Source code
Revision control
Copy as Markdown
Other Tools
//! Unix pipe.
//!
//! See the [`new`] function for documentation.
use std::io;
use std::os::fd::RawFd;
pub(crate) fn new_raw() -> io::Result<[RawFd; 2]> {
let mut fds: [RawFd; 2] = [-1, -1];
#[cfg(any(
target_os = "android",
target_os = "dragonfly",
target_os = "freebsd",
target_os = "fuchsia",
target_os = "hurd",
target_os = "linux",
target_os = "netbsd",
target_os = "openbsd",
target_os = "illumos",
target_os = "redox",
target_os = "solaris",
target_os = "vita",
))]
unsafe {
if libc::pipe2(fds.as_mut_ptr(), libc::O_CLOEXEC | libc::O_NONBLOCK) != 0 {
return Err(io::Error::last_os_error());
}
}
#[cfg(any(
target_os = "aix",
target_os = "haiku",
target_os = "ios",
target_os = "macos",
target_os = "tvos",
target_os = "visionos",
target_os = "watchos",
target_os = "espidf",
target_os = "nto",
))]
unsafe {
// For platforms that don't have `pipe2(2)` we need to manually set the
// correct flags on the file descriptor.
if libc::pipe(fds.as_mut_ptr()) != 0 {
return Err(io::Error::last_os_error());
}
for fd in &fds {
if libc::fcntl(*fd, libc::F_SETFL, libc::O_NONBLOCK) != 0
|| libc::fcntl(*fd, libc::F_SETFD, libc::FD_CLOEXEC) != 0
{
let err = io::Error::last_os_error();
// Don't leak file descriptors. Can't handle closing error though.
let _ = libc::close(fds[0]);
let _ = libc::close(fds[1]);
return Err(err);
}
}
}
Ok(fds)
}
cfg_os_ext! {
use std::fs::File;
use std::io::{IoSlice, IoSliceMut, Read, Write};
use std::os::fd::{AsFd, AsRawFd, BorrowedFd, FromRawFd, IntoRawFd};
use std::process::{ChildStderr, ChildStdin, ChildStdout};
use crate::io_source::IoSource;
use crate::{event, Interest, Registry, Token};
/// Create a new non-blocking Unix pipe.
///
/// This is a wrapper around Unix's [`pipe(2)`] system call and can be used as
/// inter-process or thread communication channel.
///
/// This channel may be created before forking the process and then one end used
/// in each process, e.g. the parent process has the sending end to send command
/// to the child process.
///
///
/// # Events
///
/// The [`Sender`] can be registered with [`WRITABLE`] interest to receive
/// [writable events], the [`Receiver`] with [`READABLE`] interest. Once data is
/// written to the `Sender` the `Receiver` will receive an [readable event].
///
/// In addition to those events, events will also be generated if the other side
/// is dropped. To check if the `Sender` is dropped you'll need to check
/// [`is_read_closed`] on events for the `Receiver`, if it returns true the
/// `Sender` is dropped. On the `Sender` end check [`is_write_closed`], if it
/// returns true the `Receiver` was dropped. Also see the second example below.
///
/// [`WRITABLE`]: Interest::WRITABLE
/// [writable events]: event::Event::is_writable
/// [`READABLE`]: Interest::READABLE
/// [readable event]: event::Event::is_readable
/// [`is_read_closed`]: event::Event::is_read_closed
/// [`is_write_closed`]: event::Event::is_write_closed
///
/// # Deregistering
///
/// Both `Sender` and `Receiver` will deregister themselves when dropped,
/// **iff** the file descriptors are not duplicated (via [`dup(2)`]).
///
///
/// # Examples
///
/// Simple example that writes data into the sending end and read it from the
/// receiving end.
///
/// ```
/// use std::io::{self, Read, Write};
///
/// use mio::{Poll, Events, Interest, Token};
/// use mio::unix::pipe;
///
/// // Unique tokens for the two ends of the channel.
/// const PIPE_RECV: Token = Token(0);
/// const PIPE_SEND: Token = Token(1);
///
/// # fn main() -> io::Result<()> {
/// // Create our `Poll` instance and the `Events` container.
/// let mut poll = Poll::new()?;
/// let mut events = Events::with_capacity(8);
///
/// // Create a new pipe.
/// let (mut sender, mut receiver) = pipe::new()?;
///
/// // Register both ends of the channel.
/// poll.registry().register(&mut receiver, PIPE_RECV, Interest::READABLE)?;
/// poll.registry().register(&mut sender, PIPE_SEND, Interest::WRITABLE)?;
///
/// const MSG: &[u8; 11] = b"Hello world";
///
/// loop {
/// poll.poll(&mut events, None)?;
///
/// for event in events.iter() {
/// match event.token() {
/// PIPE_SEND => sender.write(MSG)
/// .and_then(|n| if n != MSG.len() {
/// // We'll consider a short write an error in this
/// // example. NOTE: we can't use `write_all` with
/// // non-blocking I/O.
/// Err(io::ErrorKind::WriteZero.into())
/// } else {
/// Ok(())
/// })?,
/// PIPE_RECV => {
/// let mut buf = [0; 11];
/// let n = receiver.read(&mut buf)?;
/// println!("received: {:?}", &buf[0..n]);
/// assert_eq!(n, MSG.len());
/// assert_eq!(&buf, &*MSG);
/// return Ok(());
/// },
/// _ => unreachable!(),
/// }
/// }
/// }
/// # }
/// ```
///
/// Example that receives an event once the `Sender` is dropped.
///
/// ```
/// # use std::io;
/// #
/// # use mio::{Poll, Events, Interest, Token};
/// # use mio::unix::pipe;
/// #
/// # const PIPE_RECV: Token = Token(0);
/// # const PIPE_SEND: Token = Token(1);
/// #
/// # fn main() -> io::Result<()> {
/// // Same setup as in the example above.
/// let mut poll = Poll::new()?;
/// let mut events = Events::with_capacity(8);
///
/// let (mut sender, mut receiver) = pipe::new()?;
///
/// poll.registry().register(&mut receiver, PIPE_RECV, Interest::READABLE)?;
/// poll.registry().register(&mut sender, PIPE_SEND, Interest::WRITABLE)?;
///
/// // Drop the sender.
/// drop(sender);
///
/// poll.poll(&mut events, None)?;
///
/// for event in events.iter() {
/// match event.token() {
/// PIPE_RECV if event.is_read_closed() => {
/// // Detected that the sender was dropped.
/// println!("Sender dropped!");
/// return Ok(());
/// },
/// _ => unreachable!(),
/// }
/// }
/// # unreachable!();
/// # }
/// ```
pub fn new() -> io::Result<(Sender, Receiver)> {
let fds = new_raw()?;
// SAFETY: `new_raw` initialised the `fds` above.
let r = unsafe { Receiver::from_raw_fd(fds[0]) };
let w = unsafe { Sender::from_raw_fd(fds[1]) };
Ok((w, r))
}
/// Sending end of an Unix pipe.
///
/// See [`new`] for documentation, including examples.
#[derive(Debug)]
pub struct Sender {
inner: IoSource<File>,
}
impl Sender {
/// Set the `Sender` into or out of non-blocking mode.
pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> {
set_nonblocking(self.inner.as_raw_fd(), nonblocking)
}
/// Execute an I/O operation ensuring that the socket receives more events
/// if it hits a [`WouldBlock`] error.
///
/// # Notes
///
/// This method is required to be called for **all** I/O operations to
/// ensure the user will receive events once the socket is ready again after
/// returning a [`WouldBlock`] error.
///
/// [`WouldBlock`]: io::ErrorKind::WouldBlock
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// use std::io;
/// use std::os::fd::AsRawFd;
/// use mio::unix::pipe;
///
/// let (sender, receiver) = pipe::new()?;
///
/// // Wait until the sender is writable...
///
/// // Write to the sender using a direct libc call, of course the
/// // `io::Write` implementation would be easier to use.
/// let buf = b"hello";
/// let n = sender.try_io(|| {
/// let buf_ptr = &buf as *const _ as *const _;
/// let res = unsafe { libc::write(sender.as_raw_fd(), buf_ptr, buf.len()) };
/// if res != -1 {
/// Ok(res as usize)
/// } else {
/// // If EAGAIN or EWOULDBLOCK is set by libc::write, the closure
/// // should return `WouldBlock` error.
/// Err(io::Error::last_os_error())
/// }
/// })?;
/// eprintln!("write {} bytes", n);
///
/// // Wait until the receiver is readable...
///
/// // Read from the receiver using a direct libc call, of course the
/// // `io::Read` implementation would be easier to use.
/// let mut buf = [0; 512];
/// let n = receiver.try_io(|| {
/// let buf_ptr = &mut buf as *mut _ as *mut _;
/// let res = unsafe { libc::read(receiver.as_raw_fd(), buf_ptr, buf.len()) };
/// if res != -1 {
/// Ok(res as usize)
/// } else {
/// // If EAGAIN or EWOULDBLOCK is set by libc::read, the closure
/// // should return `WouldBlock` error.
/// Err(io::Error::last_os_error())
/// }
/// })?;
/// eprintln!("read {} bytes", n);
/// # Ok(())
/// # }
/// ```
pub fn try_io<F, T>(&self, f: F) -> io::Result<T>
where
F: FnOnce() -> io::Result<T>,
{
self.inner.do_io(|_| f())
}
}
impl event::Source for Sender {
fn register(
&mut self,
registry: &Registry,
token: Token,
interests: Interest,
) -> io::Result<()> {
self.inner.register(registry, token, interests)
}
fn reregister(
&mut self,
registry: &Registry,
token: Token,
interests: Interest,
) -> io::Result<()> {
self.inner.reregister(registry, token, interests)
}
fn deregister(&mut self, registry: &Registry) -> io::Result<()> {
self.inner.deregister(registry)
}
}
impl Write for Sender {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.do_io(|mut sender| sender.write(buf))
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
self.inner.do_io(|mut sender| sender.write_vectored(bufs))
}
fn flush(&mut self) -> io::Result<()> {
self.inner.do_io(|mut sender| sender.flush())
}
}
impl Write for &Sender {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.do_io(|mut sender| sender.write(buf))
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
self.inner.do_io(|mut sender| sender.write_vectored(bufs))
}
fn flush(&mut self) -> io::Result<()> {
self.inner.do_io(|mut sender| sender.flush())
}
}
/// # Notes
///
/// The underlying pipe is **not** set to non-blocking.
impl From<ChildStdin> for Sender {
fn from(stdin: ChildStdin) -> Sender {
// Safety: `ChildStdin` is guaranteed to be a valid file descriptor.
unsafe { Sender::from_raw_fd(stdin.into_raw_fd()) }
}
}
impl FromRawFd for Sender {
unsafe fn from_raw_fd(fd: RawFd) -> Sender {
Sender {
inner: IoSource::new(File::from_raw_fd(fd)),
}
}
}
impl AsRawFd for Sender {
fn as_raw_fd(&self) -> RawFd {
self.inner.as_raw_fd()
}
}
impl IntoRawFd for Sender {
fn into_raw_fd(self) -> RawFd {
self.inner.into_inner().into_raw_fd()
}
}
impl AsFd for Sender {
fn as_fd(&self) -> BorrowedFd<'_> {
self.inner.as_fd()
}
}
/// Receiving end of an Unix pipe.
///
/// See [`new`] for documentation, including examples.
#[derive(Debug)]
pub struct Receiver {
inner: IoSource<File>,
}
impl Receiver {
/// Set the `Receiver` into or out of non-blocking mode.
pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> {
set_nonblocking(self.inner.as_raw_fd(), nonblocking)
}
/// Execute an I/O operation ensuring that the socket receives more events
/// if it hits a [`WouldBlock`] error.
///
/// # Notes
///
/// This method is required to be called for **all** I/O operations to
/// ensure the user will receive events once the socket is ready again after
/// returning a [`WouldBlock`] error.
///
/// [`WouldBlock`]: io::ErrorKind::WouldBlock
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// use std::io;
/// use std::os::fd::AsRawFd;
/// use mio::unix::pipe;
///
/// let (sender, receiver) = pipe::new()?;
///
/// // Wait until the sender is writable...
///
/// // Write to the sender using a direct libc call, of course the
/// // `io::Write` implementation would be easier to use.
/// let buf = b"hello";
/// let n = sender.try_io(|| {
/// let buf_ptr = &buf as *const _ as *const _;
/// let res = unsafe { libc::write(sender.as_raw_fd(), buf_ptr, buf.len()) };
/// if res != -1 {
/// Ok(res as usize)
/// } else {
/// // If EAGAIN or EWOULDBLOCK is set by libc::write, the closure
/// // should return `WouldBlock` error.
/// Err(io::Error::last_os_error())
/// }
/// })?;
/// eprintln!("write {} bytes", n);
///
/// // Wait until the receiver is readable...
///
/// // Read from the receiver using a direct libc call, of course the
/// // `io::Read` implementation would be easier to use.
/// let mut buf = [0; 512];
/// let n = receiver.try_io(|| {
/// let buf_ptr = &mut buf as *mut _ as *mut _;
/// let res = unsafe { libc::read(receiver.as_raw_fd(), buf_ptr, buf.len()) };
/// if res != -1 {
/// Ok(res as usize)
/// } else {
/// // If EAGAIN or EWOULDBLOCK is set by libc::read, the closure
/// // should return `WouldBlock` error.
/// Err(io::Error::last_os_error())
/// }
/// })?;
/// eprintln!("read {} bytes", n);
/// # Ok(())
/// # }
/// ```
pub fn try_io<F, T>(&self, f: F) -> io::Result<T>
where
F: FnOnce() -> io::Result<T>,
{
self.inner.do_io(|_| f())
}
}
impl event::Source for Receiver {
fn register(
&mut self,
registry: &Registry,
token: Token,
interests: Interest,
) -> io::Result<()> {
self.inner.register(registry, token, interests)
}
fn reregister(
&mut self,
registry: &Registry,
token: Token,
interests: Interest,
) -> io::Result<()> {
self.inner.reregister(registry, token, interests)
}
fn deregister(&mut self, registry: &Registry) -> io::Result<()> {
self.inner.deregister(registry)
}
}
impl Read for Receiver {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.do_io(|mut sender| sender.read(buf))
}
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
self.inner.do_io(|mut sender| sender.read_vectored(bufs))
}
}
impl Read for &Receiver {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.do_io(|mut sender| sender.read(buf))
}
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
self.inner.do_io(|mut sender| sender.read_vectored(bufs))
}
}
/// # Notes
///
/// The underlying pipe is **not** set to non-blocking.
impl From<ChildStdout> for Receiver {
fn from(stdout: ChildStdout) -> Receiver {
// Safety: `ChildStdout` is guaranteed to be a valid file descriptor.
unsafe { Receiver::from_raw_fd(stdout.into_raw_fd()) }
}
}
/// # Notes
///
/// The underlying pipe is **not** set to non-blocking.
impl From<ChildStderr> for Receiver {
fn from(stderr: ChildStderr) -> Receiver {
// Safety: `ChildStderr` is guaranteed to be a valid file descriptor.
unsafe { Receiver::from_raw_fd(stderr.into_raw_fd()) }
}
}
impl IntoRawFd for Receiver {
fn into_raw_fd(self) -> RawFd {
self.inner.into_inner().into_raw_fd()
}
}
impl AsRawFd for Receiver {
fn as_raw_fd(&self) -> RawFd {
self.inner.as_raw_fd()
}
}
impl FromRawFd for Receiver {
unsafe fn from_raw_fd(fd: RawFd) -> Receiver {
Receiver {
inner: IoSource::new(File::from_raw_fd(fd)),
}
}
}
impl AsFd for Receiver {
fn as_fd(&self) -> BorrowedFd<'_> {
self.inner.as_fd()
}
}
#[cfg(not(any(target_os = "illumos", target_os = "solaris", target_os = "vita")))]
fn set_nonblocking(fd: RawFd, nonblocking: bool) -> io::Result<()> {
let value = nonblocking as libc::c_int;
if unsafe { libc::ioctl(fd, libc::FIONBIO, &value) } == -1 {
Err(io::Error::last_os_error())
} else {
Ok(())
}
}
#[cfg(any(target_os = "illumos", target_os = "solaris", target_os = "vita"))]
fn set_nonblocking(fd: RawFd, nonblocking: bool) -> io::Result<()> {
let flags = unsafe { libc::fcntl(fd, libc::F_GETFL) };
if flags < 0 {
return Err(io::Error::last_os_error());
}
let nflags = if nonblocking {
flags | libc::O_NONBLOCK
} else {
flags & !libc::O_NONBLOCK
};
if flags != nflags {
if unsafe { libc::fcntl(fd, libc::F_SETFL, nflags) } < 0 {
return Err(io::Error::last_os_error());
}
}
Ok(())
}
} // `cfg_os_ext!`.