Source code

Revision control

Copy as Markdown

Other Tools

use core::{f32, f64};
use super::scalbn;
const ZEROINFNAN: i32 = 0x7ff - 0x3ff - 52 - 1;
struct Num {
m: u64,
e: i32,
sign: i32,
}
fn normalize(x: f64) -> Num {
let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
let mut ix: u64 = x.to_bits();
let mut e: i32 = (ix >> 52) as i32;
let sign: i32 = e & 0x800;
e &= 0x7ff;
if e == 0 {
ix = (x * x1p63).to_bits();
e = (ix >> 52) as i32 & 0x7ff;
e = if e != 0 { e - 63 } else { 0x800 };
}
ix &= (1 << 52) - 1;
ix |= 1 << 52;
ix <<= 1;
e -= 0x3ff + 52 + 1;
Num { m: ix, e, sign }
}
fn mul(x: u64, y: u64) -> (u64, u64) {
let t1: u64;
let t2: u64;
let t3: u64;
let xlo: u64 = x as u32 as u64;
let xhi: u64 = x >> 32;
let ylo: u64 = y as u32 as u64;
let yhi: u64 = y >> 32;
t1 = xlo * ylo;
t2 = xlo * yhi + xhi * ylo;
t3 = xhi * yhi;
let lo = t1.wrapping_add(t2 << 32);
let hi = t3 + (t2 >> 32) + (t1 > lo) as u64;
(hi, lo)
}
/// Floating multiply add (f64)
///
/// Computes `(x*y)+z`, rounded as one ternary operation:
/// Computes the value (as if) to infinite precision and rounds once to the result format,
/// according to the rounding mode characterized by the value of FLT_ROUNDS.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn fma(x: f64, y: f64, z: f64) -> f64 {
let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
let x0_ffffff8p_63 = f64::from_bits(0x3bfffffff0000000); // 0x0.ffffff8p-63
/* normalize so top 10bits and last bit are 0 */
let nx = normalize(x);
let ny = normalize(y);
let nz = normalize(z);
if nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN {
return x * y + z;
}
if nz.e >= ZEROINFNAN {
if nz.e > ZEROINFNAN {
/* z==0 */
return x * y + z;
}
return z;
}
/* mul: r = x*y */
let zhi: u64;
let zlo: u64;
let (mut rhi, mut rlo) = mul(nx.m, ny.m);
/* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
/* align exponents */
let mut e: i32 = nx.e + ny.e;
let mut d: i32 = nz.e - e;
/* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
if d > 0 {
if d < 64 {
zlo = nz.m << d;
zhi = nz.m >> (64 - d);
} else {
zlo = 0;
zhi = nz.m;
e = nz.e - 64;
d -= 64;
if d == 0 {
} else if d < 64 {
rlo = rhi << (64 - d) | rlo >> d | ((rlo << (64 - d)) != 0) as u64;
rhi = rhi >> d;
} else {
rlo = 1;
rhi = 0;
}
}
} else {
zhi = 0;
d = -d;
if d == 0 {
zlo = nz.m;
} else if d < 64 {
zlo = nz.m >> d | ((nz.m << (64 - d)) != 0) as u64;
} else {
zlo = 1;
}
}
/* add */
let mut sign: i32 = nx.sign ^ ny.sign;
let samesign: bool = (sign ^ nz.sign) == 0;
let mut nonzero: i32 = 1;
if samesign {
/* r += z */
rlo = rlo.wrapping_add(zlo);
rhi += zhi + (rlo < zlo) as u64;
} else {
/* r -= z */
let (res, borrow) = rlo.overflowing_sub(zlo);
rlo = res;
rhi = rhi.wrapping_sub(zhi.wrapping_add(borrow as u64));
if (rhi >> 63) != 0 {
rlo = (rlo as i64).wrapping_neg() as u64;
rhi = (rhi as i64).wrapping_neg() as u64 - (rlo != 0) as u64;
sign = (sign == 0) as i32;
}
nonzero = (rhi != 0) as i32;
}
/* set rhi to top 63bit of the result (last bit is sticky) */
if nonzero != 0 {
e += 64;
d = rhi.leading_zeros() as i32 - 1;
/* note: d > 0 */
rhi = rhi << d | rlo >> (64 - d) | ((rlo << d) != 0) as u64;
} else if rlo != 0 {
d = rlo.leading_zeros() as i32 - 1;
if d < 0 {
rhi = rlo >> 1 | (rlo & 1);
} else {
rhi = rlo << d;
}
} else {
/* exact +-0 */
return x * y + z;
}
e -= d;
/* convert to double */
let mut i: i64 = rhi as i64; /* i is in [1<<62,(1<<63)-1] */
if sign != 0 {
i = -i;
}
let mut r: f64 = i as f64; /* |r| is in [0x1p62,0x1p63] */
if e < -1022 - 62 {
/* result is subnormal before rounding */
if e == -1022 - 63 {
let mut c: f64 = x1p63;
if sign != 0 {
c = -c;
}
if r == c {
/* min normal after rounding, underflow depends
on arch behaviour which can be imitated by
a double to float conversion */
let fltmin: f32 = (x0_ffffff8p_63 * f32::MIN_POSITIVE as f64 * r) as f32;
return f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * fltmin as f64;
}
/* one bit is lost when scaled, add another top bit to
only round once at conversion if it is inexact */
if (rhi << 53) != 0 {
i = (rhi >> 1 | (rhi & 1) | 1 << 62) as i64;
if sign != 0 {
i = -i;
}
r = i as f64;
r = 2. * r - c; /* remove top bit */
/* raise underflow portably, such that it
cannot be optimized away */
{
let tiny: f64 = f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * r;
r += (tiny * tiny) * (r - r);
}
}
} else {
/* only round once when scaled */
d = 10;
i = ((rhi >> d | ((rhi << (64 - d)) != 0) as u64) << d) as i64;
if sign != 0 {
i = -i;
}
r = i as f64;
}
}
scalbn(r, e)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn fma_segfault() {
// These two inputs cause fma to segfault on release due to overflow:
assert_eq!(
fma(
-0.0000000000000002220446049250313,
-0.0000000000000002220446049250313,
-0.0000000000000002220446049250313
),
-0.00000000000000022204460492503126,
);
let result = fma(-0.992, -0.992, -0.992);
//force rounding to storage format on x87 to prevent superious errors.
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
let result = force_eval!(result);
assert_eq!(result, -0.007936000000000007,);
}
#[test]
fn fma_sbb() {
assert_eq!(
fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN),
-3991680619069439e277
);
}
#[test]
fn fma_underflow() {
assert_eq!(
fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320),
0.0,
);
}
}