Source code

Revision control

Copy as Markdown

Other Tools

use crate::{bf16, f16};
use core::cmp::Ordering;
use core::{num::FpCategory, ops::Div};
use num_traits::{
AsPrimitive, Bounded, FloatConst, FromPrimitive, Num, NumCast, One, ToPrimitive, Zero,
};
impl ToPrimitive for f16 {
#[inline]
fn to_i64(&self) -> Option<i64> {
Self::to_f32(*self).to_i64()
}
#[inline]
fn to_u64(&self) -> Option<u64> {
Self::to_f32(*self).to_u64()
}
#[inline]
fn to_i8(&self) -> Option<i8> {
Self::to_f32(*self).to_i8()
}
#[inline]
fn to_u8(&self) -> Option<u8> {
Self::to_f32(*self).to_u8()
}
#[inline]
fn to_i16(&self) -> Option<i16> {
Self::to_f32(*self).to_i16()
}
#[inline]
fn to_u16(&self) -> Option<u16> {
Self::to_f32(*self).to_u16()
}
#[inline]
fn to_i32(&self) -> Option<i32> {
Self::to_f32(*self).to_i32()
}
#[inline]
fn to_u32(&self) -> Option<u32> {
Self::to_f32(*self).to_u32()
}
#[inline]
fn to_f32(&self) -> Option<f32> {
Some(Self::to_f32(*self))
}
#[inline]
fn to_f64(&self) -> Option<f64> {
Some(Self::to_f64(*self))
}
}
impl FromPrimitive for f16 {
#[inline]
fn from_i64(n: i64) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_u64(n: u64) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_i8(n: i8) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_u8(n: u8) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_i16(n: i16) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_u16(n: u16) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_i32(n: i32) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_u32(n: u32) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_f32(n: f32) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_f64(n: f64) -> Option<Self> {
n.to_f64().map(Self::from_f64)
}
}
impl Num for f16 {
type FromStrRadixErr = <f32 as Num>::FromStrRadixErr;
#[inline]
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
Ok(Self::from_f32(f32::from_str_radix(str, radix)?))
}
}
impl One for f16 {
#[inline]
fn one() -> Self {
Self::ONE
}
}
impl Zero for f16 {
#[inline]
fn zero() -> Self {
Self::ZERO
}
#[inline]
fn is_zero(&self) -> bool {
*self == Self::ZERO
}
}
impl NumCast for f16 {
#[inline]
fn from<T: ToPrimitive>(n: T) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
}
impl num_traits::float::FloatCore for f16 {
#[inline]
fn infinity() -> Self {
Self::INFINITY
}
#[inline]
fn neg_infinity() -> Self {
Self::NEG_INFINITY
}
#[inline]
fn nan() -> Self {
Self::NAN
}
#[inline]
fn neg_zero() -> Self {
Self::NEG_ZERO
}
#[inline]
fn min_value() -> Self {
Self::MIN
}
#[inline]
fn min_positive_value() -> Self {
Self::MIN_POSITIVE
}
#[inline]
fn epsilon() -> Self {
Self::EPSILON
}
#[inline]
fn max_value() -> Self {
Self::MAX
}
#[inline]
fn is_nan(self) -> bool {
self.is_nan()
}
#[inline]
fn is_infinite(self) -> bool {
self.is_infinite()
}
#[inline]
fn is_finite(self) -> bool {
self.is_finite()
}
#[inline]
fn is_normal(self) -> bool {
self.is_normal()
}
#[inline]
fn classify(self) -> FpCategory {
self.classify()
}
#[inline]
fn floor(self) -> Self {
Self::from_f32(self.to_f32().floor())
}
#[inline]
fn ceil(self) -> Self {
Self::from_f32(self.to_f32().ceil())
}
#[inline]
fn round(self) -> Self {
Self::from_f32(self.to_f32().round())
}
#[inline]
fn trunc(self) -> Self {
Self::from_f32(self.to_f32().trunc())
}
#[inline]
fn fract(self) -> Self {
Self::from_f32(self.to_f32().fract())
}
#[inline]
fn abs(self) -> Self {
Self::from_bits(self.to_bits() & 0x7FFF)
}
#[inline]
fn signum(self) -> Self {
self.signum()
}
#[inline]
fn is_sign_positive(self) -> bool {
self.is_sign_positive()
}
#[inline]
fn is_sign_negative(self) -> bool {
self.is_sign_negative()
}
fn min(self, other: Self) -> Self {
match self.partial_cmp(&other) {
None => {
if self.is_nan() {
other
} else {
self
}
}
Some(Ordering::Greater) | Some(Ordering::Equal) => other,
Some(Ordering::Less) => self,
}
}
fn max(self, other: Self) -> Self {
match self.partial_cmp(&other) {
None => {
if self.is_nan() {
other
} else {
self
}
}
Some(Ordering::Greater) | Some(Ordering::Equal) => self,
Some(Ordering::Less) => other,
}
}
#[inline]
fn recip(self) -> Self {
Self::from_f32(self.to_f32().recip())
}
#[inline]
fn powi(self, exp: i32) -> Self {
Self::from_f32(self.to_f32().powi(exp))
}
#[inline]
fn to_degrees(self) -> Self {
Self::from_f32(self.to_f32().to_degrees())
}
#[inline]
fn to_radians(self) -> Self {
Self::from_f32(self.to_f32().to_radians())
}
#[inline]
fn integer_decode(self) -> (u64, i16, i8) {
num_traits::float::FloatCore::integer_decode(self.to_f32())
}
}
impl num_traits::float::Float for f16 {
#[inline]
fn nan() -> Self {
Self::NAN
}
#[inline]
fn infinity() -> Self {
Self::INFINITY
}
#[inline]
fn neg_infinity() -> Self {
Self::NEG_INFINITY
}
#[inline]
fn neg_zero() -> Self {
Self::NEG_ZERO
}
#[inline]
fn min_value() -> Self {
Self::MIN
}
#[inline]
fn min_positive_value() -> Self {
Self::MIN_POSITIVE
}
#[inline]
fn epsilon() -> Self {
Self::EPSILON
}
#[inline]
fn max_value() -> Self {
Self::MAX
}
#[inline]
fn is_nan(self) -> bool {
self.is_nan()
}
#[inline]
fn is_infinite(self) -> bool {
self.is_infinite()
}
#[inline]
fn is_finite(self) -> bool {
self.is_finite()
}
#[inline]
fn is_normal(self) -> bool {
self.is_normal()
}
#[inline]
fn classify(self) -> FpCategory {
self.classify()
}
#[inline]
fn floor(self) -> Self {
Self::from_f32(self.to_f32().floor())
}
#[inline]
fn ceil(self) -> Self {
Self::from_f32(self.to_f32().ceil())
}
#[inline]
fn round(self) -> Self {
Self::from_f32(self.to_f32().round())
}
#[inline]
fn trunc(self) -> Self {
Self::from_f32(self.to_f32().trunc())
}
#[inline]
fn fract(self) -> Self {
Self::from_f32(self.to_f32().fract())
}
#[inline]
fn abs(self) -> Self {
Self::from_f32(self.to_f32().abs())
}
#[inline]
fn signum(self) -> Self {
Self::from_f32(self.to_f32().signum())
}
#[inline]
fn is_sign_positive(self) -> bool {
self.is_sign_positive()
}
#[inline]
fn is_sign_negative(self) -> bool {
self.is_sign_negative()
}
#[inline]
fn mul_add(self, a: Self, b: Self) -> Self {
Self::from_f32(self.to_f32().mul_add(a.to_f32(), b.to_f32()))
}
#[inline]
fn recip(self) -> Self {
Self::from_f32(self.to_f32().recip())
}
#[inline]
fn powi(self, n: i32) -> Self {
Self::from_f32(self.to_f32().powi(n))
}
#[inline]
fn powf(self, n: Self) -> Self {
Self::from_f32(self.to_f32().powf(n.to_f32()))
}
#[inline]
fn sqrt(self) -> Self {
Self::from_f32(self.to_f32().sqrt())
}
#[inline]
fn exp(self) -> Self {
Self::from_f32(self.to_f32().exp())
}
#[inline]
fn exp2(self) -> Self {
Self::from_f32(self.to_f32().exp2())
}
#[inline]
fn ln(self) -> Self {
Self::from_f32(self.to_f32().ln())
}
#[inline]
fn log(self, base: Self) -> Self {
Self::from_f32(self.to_f32().log(base.to_f32()))
}
#[inline]
fn log2(self) -> Self {
Self::from_f32(self.to_f32().log2())
}
#[inline]
fn log10(self) -> Self {
Self::from_f32(self.to_f32().log10())
}
#[inline]
fn to_degrees(self) -> Self {
Self::from_f32(self.to_f32().to_degrees())
}
#[inline]
fn to_radians(self) -> Self {
Self::from_f32(self.to_f32().to_radians())
}
#[inline]
fn max(self, other: Self) -> Self {
self.max(other)
}
#[inline]
fn min(self, other: Self) -> Self {
self.min(other)
}
#[inline]
fn abs_sub(self, other: Self) -> Self {
Self::from_f32((self.to_f32() - other.to_f32()).max(0.0))
}
#[inline]
fn cbrt(self) -> Self {
Self::from_f32(self.to_f32().cbrt())
}
#[inline]
fn hypot(self, other: Self) -> Self {
Self::from_f32(self.to_f32().hypot(other.to_f32()))
}
#[inline]
fn sin(self) -> Self {
Self::from_f32(self.to_f32().sin())
}
#[inline]
fn cos(self) -> Self {
Self::from_f32(self.to_f32().cos())
}
#[inline]
fn tan(self) -> Self {
Self::from_f32(self.to_f32().tan())
}
#[inline]
fn asin(self) -> Self {
Self::from_f32(self.to_f32().asin())
}
#[inline]
fn acos(self) -> Self {
Self::from_f32(self.to_f32().acos())
}
#[inline]
fn atan(self) -> Self {
Self::from_f32(self.to_f32().atan())
}
#[inline]
fn atan2(self, other: Self) -> Self {
Self::from_f32(self.to_f32().atan2(other.to_f32()))
}
#[inline]
fn sin_cos(self) -> (Self, Self) {
let (sin, cos) = self.to_f32().sin_cos();
(Self::from_f32(sin), Self::from_f32(cos))
}
#[inline]
fn exp_m1(self) -> Self {
Self::from_f32(self.to_f32().exp_m1())
}
#[inline]
fn ln_1p(self) -> Self {
Self::from_f32(self.to_f32().ln_1p())
}
#[inline]
fn sinh(self) -> Self {
Self::from_f32(self.to_f32().sinh())
}
#[inline]
fn cosh(self) -> Self {
Self::from_f32(self.to_f32().cosh())
}
#[inline]
fn tanh(self) -> Self {
Self::from_f32(self.to_f32().tanh())
}
#[inline]
fn asinh(self) -> Self {
Self::from_f32(self.to_f32().asinh())
}
#[inline]
fn acosh(self) -> Self {
Self::from_f32(self.to_f32().acosh())
}
#[inline]
fn atanh(self) -> Self {
Self::from_f32(self.to_f32().atanh())
}
#[inline]
fn integer_decode(self) -> (u64, i16, i8) {
num_traits::float::Float::integer_decode(self.to_f32())
}
}
impl FloatConst for f16 {
#[inline]
fn E() -> Self {
Self::E
}
#[inline]
fn FRAC_1_PI() -> Self {
Self::FRAC_1_PI
}
#[inline]
fn FRAC_1_SQRT_2() -> Self {
Self::FRAC_1_SQRT_2
}
#[inline]
fn FRAC_2_PI() -> Self {
Self::FRAC_2_PI
}
#[inline]
fn FRAC_2_SQRT_PI() -> Self {
Self::FRAC_2_SQRT_PI
}
#[inline]
fn FRAC_PI_2() -> Self {
Self::FRAC_PI_2
}
#[inline]
fn FRAC_PI_3() -> Self {
Self::FRAC_PI_3
}
#[inline]
fn FRAC_PI_4() -> Self {
Self::FRAC_PI_4
}
#[inline]
fn FRAC_PI_6() -> Self {
Self::FRAC_PI_6
}
#[inline]
fn FRAC_PI_8() -> Self {
Self::FRAC_PI_8
}
#[inline]
fn LN_10() -> Self {
Self::LN_10
}
#[inline]
fn LN_2() -> Self {
Self::LN_2
}
#[inline]
fn LOG10_E() -> Self {
Self::LOG10_E
}
#[inline]
fn LOG2_E() -> Self {
Self::LOG2_E
}
#[inline]
fn PI() -> Self {
Self::PI
}
fn SQRT_2() -> Self {
Self::SQRT_2
}
#[inline]
fn LOG10_2() -> Self
where
Self: Sized + Div<Self, Output = Self>,
{
Self::LOG10_2
}
#[inline]
fn LOG2_10() -> Self
where
Self: Sized + Div<Self, Output = Self>,
{
Self::LOG2_10
}
}
impl Bounded for f16 {
#[inline]
fn min_value() -> Self {
f16::MIN
}
#[inline]
fn max_value() -> Self {
f16::MAX
}
}
macro_rules! impl_as_primitive_to_f16 {
($ty:ty, $meth:ident) => {
impl AsPrimitive<$ty> for f16 {
#[inline]
fn as_(self) -> $ty {
self.$meth().as_()
}
}
};
}
impl_as_primitive_to_f16!(i64, to_f32);
impl_as_primitive_to_f16!(u64, to_f32);
impl_as_primitive_to_f16!(i8, to_f32);
impl_as_primitive_to_f16!(u8, to_f32);
impl_as_primitive_to_f16!(i16, to_f32);
impl_as_primitive_to_f16!(u16, to_f32);
impl_as_primitive_to_f16!(i32, to_f32);
impl_as_primitive_to_f16!(u32, to_f32);
impl_as_primitive_to_f16!(f32, to_f32);
impl_as_primitive_to_f16!(f64, to_f64);
macro_rules! impl_as_primitive_f16_from {
($ty:ty, $meth:ident) => {
impl AsPrimitive<f16> for $ty {
#[inline]
fn as_(self) -> f16 {
f16::$meth(self.as_())
}
}
};
}
impl_as_primitive_f16_from!(i64, from_f32);
impl_as_primitive_f16_from!(u64, from_f32);
impl_as_primitive_f16_from!(i8, from_f32);
impl_as_primitive_f16_from!(u8, from_f32);
impl_as_primitive_f16_from!(i16, from_f32);
impl_as_primitive_f16_from!(u16, from_f32);
impl_as_primitive_f16_from!(i32, from_f32);
impl_as_primitive_f16_from!(u32, from_f32);
impl_as_primitive_f16_from!(f32, from_f32);
impl_as_primitive_f16_from!(f64, from_f64);
impl ToPrimitive for bf16 {
#[inline]
fn to_i64(&self) -> Option<i64> {
Self::to_f32(*self).to_i64()
}
#[inline]
fn to_u64(&self) -> Option<u64> {
Self::to_f32(*self).to_u64()
}
#[inline]
fn to_i8(&self) -> Option<i8> {
Self::to_f32(*self).to_i8()
}
#[inline]
fn to_u8(&self) -> Option<u8> {
Self::to_f32(*self).to_u8()
}
#[inline]
fn to_i16(&self) -> Option<i16> {
Self::to_f32(*self).to_i16()
}
#[inline]
fn to_u16(&self) -> Option<u16> {
Self::to_f32(*self).to_u16()
}
#[inline]
fn to_i32(&self) -> Option<i32> {
Self::to_f32(*self).to_i32()
}
#[inline]
fn to_u32(&self) -> Option<u32> {
Self::to_f32(*self).to_u32()
}
#[inline]
fn to_f32(&self) -> Option<f32> {
Some(Self::to_f32(*self))
}
#[inline]
fn to_f64(&self) -> Option<f64> {
Some(Self::to_f64(*self))
}
}
impl FromPrimitive for bf16 {
#[inline]
fn from_i64(n: i64) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_u64(n: u64) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_i8(n: i8) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_u8(n: u8) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_i16(n: i16) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_u16(n: u16) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_i32(n: i32) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_u32(n: u32) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_f32(n: f32) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
#[inline]
fn from_f64(n: f64) -> Option<Self> {
n.to_f64().map(Self::from_f64)
}
}
impl Num for bf16 {
type FromStrRadixErr = <f32 as Num>::FromStrRadixErr;
#[inline]
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
Ok(Self::from_f32(f32::from_str_radix(str, radix)?))
}
}
impl One for bf16 {
#[inline]
fn one() -> Self {
Self::ONE
}
}
impl Zero for bf16 {
#[inline]
fn zero() -> Self {
Self::ZERO
}
#[inline]
fn is_zero(&self) -> bool {
*self == Self::ZERO
}
}
impl NumCast for bf16 {
#[inline]
fn from<T: ToPrimitive>(n: T) -> Option<Self> {
n.to_f32().map(Self::from_f32)
}
}
impl num_traits::float::FloatCore for bf16 {
#[inline]
fn infinity() -> Self {
Self::INFINITY
}
#[inline]
fn neg_infinity() -> Self {
Self::NEG_INFINITY
}
#[inline]
fn nan() -> Self {
Self::NAN
}
#[inline]
fn neg_zero() -> Self {
Self::NEG_ZERO
}
#[inline]
fn min_value() -> Self {
Self::MIN
}
#[inline]
fn min_positive_value() -> Self {
Self::MIN_POSITIVE
}
#[inline]
fn epsilon() -> Self {
Self::EPSILON
}
#[inline]
fn max_value() -> Self {
Self::MAX
}
#[inline]
fn is_nan(self) -> bool {
self.is_nan()
}
#[inline]
fn is_infinite(self) -> bool {
self.is_infinite()
}
#[inline]
fn is_finite(self) -> bool {
self.is_finite()
}
#[inline]
fn is_normal(self) -> bool {
self.is_normal()
}
#[inline]
fn classify(self) -> FpCategory {
self.classify()
}
#[inline]
fn floor(self) -> Self {
Self::from_f32(self.to_f32().floor())
}
#[inline]
fn ceil(self) -> Self {
Self::from_f32(self.to_f32().ceil())
}
#[inline]
fn round(self) -> Self {
Self::from_f32(self.to_f32().round())
}
#[inline]
fn trunc(self) -> Self {
Self::from_f32(self.to_f32().trunc())
}
#[inline]
fn fract(self) -> Self {
Self::from_f32(self.to_f32().fract())
}
#[inline]
fn abs(self) -> Self {
Self::from_bits(self.to_bits() & 0x7FFF)
}
#[inline]
fn signum(self) -> Self {
self.signum()
}
#[inline]
fn is_sign_positive(self) -> bool {
self.is_sign_positive()
}
#[inline]
fn is_sign_negative(self) -> bool {
self.is_sign_negative()
}
fn min(self, other: Self) -> Self {
match self.partial_cmp(&other) {
None => {
if self.is_nan() {
other
} else {
self
}
}
Some(Ordering::Greater) | Some(Ordering::Equal) => other,
Some(Ordering::Less) => self,
}
}
fn max(self, other: Self) -> Self {
match self.partial_cmp(&other) {
None => {
if self.is_nan() {
other
} else {
self
}
}
Some(Ordering::Greater) | Some(Ordering::Equal) => self,
Some(Ordering::Less) => other,
}
}
#[inline]
fn recip(self) -> Self {
Self::from_f32(self.to_f32().recip())
}
#[inline]
fn powi(self, exp: i32) -> Self {
Self::from_f32(self.to_f32().powi(exp))
}
#[inline]
fn to_degrees(self) -> Self {
Self::from_f32(self.to_f32().to_degrees())
}
#[inline]
fn to_radians(self) -> Self {
Self::from_f32(self.to_f32().to_radians())
}
#[inline]
fn integer_decode(self) -> (u64, i16, i8) {
num_traits::float::FloatCore::integer_decode(self.to_f32())
}
}
impl num_traits::float::Float for bf16 {
#[inline]
fn nan() -> Self {
Self::NAN
}
#[inline]
fn infinity() -> Self {
Self::INFINITY
}
#[inline]
fn neg_infinity() -> Self {
Self::NEG_INFINITY
}
#[inline]
fn neg_zero() -> Self {
Self::NEG_ZERO
}
#[inline]
fn min_value() -> Self {
Self::MIN
}
#[inline]
fn min_positive_value() -> Self {
Self::MIN_POSITIVE
}
#[inline]
fn epsilon() -> Self {
Self::EPSILON
}
#[inline]
fn max_value() -> Self {
Self::MAX
}
#[inline]
fn is_nan(self) -> bool {
self.is_nan()
}
#[inline]
fn is_infinite(self) -> bool {
self.is_infinite()
}
#[inline]
fn is_finite(self) -> bool {
self.is_finite()
}
#[inline]
fn is_normal(self) -> bool {
self.is_normal()
}
#[inline]
fn classify(self) -> FpCategory {
self.classify()
}
#[inline]
fn floor(self) -> Self {
Self::from_f32(self.to_f32().floor())
}
#[inline]
fn ceil(self) -> Self {
Self::from_f32(self.to_f32().ceil())
}
#[inline]
fn round(self) -> Self {
Self::from_f32(self.to_f32().round())
}
#[inline]
fn trunc(self) -> Self {
Self::from_f32(self.to_f32().trunc())
}
#[inline]
fn fract(self) -> Self {
Self::from_f32(self.to_f32().fract())
}
#[inline]
fn abs(self) -> Self {
Self::from_f32(self.to_f32().abs())
}
#[inline]
fn signum(self) -> Self {
Self::from_f32(self.to_f32().signum())
}
#[inline]
fn is_sign_positive(self) -> bool {
self.is_sign_positive()
}
#[inline]
fn is_sign_negative(self) -> bool {
self.is_sign_negative()
}
#[inline]
fn mul_add(self, a: Self, b: Self) -> Self {
Self::from_f32(self.to_f32().mul_add(a.to_f32(), b.to_f32()))
}
#[inline]
fn recip(self) -> Self {
Self::from_f32(self.to_f32().recip())
}
#[inline]
fn powi(self, n: i32) -> Self {
Self::from_f32(self.to_f32().powi(n))
}
#[inline]
fn powf(self, n: Self) -> Self {
Self::from_f32(self.to_f32().powf(n.to_f32()))
}
#[inline]
fn sqrt(self) -> Self {
Self::from_f32(self.to_f32().sqrt())
}
#[inline]
fn exp(self) -> Self {
Self::from_f32(self.to_f32().exp())
}
#[inline]
fn exp2(self) -> Self {
Self::from_f32(self.to_f32().exp2())
}
#[inline]
fn ln(self) -> Self {
Self::from_f32(self.to_f32().ln())
}
#[inline]
fn log(self, base: Self) -> Self {
Self::from_f32(self.to_f32().log(base.to_f32()))
}
#[inline]
fn log2(self) -> Self {
Self::from_f32(self.to_f32().log2())
}
#[inline]
fn log10(self) -> Self {
Self::from_f32(self.to_f32().log10())
}
#[inline]
fn to_degrees(self) -> Self {
Self::from_f32(self.to_f32().to_degrees())
}
#[inline]
fn to_radians(self) -> Self {
Self::from_f32(self.to_f32().to_radians())
}
#[inline]
fn max(self, other: Self) -> Self {
self.max(other)
}
#[inline]
fn min(self, other: Self) -> Self {
self.min(other)
}
#[inline]
fn abs_sub(self, other: Self) -> Self {
Self::from_f32((self.to_f32() - other.to_f32()).max(0.0))
}
#[inline]
fn cbrt(self) -> Self {
Self::from_f32(self.to_f32().cbrt())
}
#[inline]
fn hypot(self, other: Self) -> Self {
Self::from_f32(self.to_f32().hypot(other.to_f32()))
}
#[inline]
fn sin(self) -> Self {
Self::from_f32(self.to_f32().sin())
}
#[inline]
fn cos(self) -> Self {
Self::from_f32(self.to_f32().cos())
}
#[inline]
fn tan(self) -> Self {
Self::from_f32(self.to_f32().tan())
}
#[inline]
fn asin(self) -> Self {
Self::from_f32(self.to_f32().asin())
}
#[inline]
fn acos(self) -> Self {
Self::from_f32(self.to_f32().acos())
}
#[inline]
fn atan(self) -> Self {
Self::from_f32(self.to_f32().atan())
}
#[inline]
fn atan2(self, other: Self) -> Self {
Self::from_f32(self.to_f32().atan2(other.to_f32()))
}
#[inline]
fn sin_cos(self) -> (Self, Self) {
let (sin, cos) = self.to_f32().sin_cos();
(Self::from_f32(sin), Self::from_f32(cos))
}
#[inline]
fn exp_m1(self) -> Self {
Self::from_f32(self.to_f32().exp_m1())
}
#[inline]
fn ln_1p(self) -> Self {
Self::from_f32(self.to_f32().ln_1p())
}
#[inline]
fn sinh(self) -> Self {
Self::from_f32(self.to_f32().sinh())
}
#[inline]
fn cosh(self) -> Self {
Self::from_f32(self.to_f32().cosh())
}
#[inline]
fn tanh(self) -> Self {
Self::from_f32(self.to_f32().tanh())
}
#[inline]
fn asinh(self) -> Self {
Self::from_f32(self.to_f32().asinh())
}
#[inline]
fn acosh(self) -> Self {
Self::from_f32(self.to_f32().acosh())
}
#[inline]
fn atanh(self) -> Self {
Self::from_f32(self.to_f32().atanh())
}
#[inline]
fn integer_decode(self) -> (u64, i16, i8) {
num_traits::float::Float::integer_decode(self.to_f32())
}
}
impl FloatConst for bf16 {
#[inline]
fn E() -> Self {
Self::E
}
#[inline]
fn FRAC_1_PI() -> Self {
Self::FRAC_1_PI
}
#[inline]
fn FRAC_1_SQRT_2() -> Self {
Self::FRAC_1_SQRT_2
}
#[inline]
fn FRAC_2_PI() -> Self {
Self::FRAC_2_PI
}
#[inline]
fn FRAC_2_SQRT_PI() -> Self {
Self::FRAC_2_SQRT_PI
}
#[inline]
fn FRAC_PI_2() -> Self {
Self::FRAC_PI_2
}
#[inline]
fn FRAC_PI_3() -> Self {
Self::FRAC_PI_3
}
#[inline]
fn FRAC_PI_4() -> Self {
Self::FRAC_PI_4
}
#[inline]
fn FRAC_PI_6() -> Self {
Self::FRAC_PI_6
}
#[inline]
fn FRAC_PI_8() -> Self {
Self::FRAC_PI_8
}
#[inline]
fn LN_10() -> Self {
Self::LN_10
}
#[inline]
fn LN_2() -> Self {
Self::LN_2
}
#[inline]
fn LOG10_E() -> Self {
Self::LOG10_E
}
#[inline]
fn LOG2_E() -> Self {
Self::LOG2_E
}
#[inline]
fn PI() -> Self {
Self::PI
}
#[inline]
fn SQRT_2() -> Self {
Self::SQRT_2
}
#[inline]
fn LOG10_2() -> Self
where
Self: Sized + Div<Self, Output = Self>,
{
Self::LOG10_2
}
#[inline]
fn LOG2_10() -> Self
where
Self: Sized + Div<Self, Output = Self>,
{
Self::LOG2_10
}
}
impl Bounded for bf16 {
#[inline]
fn min_value() -> Self {
bf16::MIN
}
#[inline]
fn max_value() -> Self {
bf16::MAX
}
}
macro_rules! impl_as_primitive_to_bf16 {
($ty:ty, $meth:ident) => {
impl AsPrimitive<$ty> for bf16 {
#[inline]
fn as_(self) -> $ty {
self.$meth().as_()
}
}
};
}
impl_as_primitive_to_bf16!(i64, to_f32);
impl_as_primitive_to_bf16!(u64, to_f32);
impl_as_primitive_to_bf16!(i8, to_f32);
impl_as_primitive_to_bf16!(u8, to_f32);
impl_as_primitive_to_bf16!(i16, to_f32);
impl_as_primitive_to_bf16!(u16, to_f32);
impl_as_primitive_to_bf16!(i32, to_f32);
impl_as_primitive_to_bf16!(u32, to_f32);
impl_as_primitive_to_bf16!(f32, to_f32);
impl_as_primitive_to_bf16!(f64, to_f64);
macro_rules! impl_as_primitive_bf16_from {
($ty:ty, $meth:ident) => {
impl AsPrimitive<bf16> for $ty {
#[inline]
fn as_(self) -> bf16 {
bf16::$meth(self.as_())
}
}
};
}
impl_as_primitive_bf16_from!(i64, from_f32);
impl_as_primitive_bf16_from!(u64, from_f32);
impl_as_primitive_bf16_from!(i8, from_f32);
impl_as_primitive_bf16_from!(u8, from_f32);
impl_as_primitive_bf16_from!(i16, from_f32);
impl_as_primitive_bf16_from!(u16, from_f32);
impl_as_primitive_bf16_from!(i32, from_f32);
impl_as_primitive_bf16_from!(u32, from_f32);
impl_as_primitive_bf16_from!(f32, from_f32);
impl_as_primitive_bf16_from!(f64, from_f64);