Source code

Revision control

Copy as Markdown

Other Tools

/*!
Backend for [MSL][msl] (Metal Shading Language).
This backend does not support the [`SHADER_INT64_ATOMIC_ALL_OPS`][all-atom]
capability.
## Binding model
Metal's bindings are flat per resource. Since there isn't an obvious mapping
from SPIR-V's descriptor sets, we require a separate mapping provided in the options.
This mapping may have one or more resource end points for each descriptor set + index
pair.
## Entry points
Even though MSL and our IR appear to be similar in that the entry points in both can
accept arguments and return values, the restrictions are different.
MSL allows the varyings to be either in separate arguments, or inside a single
`[[stage_in]]` struct. We gather input varyings and form this artificial structure.
We also add all the (non-Private) globals into the arguments.
At the beginning of the entry point, we assign the local constants and re-compose
the arguments as they are declared on IR side, so that the rest of the logic can
pretend that MSL doesn't have all the restrictions it has.
For the result type, if it's a structure, we re-compose it with a temporary value
holding the result.
[all-atom]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_ALL_OPS
*/
use crate::{arena::Handle, proc::index, valid::ModuleInfo};
use std::fmt::{Error as FmtError, Write};
mod keywords;
pub mod sampler;
mod writer;
pub use writer::Writer;
pub type Slot = u8;
pub type InlineSamplerIndex = u8;
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub enum BindSamplerTarget {
Resource(Slot),
Inline(InlineSamplerIndex),
}
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
#[cfg_attr(any(feature = "serialize", feature = "deserialize"), serde(default))]
pub struct BindTarget {
pub buffer: Option<Slot>,
pub texture: Option<Slot>,
pub sampler: Option<BindSamplerTarget>,
/// If the binding is an unsized binding array, this overrides the size.
pub binding_array_size: Option<u32>,
pub mutable: bool,
}
// Using `BTreeMap` instead of `HashMap` so that we can hash itself.
pub type BindingMap = std::collections::BTreeMap<crate::ResourceBinding, BindTarget>;
#[derive(Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
#[cfg_attr(any(feature = "serialize", feature = "deserialize"), serde(default))]
pub struct EntryPointResources {
pub resources: BindingMap,
pub push_constant_buffer: Option<Slot>,
/// The slot of a buffer that contains an array of `u32`,
/// one for the size of each bound buffer that contains a runtime array,
/// in order of [`crate::GlobalVariable`] declarations.
pub sizes_buffer: Option<Slot>,
}
pub type EntryPointResourceMap = std::collections::BTreeMap<String, EntryPointResources>;
enum ResolvedBinding {
BuiltIn(crate::BuiltIn),
Attribute(u32),
Color {
location: u32,
second_blend_source: bool,
},
User {
prefix: &'static str,
index: u32,
interpolation: Option<ResolvedInterpolation>,
},
Resource(BindTarget),
}
#[derive(Copy, Clone)]
enum ResolvedInterpolation {
CenterPerspective,
CenterNoPerspective,
CentroidPerspective,
CentroidNoPerspective,
SamplePerspective,
SampleNoPerspective,
Flat,
}
// Note: some of these should be removed in favor of proper IR validation.
#[derive(Debug, thiserror::Error)]
pub enum Error {
#[error(transparent)]
Format(#[from] FmtError),
#[error("bind target {0:?} is empty")]
UnimplementedBindTarget(BindTarget),
#[error("composing of {0:?} is not implemented yet")]
UnsupportedCompose(Handle<crate::Type>),
#[error("operation {0:?} is not implemented yet")]
UnsupportedBinaryOp(crate::BinaryOperator),
#[error("standard function '{0}' is not implemented yet")]
UnsupportedCall(String),
#[error("feature '{0}' is not implemented yet")]
FeatureNotImplemented(String),
#[error("internal naga error: module should not have validated: {0}")]
GenericValidation(String),
#[error("BuiltIn {0:?} is not supported")]
UnsupportedBuiltIn(crate::BuiltIn),
#[error("capability {0:?} is not supported")]
CapabilityNotSupported(crate::valid::Capabilities),
#[error("attribute '{0}' is not supported for target MSL version")]
UnsupportedAttribute(String),
#[error("function '{0}' is not supported for target MSL version")]
UnsupportedFunction(String),
#[error("can not use writeable storage buffers in fragment stage prior to MSL 1.2")]
UnsupportedWriteableStorageBuffer,
#[error("can not use writeable storage textures in {0:?} stage prior to MSL 1.2")]
UnsupportedWriteableStorageTexture(crate::ShaderStage),
#[error("can not use read-write storage textures prior to MSL 1.2")]
UnsupportedRWStorageTexture,
#[error("array of '{0}' is not supported for target MSL version")]
UnsupportedArrayOf(String),
#[error("array of type '{0:?}' is not supported")]
UnsupportedArrayOfType(Handle<crate::Type>),
#[error("ray tracing is not supported prior to MSL 2.3")]
UnsupportedRayTracing,
#[error("overrides should not be present at this stage")]
Override,
}
#[derive(Clone, Debug, PartialEq, thiserror::Error)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub enum EntryPointError {
#[error("global '{0}' doesn't have a binding")]
MissingBinding(String),
#[error("mapping of {0:?} is missing")]
MissingBindTarget(crate::ResourceBinding),
#[error("mapping for push constants is missing")]
MissingPushConstants,
#[error("mapping for sizes buffer is missing")]
MissingSizesBuffer,
}
/// Points in the MSL code where we might emit a pipeline input or output.
///
/// Note that, even though vertex shaders' outputs are always fragment
/// shaders' inputs, we still need to distinguish `VertexOutput` and
/// `FragmentInput`, since there are certain differences in the way
/// [`ResolvedBinding`s] are represented on either side.
///
/// [`ResolvedBinding`s]: ResolvedBinding
#[derive(Clone, Copy, Debug)]
enum LocationMode {
/// Input to the vertex shader.
VertexInput,
/// Output from the vertex shader.
VertexOutput,
/// Input to the fragment shader.
FragmentInput,
/// Output from the fragment shader.
FragmentOutput,
/// Compute shader input or output.
Uniform,
}
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct Options {
/// (Major, Minor) target version of the Metal Shading Language.
pub lang_version: (u8, u8),
/// Map of entry-point resources, indexed by entry point function name, to slots.
pub per_entry_point_map: EntryPointResourceMap,
/// Samplers to be inlined into the code.
pub inline_samplers: Vec<sampler::InlineSampler>,
/// Make it possible to link different stages via SPIRV-Cross.
pub spirv_cross_compatibility: bool,
/// Don't panic on missing bindings, instead generate invalid MSL.
pub fake_missing_bindings: bool,
/// Bounds checking policies.
#[cfg_attr(feature = "deserialize", serde(default))]
pub bounds_check_policies: index::BoundsCheckPolicies,
/// Should workgroup variables be zero initialized (by polyfilling)?
pub zero_initialize_workgroup_memory: bool,
}
impl Default for Options {
fn default() -> Self {
Options {
lang_version: (1, 0),
per_entry_point_map: EntryPointResourceMap::default(),
inline_samplers: Vec::new(),
spirv_cross_compatibility: false,
fake_missing_bindings: true,
bounds_check_policies: index::BoundsCheckPolicies::default(),
zero_initialize_workgroup_memory: true,
}
}
}
/// Corresponds to [WebGPU `GPUVertexFormat`](
#[repr(u32)]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub enum VertexFormat {
/// Two unsigned bytes (u8). `vec2<u32>` in shaders.
Uint8x2 = 0,
/// Four unsigned bytes (u8). `vec4<u32>` in shaders.
Uint8x4 = 1,
/// Two signed bytes (i8). `vec2<i32>` in shaders.
Sint8x2 = 2,
/// Four signed bytes (i8). `vec4<i32>` in shaders.
Sint8x4 = 3,
/// Two unsigned bytes (u8). [0, 255] converted to float [0, 1] `vec2<f32>` in shaders.
Unorm8x2 = 4,
/// Four unsigned bytes (u8). [0, 255] converted to float [0, 1] `vec4<f32>` in shaders.
Unorm8x4 = 5,
/// Two signed bytes (i8). [-127, 127] converted to float [-1, 1] `vec2<f32>` in shaders.
Snorm8x2 = 6,
/// Four signed bytes (i8). [-127, 127] converted to float [-1, 1] `vec4<f32>` in shaders.
Snorm8x4 = 7,
/// Two unsigned shorts (u16). `vec2<u32>` in shaders.
Uint16x2 = 8,
/// Four unsigned shorts (u16). `vec4<u32>` in shaders.
Uint16x4 = 9,
/// Two signed shorts (i16). `vec2<i32>` in shaders.
Sint16x2 = 10,
/// Four signed shorts (i16). `vec4<i32>` in shaders.
Sint16x4 = 11,
/// Two unsigned shorts (u16). [0, 65535] converted to float [0, 1] `vec2<f32>` in shaders.
Unorm16x2 = 12,
/// Four unsigned shorts (u16). [0, 65535] converted to float [0, 1] `vec4<f32>` in shaders.
Unorm16x4 = 13,
/// Two signed shorts (i16). [-32767, 32767] converted to float [-1, 1] `vec2<f32>` in shaders.
Snorm16x2 = 14,
/// Four signed shorts (i16). [-32767, 32767] converted to float [-1, 1] `vec4<f32>` in shaders.
Snorm16x4 = 15,
/// Two half-precision floats (no Rust equiv). `vec2<f32>` in shaders.
Float16x2 = 16,
/// Four half-precision floats (no Rust equiv). `vec4<f32>` in shaders.
Float16x4 = 17,
/// One single-precision float (f32). `f32` in shaders.
Float32 = 18,
/// Two single-precision floats (f32). `vec2<f32>` in shaders.
Float32x2 = 19,
/// Three single-precision floats (f32). `vec3<f32>` in shaders.
Float32x3 = 20,
/// Four single-precision floats (f32). `vec4<f32>` in shaders.
Float32x4 = 21,
/// One unsigned int (u32). `u32` in shaders.
Uint32 = 22,
/// Two unsigned ints (u32). `vec2<u32>` in shaders.
Uint32x2 = 23,
/// Three unsigned ints (u32). `vec3<u32>` in shaders.
Uint32x3 = 24,
/// Four unsigned ints (u32). `vec4<u32>` in shaders.
Uint32x4 = 25,
/// One signed int (i32). `i32` in shaders.
Sint32 = 26,
/// Two signed ints (i32). `vec2<i32>` in shaders.
Sint32x2 = 27,
/// Three signed ints (i32). `vec3<i32>` in shaders.
Sint32x3 = 28,
/// Four signed ints (i32). `vec4<i32>` in shaders.
Sint32x4 = 29,
/// Three unsigned 10-bit integers and one 2-bit integer, packed into a 32-bit integer (u32). [0, 1024] converted to float [0, 1] `vec4<f32>` in shaders.
#[cfg_attr(
any(feature = "serialize", feature = "deserialize"),
serde(rename = "unorm10-10-10-2")
)]
Unorm10_10_10_2 = 34,
}
/// A mapping of vertex buffers and their attributes to shader
/// locations.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct AttributeMapping {
/// Shader location associated with this attribute
pub shader_location: u32,
/// Offset in bytes from start of vertex buffer structure
pub offset: u32,
/// Format code to help us unpack the attribute into the type
/// used by the shader. Codes correspond to a 0-based index of
/// The conversion process is described by
pub format: VertexFormat,
}
/// A description of a vertex buffer with all the information we
/// need to address the attributes within it.
#[derive(Debug, Default, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct VertexBufferMapping {
/// Shader location associated with this buffer
pub id: u32,
/// Size of the structure in bytes
pub stride: u32,
/// True if the buffer is indexed by vertex, false if indexed
/// by instance.
pub indexed_by_vertex: bool,
/// Vec of the attributes within the structure
pub attributes: Vec<AttributeMapping>,
}
/// A subset of options that are meant to be changed per pipeline.
#[derive(Debug, Default, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct PipelineOptions {
/// Allow `BuiltIn::PointSize` and inject it if doesn't exist.
///
/// Metal doesn't like this for non-point primitive topologies and requires it for
/// point primitive topologies.
///
/// Enable this for vertex shaders with point primitive topologies.
pub allow_and_force_point_size: bool,
/// If set, when generating the Metal vertex shader, transform it
/// to receive the vertex buffers, lengths, and vertex id as args,
/// and bounds-check the vertex id and use the index into the
/// vertex buffers to access attributes, rather than using Metal's
/// [[stage-in]] assembled attribute data. This is true by default,
/// but remains configurable for use by tests via deserialization
/// of this struct. There is no user-facing way to set this value.
pub vertex_pulling_transform: bool,
/// vertex_buffer_mappings are used during shader translation to
/// support vertex pulling.
pub vertex_buffer_mappings: Vec<VertexBufferMapping>,
}
impl Options {
fn resolve_local_binding(
&self,
binding: &crate::Binding,
mode: LocationMode,
) -> Result<ResolvedBinding, Error> {
match *binding {
crate::Binding::BuiltIn(mut built_in) => {
match built_in {
crate::BuiltIn::Position { ref mut invariant } => {
if *invariant && self.lang_version < (2, 1) {
return Err(Error::UnsupportedAttribute("invariant".to_string()));
}
// The 'invariant' attribute may only appear on vertex
// shader outputs, not fragment shader inputs.
if !matches!(mode, LocationMode::VertexOutput) {
*invariant = false;
}
}
crate::BuiltIn::BaseInstance if self.lang_version < (1, 2) => {
return Err(Error::UnsupportedAttribute("base_instance".to_string()));
}
crate::BuiltIn::InstanceIndex if self.lang_version < (1, 2) => {
return Err(Error::UnsupportedAttribute("instance_id".to_string()));
}
// macOS: Since Metal 2.2
// iOS: Since Metal 2.3 (check depends on https://github.com/gfx-rs/naga/issues/2164)
crate::BuiltIn::PrimitiveIndex if self.lang_version < (2, 2) => {
return Err(Error::UnsupportedAttribute("primitive_id".to_string()));
}
_ => {}
}
Ok(ResolvedBinding::BuiltIn(built_in))
}
crate::Binding::Location {
location,
interpolation,
sampling,
second_blend_source,
} => match mode {
LocationMode::VertexInput => Ok(ResolvedBinding::Attribute(location)),
LocationMode::FragmentOutput => {
if second_blend_source && self.lang_version < (1, 2) {
return Err(Error::UnsupportedAttribute(
"second_blend_source".to_string(),
));
}
Ok(ResolvedBinding::Color {
location,
second_blend_source,
})
}
LocationMode::VertexOutput | LocationMode::FragmentInput => {
Ok(ResolvedBinding::User {
prefix: if self.spirv_cross_compatibility {
"locn"
} else {
"loc"
},
index: location,
interpolation: {
// unwrap: The verifier ensures that vertex shader outputs and fragment
// shader inputs always have fully specified interpolation, and that
// sampling is `None` only for Flat interpolation.
let interpolation = interpolation.unwrap();
let sampling = sampling.unwrap_or(crate::Sampling::Center);
Some(ResolvedInterpolation::from_binding(interpolation, sampling))
},
})
}
LocationMode::Uniform => Err(Error::GenericValidation(format!(
"Unexpected Binding::Location({location}) for the Uniform mode"
))),
},
}
}
fn get_entry_point_resources(&self, ep: &crate::EntryPoint) -> Option<&EntryPointResources> {
self.per_entry_point_map.get(&ep.name)
}
fn get_resource_binding_target(
&self,
ep: &crate::EntryPoint,
res_binding: &crate::ResourceBinding,
) -> Option<&BindTarget> {
self.get_entry_point_resources(ep)
.and_then(|res| res.resources.get(res_binding))
}
fn resolve_resource_binding(
&self,
ep: &crate::EntryPoint,
res_binding: &crate::ResourceBinding,
) -> Result<ResolvedBinding, EntryPointError> {
let target = self.get_resource_binding_target(ep, res_binding);
match target {
Some(target) => Ok(ResolvedBinding::Resource(target.clone())),
None if self.fake_missing_bindings => Ok(ResolvedBinding::User {
prefix: "fake",
index: 0,
interpolation: None,
}),
None => Err(EntryPointError::MissingBindTarget(res_binding.clone())),
}
}
fn resolve_push_constants(
&self,
ep: &crate::EntryPoint,
) -> Result<ResolvedBinding, EntryPointError> {
let slot = self
.get_entry_point_resources(ep)
.and_then(|res| res.push_constant_buffer);
match slot {
Some(slot) => Ok(ResolvedBinding::Resource(BindTarget {
buffer: Some(slot),
..Default::default()
})),
None if self.fake_missing_bindings => Ok(ResolvedBinding::User {
prefix: "fake",
index: 0,
interpolation: None,
}),
None => Err(EntryPointError::MissingPushConstants),
}
}
fn resolve_sizes_buffer(
&self,
ep: &crate::EntryPoint,
) -> Result<ResolvedBinding, EntryPointError> {
let slot = self
.get_entry_point_resources(ep)
.and_then(|res| res.sizes_buffer);
match slot {
Some(slot) => Ok(ResolvedBinding::Resource(BindTarget {
buffer: Some(slot),
..Default::default()
})),
None if self.fake_missing_bindings => Ok(ResolvedBinding::User {
prefix: "fake",
index: 0,
interpolation: None,
}),
None => Err(EntryPointError::MissingSizesBuffer),
}
}
}
impl ResolvedBinding {
fn as_inline_sampler<'a>(&self, options: &'a Options) -> Option<&'a sampler::InlineSampler> {
match *self {
Self::Resource(BindTarget {
sampler: Some(BindSamplerTarget::Inline(index)),
..
}) => Some(&options.inline_samplers[index as usize]),
_ => None,
}
}
const fn as_bind_target(&self) -> Option<&BindTarget> {
match *self {
Self::Resource(ref target) => Some(target),
_ => None,
}
}
fn try_fmt<W: Write>(&self, out: &mut W) -> Result<(), Error> {
write!(out, " [[")?;
match *self {
Self::BuiltIn(built_in) => {
use crate::BuiltIn as Bi;
let name = match built_in {
Bi::Position { invariant: false } => "position",
Bi::Position { invariant: true } => "position, invariant",
// vertex
Bi::BaseInstance => "base_instance",
Bi::BaseVertex => "base_vertex",
Bi::ClipDistance => "clip_distance",
Bi::InstanceIndex => "instance_id",
Bi::PointSize => "point_size",
Bi::VertexIndex => "vertex_id",
// fragment
Bi::FragDepth => "depth(any)",
Bi::PointCoord => "point_coord",
Bi::FrontFacing => "front_facing",
Bi::PrimitiveIndex => "primitive_id",
Bi::SampleIndex => "sample_id",
Bi::SampleMask => "sample_mask",
// compute
Bi::GlobalInvocationId => "thread_position_in_grid",
Bi::LocalInvocationId => "thread_position_in_threadgroup",
Bi::LocalInvocationIndex => "thread_index_in_threadgroup",
Bi::WorkGroupId => "threadgroup_position_in_grid",
Bi::WorkGroupSize => "dispatch_threads_per_threadgroup",
Bi::NumWorkGroups => "threadgroups_per_grid",
// subgroup
Bi::NumSubgroups => "simdgroups_per_threadgroup",
Bi::SubgroupId => "simdgroup_index_in_threadgroup",
Bi::SubgroupSize => "threads_per_simdgroup",
Bi::SubgroupInvocationId => "thread_index_in_simdgroup",
Bi::CullDistance | Bi::ViewIndex | Bi::DrawID => {
return Err(Error::UnsupportedBuiltIn(built_in))
}
};
write!(out, "{name}")?;
}
Self::Attribute(index) => write!(out, "attribute({index})")?,
Self::Color {
location,
second_blend_source,
} => {
if second_blend_source {
write!(out, "color({location}) index(1)")?
} else {
write!(out, "color({location})")?
}
}
Self::User {
prefix,
index,
interpolation,
} => {
write!(out, "user({prefix}{index})")?;
if let Some(interpolation) = interpolation {
write!(out, ", ")?;
interpolation.try_fmt(out)?;
}
}
Self::Resource(ref target) => {
if let Some(id) = target.buffer {
write!(out, "buffer({id})")?;
} else if let Some(id) = target.texture {
write!(out, "texture({id})")?;
} else if let Some(BindSamplerTarget::Resource(id)) = target.sampler {
write!(out, "sampler({id})")?;
} else {
return Err(Error::UnimplementedBindTarget(target.clone()));
}
}
}
write!(out, "]]")?;
Ok(())
}
}
impl ResolvedInterpolation {
const fn from_binding(interpolation: crate::Interpolation, sampling: crate::Sampling) -> Self {
use crate::Interpolation as I;
use crate::Sampling as S;
match (interpolation, sampling) {
(I::Perspective, S::Center) => Self::CenterPerspective,
(I::Perspective, S::Centroid) => Self::CentroidPerspective,
(I::Perspective, S::Sample) => Self::SamplePerspective,
(I::Linear, S::Center) => Self::CenterNoPerspective,
(I::Linear, S::Centroid) => Self::CentroidNoPerspective,
(I::Linear, S::Sample) => Self::SampleNoPerspective,
(I::Flat, _) => Self::Flat,
_ => unreachable!(),
}
}
fn try_fmt<W: Write>(self, out: &mut W) -> Result<(), Error> {
let identifier = match self {
Self::CenterPerspective => "center_perspective",
Self::CenterNoPerspective => "center_no_perspective",
Self::CentroidPerspective => "centroid_perspective",
Self::CentroidNoPerspective => "centroid_no_perspective",
Self::SamplePerspective => "sample_perspective",
Self::SampleNoPerspective => "sample_no_perspective",
Self::Flat => "flat",
};
out.write_str(identifier)?;
Ok(())
}
}
/// Information about a translated module that is required
/// for the use of the result.
pub struct TranslationInfo {
/// Mapping of the entry point names. Each item in the array
/// corresponds to an entry point index.
///
///Note: Some entry points may fail translation because of missing bindings.
pub entry_point_names: Vec<Result<String, EntryPointError>>,
}
pub fn write_string(
module: &crate::Module,
info: &ModuleInfo,
options: &Options,
pipeline_options: &PipelineOptions,
) -> Result<(String, TranslationInfo), Error> {
let mut w = Writer::new(String::new());
let info = w.write(module, info, options, pipeline_options)?;
Ok((w.finish(), info))
}
#[test]
fn test_error_size() {
use std::mem::size_of;
assert_eq!(size_of::<Error>(), 32);
}