Source code
Revision control
Copy as Markdown
Other Tools
/* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* j1(x), y1(x)
* Bessel function of the first and second kinds of order zero.
* Method -- j1(x):
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
* for x in (0,2)
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
* for x in (2,inf)
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* as follow:
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (sin(x) + cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j1(nan)= nan
* j1(0) = 0
* j1(inf) = 0
*
* Method -- y1(x):
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
* 2. For x<2.
* Since
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
* We use the following function to approximate y1,
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
* where for x in [0,2] (abs err less than 2**-65.89)
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
* Note: For tiny x, 1/x dominate y1 and hence
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
* 3. For x>=2.
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* by method mentioned above.
*/
use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt};
const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
fn common(ix: u32, x: f64, y1: bool, sign: bool) -> f64 {
let z: f64;
let mut s: f64;
let c: f64;
let mut ss: f64;
let mut cc: f64;
/*
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4))
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4))
*
* sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2)
* cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2)
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
*/
s = sin(x);
if y1 {
s = -s;
}
c = cos(x);
cc = s - c;
if ix < 0x7fe00000 {
/* avoid overflow in 2*x */
ss = -s - c;
z = cos(2.0 * x);
if s * c > 0.0 {
cc = z / ss;
} else {
ss = z / cc;
}
if ix < 0x48000000 {
if y1 {
ss = -ss;
}
cc = pone(x) * cc - qone(x) * ss;
}
}
if sign {
cc = -cc;
}
return INVSQRTPI * cc / sqrt(x);
}
/* R0/S0 on [0,2] */
const R00: f64 = -6.25000000000000000000e-02; /* 0xBFB00000, 0x00000000 */
const R01: f64 = 1.40705666955189706048e-03; /* 0x3F570D9F, 0x98472C61 */
const R02: f64 = -1.59955631084035597520e-05; /* 0xBEF0C5C6, 0xBA169668 */
const R03: f64 = 4.96727999609584448412e-08; /* 0x3E6AAAFA, 0x46CA0BD9 */
const S01: f64 = 1.91537599538363460805e-02; /* 0x3F939D0B, 0x12637E53 */
const S02: f64 = 1.85946785588630915560e-04; /* 0x3F285F56, 0xB9CDF664 */
const S03: f64 = 1.17718464042623683263e-06; /* 0x3EB3BFF8, 0x333F8498 */
const S04: f64 = 5.04636257076217042715e-09; /* 0x3E35AC88, 0xC97DFF2C */
const S05: f64 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
pub fn j1(x: f64) -> f64 {
let mut z: f64;
let r: f64;
let s: f64;
let mut ix: u32;
let sign: bool;
ix = get_high_word(x);
sign = (ix >> 31) != 0;
ix &= 0x7fffffff;
if ix >= 0x7ff00000 {
return 1.0 / (x * x);
}
if ix >= 0x40000000 {
/* |x| >= 2 */
return common(ix, fabs(x), false, sign);
}
if ix >= 0x38000000 {
/* |x| >= 2**-127 */
z = x * x;
r = z * (R00 + z * (R01 + z * (R02 + z * R03)));
s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05))));
z = r / s;
} else {
/* avoid underflow, raise inexact if x!=0 */
z = x;
}
return (0.5 + z) * x;
}
const U0: [f64; 5] = [
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
];
const V0: [f64; 5] = [
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
];
pub fn y1(x: f64) -> f64 {
let z: f64;
let u: f64;
let v: f64;
let ix: u32;
let lx: u32;
ix = get_high_word(x);
lx = get_low_word(x);
/* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
if (ix << 1 | lx) == 0 {
return -1.0 / 0.0;
}
if (ix >> 31) != 0 {
return 0.0 / 0.0;
}
if ix >= 0x7ff00000 {
return 1.0 / x;
}
if ix >= 0x40000000 {
/* x >= 2 */
return common(ix, x, true, false);
}
if ix < 0x3c900000 {
/* x < 2**-54 */
return -TPI / x;
}
z = x * x;
u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
return x * (u / v) + TPI * (j1(x) * log(x) - 1.0 / x);
}
/* For x >= 8, the asymptotic expansions of pone is
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
* We approximate pone by
* pone(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
*/
const PR8: [f64; 6] = [
/* for x in [inf, 8]=1/[0,0.125] */
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
];
const PS8: [f64; 5] = [
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
];
const PR5: [f64; 6] = [
/* for x in [8,4.5454]=1/[0.125,0.22001] */
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
];
const PS5: [f64; 5] = [
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
];
const PR3: [f64; 6] = [
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
];
const PS3: [f64; 5] = [
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
];
const PR2: [f64; 6] = [
/* for x in [2.8570,2]=1/[0.3499,0.5] */
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
];
const PS2: [f64; 5] = [
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
];
fn pone(x: f64) -> f64 {
let p: &[f64; 6];
let q: &[f64; 5];
let z: f64;
let r: f64;
let s: f64;
let mut ix: u32;
ix = get_high_word(x);
ix &= 0x7fffffff;
if ix >= 0x40200000 {
p = &PR8;
q = &PS8;
} else if ix >= 0x40122E8B {
p = &PR5;
q = &PS5;
} else if ix >= 0x4006DB6D {
p = &PR3;
q = &PS3;
} else
/*ix >= 0x40000000*/
{
p = &PR2;
q = &PS2;
}
z = 1.0 / (x * x);
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
return 1.0 + r / s;
}
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate pone by
* qone(x) = s*(0.375 + (R/S))
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs1*s^2 + ... + qs6*s^12
* and
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
*/
const QR8: [f64; 6] = [
/* for x in [inf, 8]=1/[0,0.125] */
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
];
const QS8: [f64; 6] = [
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
];
const QR5: [f64; 6] = [
/* for x in [8,4.5454]=1/[0.125,0.22001] */
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
];
const QS5: [f64; 6] = [
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
];
const QR3: [f64; 6] = [
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
];
const QS3: [f64; 6] = [
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
];
const QR2: [f64; 6] = [
/* for x in [2.8570,2]=1/[0.3499,0.5] */
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
];
const QS2: [f64; 6] = [
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
];
fn qone(x: f64) -> f64 {
let p: &[f64; 6];
let q: &[f64; 6];
let s: f64;
let r: f64;
let z: f64;
let mut ix: u32;
ix = get_high_word(x);
ix &= 0x7fffffff;
if ix >= 0x40200000 {
p = &QR8;
q = &QS8;
} else if ix >= 0x40122E8B {
p = &QR5;
q = &QS5;
} else if ix >= 0x4006DB6D {
p = &QR3;
q = &QS3;
} else
/*ix >= 0x40000000*/
{
p = &QR2;
q = &QS2;
}
z = 1.0 / (x * x);
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
return (0.375 + r / s) / x;
}