return Err(Err::Error(()));
}
match s.parse_to() {
Some(n) => Ok((i, n)),
None => Err(Err::Error(())),
}
}
}
}
proptest! {
#[test]
#[cfg(feature = "std")]
fn floats(s in "\\PC*") {
println!("testing {}", s);
let res1 = parse_f64(&s);
let res2 = double::<_, ()>(s.as_str());
assert_eq!(res1, res2);
}
}
}