Source code
Revision control
Copy as Markdown
Other Tools
use super::recv::RecvHeaderBlockError;
use super::store::{self, Entry, Resolve, Store};
use super::{Buffer, Config, Counts, Prioritized, Recv, Send, Stream, StreamId};
use crate::codec::{Codec, SendError, UserError};
use crate::ext::Protocol;
use crate::frame::{self, Frame, Reason};
use crate::proto::{peer, Error, Initiator, Open, Peer, WindowSize};
use crate::{client, proto, server};
use bytes::{Buf, Bytes};
use http::{HeaderMap, Request, Response};
use std::task::{Context, Poll, Waker};
use tokio::io::AsyncWrite;
use std::sync::{Arc, Mutex};
use std::{fmt, io};
#[derive(Debug)]
pub(crate) struct Streams<B, P>
where
P: Peer,
{
/// Holds most of the connection and stream related state for processing
/// HTTP/2 frames associated with streams.
inner: Arc<Mutex<Inner>>,
/// This is the queue of frames to be written to the wire. This is split out
/// to avoid requiring a `B` generic on all public API types even if `B` is
/// not technically required.
///
/// Currently, splitting this out requires a second `Arc` + `Mutex`.
/// However, it should be possible to avoid this duplication with a little
/// bit of unsafe code. This optimization has been postponed until it has
/// been shown to be necessary.
send_buffer: Arc<SendBuffer<B>>,
_p: ::std::marker::PhantomData<P>,
}
// Like `Streams` but with a `peer::Dyn` field instead of a static `P: Peer` type parameter.
// Ensures that the methods only get one instantiation, instead of two (client and server)
#[derive(Debug)]
pub(crate) struct DynStreams<'a, B> {
inner: &'a Mutex<Inner>,
send_buffer: &'a SendBuffer<B>,
peer: peer::Dyn,
}
/// Reference to the stream state
#[derive(Debug)]
pub(crate) struct StreamRef<B> {
opaque: OpaqueStreamRef,
send_buffer: Arc<SendBuffer<B>>,
}
/// Reference to the stream state that hides the send data chunk generic
pub(crate) struct OpaqueStreamRef {
inner: Arc<Mutex<Inner>>,
key: store::Key,
}
/// Fields needed to manage state related to managing the set of streams. This
/// is mostly split out to make ownership happy.
///
/// TODO: better name
#[derive(Debug)]
struct Inner {
/// Tracks send & recv stream concurrency.
counts: Counts,
/// Connection level state and performs actions on streams
actions: Actions,
/// Stores stream state
store: Store,
/// The number of stream refs to this shared state.
refs: usize,
}
#[derive(Debug)]
struct Actions {
/// Manages state transitions initiated by receiving frames
recv: Recv,
/// Manages state transitions initiated by sending frames
send: Send,
/// Task that calls `poll_complete`.
task: Option<Waker>,
/// If the connection errors, a copy is kept for any StreamRefs.
conn_error: Option<proto::Error>,
}
/// Contains the buffer of frames to be written to the wire.
#[derive(Debug)]
struct SendBuffer<B> {
inner: Mutex<Buffer<Frame<B>>>,
}
// ===== impl Streams =====
impl<B, P> Streams<B, P>
where
B: Buf,
P: Peer,
{
pub fn new(config: Config) -> Self {
let peer = P::r#dyn();
Streams {
inner: Inner::new(peer, config),
send_buffer: Arc::new(SendBuffer::new()),
_p: ::std::marker::PhantomData,
}
}
pub fn set_target_connection_window_size(&mut self, size: WindowSize) -> Result<(), Reason> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
me.actions
.recv
.set_target_connection_window(size, &mut me.actions.task)
}
pub fn next_incoming(&mut self) -> Option<StreamRef<B>> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
me.actions.recv.next_incoming(&mut me.store).map(|key| {
let stream = &mut me.store.resolve(key);
tracing::trace!(
"next_incoming; id={:?}, state={:?}",
stream.id,
stream.state
);
// TODO: ideally, OpaqueStreamRefs::new would do this, but we're holding
// the lock, so it can't.
me.refs += 1;
// Pending-accepted remotely-reset streams are counted.
if stream.state.is_remote_reset() {
me.counts.dec_num_remote_reset_streams();
}
StreamRef {
opaque: OpaqueStreamRef::new(self.inner.clone(), stream),
send_buffer: self.send_buffer.clone(),
}
})
}
pub fn send_pending_refusal<T>(
&mut self,
cx: &mut Context,
dst: &mut Codec<T, Prioritized<B>>,
) -> Poll<io::Result<()>>
where
T: AsyncWrite + Unpin,
{
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
me.actions.recv.send_pending_refusal(cx, dst)
}
pub fn clear_expired_reset_streams(&mut self) {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
me.actions
.recv
.clear_expired_reset_streams(&mut me.store, &mut me.counts);
}
pub fn poll_complete<T>(
&mut self,
cx: &mut Context,
dst: &mut Codec<T, Prioritized<B>>,
) -> Poll<io::Result<()>>
where
T: AsyncWrite + Unpin,
{
let mut me = self.inner.lock().unwrap();
me.poll_complete(&self.send_buffer, cx, dst)
}
pub fn apply_remote_settings(&mut self, frame: &frame::Settings) -> Result<(), Error> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
let mut send_buffer = self.send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
me.counts.apply_remote_settings(frame);
me.actions.send.apply_remote_settings(
frame,
send_buffer,
&mut me.store,
&mut me.counts,
&mut me.actions.task,
)
}
pub fn apply_local_settings(&mut self, frame: &frame::Settings) -> Result<(), Error> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
me.actions.recv.apply_local_settings(frame, &mut me.store)
}
pub fn send_request(
&mut self,
mut request: Request<()>,
end_of_stream: bool,
pending: Option<&OpaqueStreamRef>,
) -> Result<(StreamRef<B>, bool), SendError> {
use super::stream::ContentLength;
use http::Method;
let protocol = request.extensions_mut().remove::<Protocol>();
// Clear before taking lock, incase extensions contain a StreamRef.
request.extensions_mut().clear();
// TODO: There is a hazard with assigning a stream ID before the
// prioritize layer. If prioritization reorders new streams, this
// implicitly closes the earlier stream IDs.
//
// See: hyperium/h2#11
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
let mut send_buffer = self.send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
me.actions.ensure_no_conn_error()?;
me.actions.send.ensure_next_stream_id()?;
// The `pending` argument is provided by the `Client`, and holds
// a store `Key` of a `Stream` that may have been not been opened
// yet.
//
// If that stream is still pending, the Client isn't allowed to
// queue up another pending stream. They should use `poll_ready`.
if let Some(stream) = pending {
if me.store.resolve(stream.key).is_pending_open {
return Err(UserError::Rejected.into());
}
}
if me.counts.peer().is_server() {
// Servers cannot open streams. PushPromise must first be reserved.
return Err(UserError::UnexpectedFrameType.into());
}
let stream_id = me.actions.send.open()?;
let mut stream = Stream::new(
stream_id,
me.actions.send.init_window_sz(),
me.actions.recv.init_window_sz(),
);
if *request.method() == Method::HEAD {
stream.content_length = ContentLength::Head;
}
// Convert the message
let headers =
client::Peer::convert_send_message(stream_id, request, protocol, end_of_stream)?;
let mut stream = me.store.insert(stream.id, stream);
let sent = me.actions.send.send_headers(
headers,
send_buffer,
&mut stream,
&mut me.counts,
&mut me.actions.task,
);
// send_headers can return a UserError, if it does,
// we should forget about this stream.
if let Err(err) = sent {
stream.unlink();
stream.remove();
return Err(err.into());
}
// Given that the stream has been initialized, it should not be in the
// closed state.
debug_assert!(!stream.state.is_closed());
// TODO: ideally, OpaqueStreamRefs::new would do this, but we're holding
// the lock, so it can't.
me.refs += 1;
let is_full = me.counts.next_send_stream_will_reach_capacity();
Ok((
StreamRef {
opaque: OpaqueStreamRef::new(self.inner.clone(), &mut stream),
send_buffer: self.send_buffer.clone(),
},
is_full,
))
}
pub(crate) fn is_extended_connect_protocol_enabled(&self) -> bool {
self.inner
.lock()
.unwrap()
.actions
.send
.is_extended_connect_protocol_enabled()
}
}
impl<B> DynStreams<'_, B> {
pub fn recv_headers(&mut self, frame: frame::Headers) -> Result<(), Error> {
let mut me = self.inner.lock().unwrap();
me.recv_headers(self.peer, self.send_buffer, frame)
}
pub fn recv_data(&mut self, frame: frame::Data) -> Result<(), Error> {
let mut me = self.inner.lock().unwrap();
me.recv_data(self.peer, self.send_buffer, frame)
}
pub fn recv_reset(&mut self, frame: frame::Reset) -> Result<(), Error> {
let mut me = self.inner.lock().unwrap();
me.recv_reset(self.send_buffer, frame)
}
/// Notify all streams that a connection-level error happened.
pub fn handle_error(&mut self, err: proto::Error) -> StreamId {
let mut me = self.inner.lock().unwrap();
me.handle_error(self.send_buffer, err)
}
pub fn recv_go_away(&mut self, frame: &frame::GoAway) -> Result<(), Error> {
let mut me = self.inner.lock().unwrap();
me.recv_go_away(self.send_buffer, frame)
}
pub fn last_processed_id(&self) -> StreamId {
self.inner.lock().unwrap().actions.recv.last_processed_id()
}
pub fn recv_window_update(&mut self, frame: frame::WindowUpdate) -> Result<(), Error> {
let mut me = self.inner.lock().unwrap();
me.recv_window_update(self.send_buffer, frame)
}
pub fn recv_push_promise(&mut self, frame: frame::PushPromise) -> Result<(), Error> {
let mut me = self.inner.lock().unwrap();
me.recv_push_promise(self.send_buffer, frame)
}
pub fn recv_eof(&mut self, clear_pending_accept: bool) -> Result<(), ()> {
let mut me = self.inner.lock().map_err(|_| ())?;
me.recv_eof(self.send_buffer, clear_pending_accept)
}
pub fn send_reset(&mut self, id: StreamId, reason: Reason) {
let mut me = self.inner.lock().unwrap();
me.send_reset(self.send_buffer, id, reason)
}
pub fn send_go_away(&mut self, last_processed_id: StreamId) {
let mut me = self.inner.lock().unwrap();
me.actions.recv.go_away(last_processed_id);
}
}
impl Inner {
fn new(peer: peer::Dyn, config: Config) -> Arc<Mutex<Self>> {
Arc::new(Mutex::new(Inner {
counts: Counts::new(peer, &config),
actions: Actions {
recv: Recv::new(peer, &config),
send: Send::new(&config),
task: None,
conn_error: None,
},
store: Store::new(),
refs: 1,
}))
}
fn recv_headers<B>(
&mut self,
peer: peer::Dyn,
send_buffer: &SendBuffer<B>,
frame: frame::Headers,
) -> Result<(), Error> {
let id = frame.stream_id();
// The GOAWAY process has begun. All streams with a greater ID than
// specified as part of GOAWAY should be ignored.
if id > self.actions.recv.max_stream_id() {
tracing::trace!(
"id ({:?}) > max_stream_id ({:?}), ignoring HEADERS",
id,
self.actions.recv.max_stream_id()
);
return Ok(());
}
let key = match self.store.find_entry(id) {
Entry::Occupied(e) => e.key(),
Entry::Vacant(e) => {
// Client: it's possible to send a request, and then send
// a RST_STREAM while the response HEADERS were in transit.
//
// Server: we can't reset a stream before having received
// the request headers, so don't allow.
if !peer.is_server() {
// This may be response headers for a stream we've already
// forgotten about...
if self.actions.may_have_forgotten_stream(peer, id) {
tracing::debug!(
"recv_headers for old stream={:?}, sending STREAM_CLOSED",
id,
);
return Err(Error::library_reset(id, Reason::STREAM_CLOSED));
}
}
match self
.actions
.recv
.open(id, Open::Headers, &mut self.counts)?
{
Some(stream_id) => {
let stream = Stream::new(
stream_id,
self.actions.send.init_window_sz(),
self.actions.recv.init_window_sz(),
);
e.insert(stream)
}
None => return Ok(()),
}
}
};
let stream = self.store.resolve(key);
if stream.state.is_local_error() {
// Locally reset streams must ignore frames "for some time".
// This is because the remote may have sent trailers before
// receiving the RST_STREAM frame.
tracing::trace!("recv_headers; ignoring trailers on {:?}", stream.id);
return Ok(());
}
let actions = &mut self.actions;
let mut send_buffer = send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
self.counts.transition(stream, |counts, stream| {
tracing::trace!(
"recv_headers; stream={:?}; state={:?}",
stream.id,
stream.state
);
let res = if stream.state.is_recv_headers() {
match actions.recv.recv_headers(frame, stream, counts) {
Ok(()) => Ok(()),
Err(RecvHeaderBlockError::Oversize(resp)) => {
if let Some(resp) = resp {
let sent = actions.send.send_headers(
resp, send_buffer, stream, counts, &mut actions.task);
debug_assert!(sent.is_ok(), "oversize response should not fail");
actions.send.schedule_implicit_reset(
stream,
Reason::REFUSED_STREAM,
counts,
&mut actions.task);
actions.recv.enqueue_reset_expiration(stream, counts);
Ok(())
} else {
Err(Error::library_reset(stream.id, Reason::REFUSED_STREAM))
}
},
Err(RecvHeaderBlockError::State(err)) => Err(err),
}
} else {
if !frame.is_end_stream() {
// Receiving trailers that don't set EOS is a "malformed"
// message. Malformed messages are a stream error.
proto_err!(stream: "recv_headers: trailers frame was not EOS; stream={:?}", stream.id);
return Err(Error::library_reset(stream.id, Reason::PROTOCOL_ERROR));
}
actions.recv.recv_trailers(frame, stream)
};
actions.reset_on_recv_stream_err(send_buffer, stream, counts, res)
})
}
fn recv_data<B>(
&mut self,
peer: peer::Dyn,
send_buffer: &SendBuffer<B>,
frame: frame::Data,
) -> Result<(), Error> {
let id = frame.stream_id();
let stream = match self.store.find_mut(&id) {
Some(stream) => stream,
None => {
// The GOAWAY process has begun. All streams with a greater ID
// than specified as part of GOAWAY should be ignored.
if id > self.actions.recv.max_stream_id() {
tracing::trace!(
"id ({:?}) > max_stream_id ({:?}), ignoring DATA",
id,
self.actions.recv.max_stream_id()
);
return Ok(());
}
if self.actions.may_have_forgotten_stream(peer, id) {
tracing::debug!("recv_data for old stream={:?}, sending STREAM_CLOSED", id,);
let sz = frame.payload().len();
// This should have been enforced at the codec::FramedRead layer, so
// this is just a sanity check.
assert!(sz <= super::MAX_WINDOW_SIZE as usize);
let sz = sz as WindowSize;
self.actions.recv.ignore_data(sz)?;
return Err(Error::library_reset(id, Reason::STREAM_CLOSED));
}
proto_err!(conn: "recv_data: stream not found; id={:?}", id);
return Err(Error::library_go_away(Reason::PROTOCOL_ERROR));
}
};
let actions = &mut self.actions;
let mut send_buffer = send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
self.counts.transition(stream, |counts, stream| {
let sz = frame.payload().len();
let res = actions.recv.recv_data(frame, stream);
// Any stream error after receiving a DATA frame means
// we won't give the data to the user, and so they can't
// release the capacity. We do it automatically.
if let Err(Error::Reset(..)) = res {
actions
.recv
.release_connection_capacity(sz as WindowSize, &mut None);
}
actions.reset_on_recv_stream_err(send_buffer, stream, counts, res)
})
}
fn recv_reset<B>(
&mut self,
send_buffer: &SendBuffer<B>,
frame: frame::Reset,
) -> Result<(), Error> {
let id = frame.stream_id();
if id.is_zero() {
proto_err!(conn: "recv_reset: invalid stream ID 0");
return Err(Error::library_go_away(Reason::PROTOCOL_ERROR));
}
// The GOAWAY process has begun. All streams with a greater ID than
// specified as part of GOAWAY should be ignored.
if id > self.actions.recv.max_stream_id() {
tracing::trace!(
"id ({:?}) > max_stream_id ({:?}), ignoring RST_STREAM",
id,
self.actions.recv.max_stream_id()
);
return Ok(());
}
let stream = match self.store.find_mut(&id) {
Some(stream) => stream,
None => {
// TODO: Are there other error cases?
self.actions
.ensure_not_idle(self.counts.peer(), id)
.map_err(Error::library_go_away)?;
return Ok(());
}
};
let mut send_buffer = send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
let actions = &mut self.actions;
self.counts.transition(stream, |counts, stream| {
actions.recv.recv_reset(frame, stream, counts)?;
actions.send.handle_error(send_buffer, stream, counts);
assert!(stream.state.is_closed());
Ok(())
})
}
fn recv_window_update<B>(
&mut self,
send_buffer: &SendBuffer<B>,
frame: frame::WindowUpdate,
) -> Result<(), Error> {
let id = frame.stream_id();
let mut send_buffer = send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
if id.is_zero() {
self.actions
.send
.recv_connection_window_update(frame, &mut self.store, &mut self.counts)
.map_err(Error::library_go_away)?;
} else {
// The remote may send window updates for streams that the local now
// considers closed. It's ok...
if let Some(mut stream) = self.store.find_mut(&id) {
// This result is ignored as there is nothing to do when there
// is an error. The stream is reset by the function on error and
// the error is informational.
let _ = self.actions.send.recv_stream_window_update(
frame.size_increment(),
send_buffer,
&mut stream,
&mut self.counts,
&mut self.actions.task,
);
} else {
self.actions
.ensure_not_idle(self.counts.peer(), id)
.map_err(Error::library_go_away)?;
}
}
Ok(())
}
fn handle_error<B>(&mut self, send_buffer: &SendBuffer<B>, err: proto::Error) -> StreamId {
let actions = &mut self.actions;
let counts = &mut self.counts;
let mut send_buffer = send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
let last_processed_id = actions.recv.last_processed_id();
self.store.for_each(|stream| {
counts.transition(stream, |counts, stream| {
actions.recv.handle_error(&err, &mut *stream);
actions.send.handle_error(send_buffer, stream, counts);
})
});
actions.conn_error = Some(err);
last_processed_id
}
fn recv_go_away<B>(
&mut self,
send_buffer: &SendBuffer<B>,
frame: &frame::GoAway,
) -> Result<(), Error> {
let actions = &mut self.actions;
let counts = &mut self.counts;
let mut send_buffer = send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
let last_stream_id = frame.last_stream_id();
actions.send.recv_go_away(last_stream_id)?;
let err = Error::remote_go_away(frame.debug_data().clone(), frame.reason());
self.store.for_each(|stream| {
if stream.id > last_stream_id {
counts.transition(stream, |counts, stream| {
actions.recv.handle_error(&err, &mut *stream);
actions.send.handle_error(send_buffer, stream, counts);
})
}
});
actions.conn_error = Some(err);
Ok(())
}
fn recv_push_promise<B>(
&mut self,
send_buffer: &SendBuffer<B>,
frame: frame::PushPromise,
) -> Result<(), Error> {
let id = frame.stream_id();
let promised_id = frame.promised_id();
// First, ensure that the initiating stream is still in a valid state.
let parent_key = match self.store.find_mut(&id) {
Some(stream) => {
// The GOAWAY process has begun. All streams with a greater ID
// than specified as part of GOAWAY should be ignored.
if id > self.actions.recv.max_stream_id() {
tracing::trace!(
"id ({:?}) > max_stream_id ({:?}), ignoring PUSH_PROMISE",
id,
self.actions.recv.max_stream_id()
);
return Ok(());
}
// The stream must be receive open
if !stream.state.ensure_recv_open()? {
proto_err!(conn: "recv_push_promise: initiating stream is not opened");
return Err(Error::library_go_away(Reason::PROTOCOL_ERROR));
}
stream.key()
}
None => {
proto_err!(conn: "recv_push_promise: initiating stream is in an invalid state");
return Err(Error::library_go_away(Reason::PROTOCOL_ERROR));
}
};
// TODO: Streams in the reserved states do not count towards the concurrency
// limit. However, it seems like there should be a cap otherwise this
// could grow in memory indefinitely.
// Ensure that we can reserve streams
self.actions.recv.ensure_can_reserve()?;
// Next, open the stream.
//
// If `None` is returned, then the stream is being refused. There is no
// further work to be done.
if self
.actions
.recv
.open(promised_id, Open::PushPromise, &mut self.counts)?
.is_none()
{
return Ok(());
}
// Try to handle the frame and create a corresponding key for the pushed stream
// this requires a bit of indirection to make the borrow checker happy.
let child_key: Option<store::Key> = {
// Create state for the stream
let stream = self.store.insert(promised_id, {
Stream::new(
promised_id,
self.actions.send.init_window_sz(),
self.actions.recv.init_window_sz(),
)
});
let actions = &mut self.actions;
self.counts.transition(stream, |counts, stream| {
let stream_valid = actions.recv.recv_push_promise(frame, stream);
match stream_valid {
Ok(()) => Ok(Some(stream.key())),
_ => {
let mut send_buffer = send_buffer.inner.lock().unwrap();
actions
.reset_on_recv_stream_err(
&mut *send_buffer,
stream,
counts,
stream_valid,
)
.map(|()| None)
}
}
})?
};
// If we're successful, push the headers and stream...
if let Some(child) = child_key {
let mut ppp = self.store[parent_key].pending_push_promises.take();
ppp.push(&mut self.store.resolve(child));
let parent = &mut self.store.resolve(parent_key);
parent.pending_push_promises = ppp;
parent.notify_recv();
};
Ok(())
}
fn recv_eof<B>(
&mut self,
send_buffer: &SendBuffer<B>,
clear_pending_accept: bool,
) -> Result<(), ()> {
let actions = &mut self.actions;
let counts = &mut self.counts;
let mut send_buffer = send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
if actions.conn_error.is_none() {
actions.conn_error = Some(
io::Error::new(
io::ErrorKind::BrokenPipe,
"connection closed because of a broken pipe",
)
.into(),
);
}
tracing::trace!("Streams::recv_eof");
self.store.for_each(|stream| {
counts.transition(stream, |counts, stream| {
actions.recv.recv_eof(stream);
// This handles resetting send state associated with the
// stream
actions.send.handle_error(send_buffer, stream, counts);
})
});
actions.clear_queues(clear_pending_accept, &mut self.store, counts);
Ok(())
}
fn poll_complete<T, B>(
&mut self,
send_buffer: &SendBuffer<B>,
cx: &mut Context,
dst: &mut Codec<T, Prioritized<B>>,
) -> Poll<io::Result<()>>
where
T: AsyncWrite + Unpin,
B: Buf,
{
let mut send_buffer = send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
// Send WINDOW_UPDATE frames first
//
// TODO: It would probably be better to interleave updates w/ data
// frames.
ready!(self
.actions
.recv
.poll_complete(cx, &mut self.store, &mut self.counts, dst))?;
// Send any other pending frames
ready!(self.actions.send.poll_complete(
cx,
send_buffer,
&mut self.store,
&mut self.counts,
dst
))?;
// Nothing else to do, track the task
self.actions.task = Some(cx.waker().clone());
Poll::Ready(Ok(()))
}
fn send_reset<B>(&mut self, send_buffer: &SendBuffer<B>, id: StreamId, reason: Reason) {
let key = match self.store.find_entry(id) {
Entry::Occupied(e) => e.key(),
Entry::Vacant(e) => {
// Resetting a stream we don't know about? That could be OK...
//
// 1. As a server, we just received a request, but that request
// was bad, so we're resetting before even accepting it.
// This is totally fine.
//
// 2. The remote may have sent us a frame on new stream that
// it's *not* supposed to have done, and thus, we don't know
// the stream. In that case, sending a reset will "open" the
// stream in our store. Maybe that should be a connection
// error instead? At least for now, we need to update what
// our vision of the next stream is.
if self.counts.peer().is_local_init(id) {
// We normally would open this stream, so update our
// next-send-id record.
self.actions.send.maybe_reset_next_stream_id(id);
} else {
// We normally would recv this stream, so update our
// next-recv-id record.
self.actions.recv.maybe_reset_next_stream_id(id);
}
let stream = Stream::new(id, 0, 0);
e.insert(stream)
}
};
let stream = self.store.resolve(key);
let mut send_buffer = send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
self.actions.send_reset(
stream,
reason,
Initiator::Library,
&mut self.counts,
send_buffer,
);
}
}
impl<B> Streams<B, client::Peer>
where
B: Buf,
{
pub fn poll_pending_open(
&mut self,
cx: &Context,
pending: Option<&OpaqueStreamRef>,
) -> Poll<Result<(), crate::Error>> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
me.actions.ensure_no_conn_error()?;
me.actions.send.ensure_next_stream_id()?;
if let Some(pending) = pending {
let mut stream = me.store.resolve(pending.key);
tracing::trace!("poll_pending_open; stream = {:?}", stream.is_pending_open);
if stream.is_pending_open {
stream.wait_send(cx);
return Poll::Pending;
}
}
Poll::Ready(Ok(()))
}
}
impl<B, P> Streams<B, P>
where
P: Peer,
{
pub fn as_dyn(&self) -> DynStreams<B> {
let Self {
inner,
send_buffer,
_p,
} = self;
DynStreams {
inner,
send_buffer,
peer: P::r#dyn(),
}
}
/// This function is safe to call multiple times.
///
/// A `Result` is returned to avoid panicking if the mutex is poisoned.
pub fn recv_eof(&mut self, clear_pending_accept: bool) -> Result<(), ()> {
self.as_dyn().recv_eof(clear_pending_accept)
}
pub(crate) fn max_send_streams(&self) -> usize {
self.inner.lock().unwrap().counts.max_send_streams()
}
pub(crate) fn max_recv_streams(&self) -> usize {
self.inner.lock().unwrap().counts.max_recv_streams()
}
#[cfg(feature = "unstable")]
pub fn num_active_streams(&self) -> usize {
let me = self.inner.lock().unwrap();
me.store.num_active_streams()
}
pub fn has_streams(&self) -> bool {
let me = self.inner.lock().unwrap();
me.counts.has_streams()
}
pub fn has_streams_or_other_references(&self) -> bool {
let me = self.inner.lock().unwrap();
me.counts.has_streams() || me.refs > 1
}
#[cfg(feature = "unstable")]
pub fn num_wired_streams(&self) -> usize {
let me = self.inner.lock().unwrap();
me.store.num_wired_streams()
}
}
// no derive because we don't need B and P to be Clone.
impl<B, P> Clone for Streams<B, P>
where
P: Peer,
{
fn clone(&self) -> Self {
self.inner.lock().unwrap().refs += 1;
Streams {
inner: self.inner.clone(),
send_buffer: self.send_buffer.clone(),
_p: ::std::marker::PhantomData,
}
}
}
impl<B, P> Drop for Streams<B, P>
where
P: Peer,
{
fn drop(&mut self) {
if let Ok(mut inner) = self.inner.lock() {
inner.refs -= 1;
if inner.refs == 1 {
if let Some(task) = inner.actions.task.take() {
task.wake();
}
}
}
}
}
// ===== impl StreamRef =====
impl<B> StreamRef<B> {
pub fn send_data(&mut self, data: B, end_stream: bool) -> Result<(), UserError>
where
B: Buf,
{
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let stream = me.store.resolve(self.opaque.key);
let actions = &mut me.actions;
let mut send_buffer = self.send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
me.counts.transition(stream, |counts, stream| {
// Create the data frame
let mut frame = frame::Data::new(stream.id, data);
frame.set_end_stream(end_stream);
// Send the data frame
actions
.send
.send_data(frame, send_buffer, stream, counts, &mut actions.task)
})
}
pub fn send_trailers(&mut self, trailers: HeaderMap) -> Result<(), UserError> {
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let stream = me.store.resolve(self.opaque.key);
let actions = &mut me.actions;
let mut send_buffer = self.send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
me.counts.transition(stream, |counts, stream| {
// Create the trailers frame
let frame = frame::Headers::trailers(stream.id, trailers);
// Send the trailers frame
actions
.send
.send_trailers(frame, send_buffer, stream, counts, &mut actions.task)
})
}
pub fn send_reset(&mut self, reason: Reason) {
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let stream = me.store.resolve(self.opaque.key);
let mut send_buffer = self.send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
me.actions
.send_reset(stream, reason, Initiator::User, &mut me.counts, send_buffer);
}
pub fn send_response(
&mut self,
mut response: Response<()>,
end_of_stream: bool,
) -> Result<(), UserError> {
// Clear before taking lock, incase extensions contain a StreamRef.
response.extensions_mut().clear();
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let stream = me.store.resolve(self.opaque.key);
let actions = &mut me.actions;
let mut send_buffer = self.send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
me.counts.transition(stream, |counts, stream| {
let frame = server::Peer::convert_send_message(stream.id, response, end_of_stream);
actions
.send
.send_headers(frame, send_buffer, stream, counts, &mut actions.task)
})
}
pub fn send_push_promise(
&mut self,
mut request: Request<()>,
) -> Result<StreamRef<B>, UserError> {
// Clear before taking lock, incase extensions contain a StreamRef.
request.extensions_mut().clear();
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let mut send_buffer = self.send_buffer.inner.lock().unwrap();
let send_buffer = &mut *send_buffer;
let actions = &mut me.actions;
let promised_id = actions.send.reserve_local()?;
let child_key = {
let mut child_stream = me.store.insert(
promised_id,
Stream::new(
promised_id,
actions.send.init_window_sz(),
actions.recv.init_window_sz(),
),
);
child_stream.state.reserve_local()?;
child_stream.is_pending_push = true;
child_stream.key()
};
let pushed = {
let mut stream = me.store.resolve(self.opaque.key);
let frame = crate::server::Peer::convert_push_message(stream.id, promised_id, request)?;
actions
.send
.send_push_promise(frame, send_buffer, &mut stream, &mut actions.task)
};
if let Err(err) = pushed {
let mut child_stream = me.store.resolve(child_key);
child_stream.unlink();
child_stream.remove();
return Err(err);
}
me.refs += 1;
let opaque =
OpaqueStreamRef::new(self.opaque.inner.clone(), &mut me.store.resolve(child_key));
Ok(StreamRef {
opaque,
send_buffer: self.send_buffer.clone(),
})
}
/// Called by the server after the stream is accepted. Given that clients
/// initialize streams by sending HEADERS, the request will always be
/// available.
///
/// # Panics
///
/// This function panics if the request isn't present.
pub fn take_request(&self) -> Request<()> {
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.opaque.key);
me.actions.recv.take_request(&mut stream)
}
/// Called by a client to see if the current stream is pending open
pub fn is_pending_open(&self) -> bool {
let mut me = self.opaque.inner.lock().unwrap();
me.store.resolve(self.opaque.key).is_pending_open
}
/// Request capacity to send data
pub fn reserve_capacity(&mut self, capacity: WindowSize) {
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.opaque.key);
me.actions
.send
.reserve_capacity(capacity, &mut stream, &mut me.counts)
}
/// Returns the stream's current send capacity.
pub fn capacity(&self) -> WindowSize {
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.opaque.key);
me.actions.send.capacity(&mut stream)
}
/// Request to be notified when the stream's capacity increases
pub fn poll_capacity(&mut self, cx: &Context) -> Poll<Option<Result<WindowSize, UserError>>> {
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.opaque.key);
me.actions.send.poll_capacity(cx, &mut stream)
}
/// Request to be notified for if a `RST_STREAM` is received for this stream.
pub(crate) fn poll_reset(
&mut self,
cx: &Context,
mode: proto::PollReset,
) -> Poll<Result<Reason, crate::Error>> {
let mut me = self.opaque.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.opaque.key);
me.actions
.send
.poll_reset(cx, &mut stream, mode)
.map_err(From::from)
}
pub fn clone_to_opaque(&self) -> OpaqueStreamRef {
self.opaque.clone()
}
pub fn stream_id(&self) -> StreamId {
self.opaque.stream_id()
}
}
impl<B> Clone for StreamRef<B> {
fn clone(&self) -> Self {
StreamRef {
opaque: self.opaque.clone(),
send_buffer: self.send_buffer.clone(),
}
}
}
// ===== impl OpaqueStreamRef =====
impl OpaqueStreamRef {
fn new(inner: Arc<Mutex<Inner>>, stream: &mut store::Ptr) -> OpaqueStreamRef {
stream.ref_inc();
OpaqueStreamRef {
inner,
key: stream.key(),
}
}
/// Called by a client to check for a received response.
pub fn poll_response(&mut self, cx: &Context) -> Poll<Result<Response<()>, proto::Error>> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.key);
me.actions.recv.poll_response(cx, &mut stream)
}
/// Called by a client to check for a pushed request.
pub fn poll_pushed(
&mut self,
cx: &Context,
) -> Poll<Option<Result<(Request<()>, OpaqueStreamRef), proto::Error>>> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.key);
me.actions
.recv
.poll_pushed(cx, &mut stream)
.map_ok(|(h, key)| {
me.refs += 1;
let opaque_ref =
OpaqueStreamRef::new(self.inner.clone(), &mut me.store.resolve(key));
(h, opaque_ref)
})
}
pub fn is_end_stream(&self) -> bool {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
let stream = me.store.resolve(self.key);
me.actions.recv.is_end_stream(&stream)
}
pub fn poll_data(&mut self, cx: &Context) -> Poll<Option<Result<Bytes, proto::Error>>> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.key);
me.actions.recv.poll_data(cx, &mut stream)
}
pub fn poll_trailers(&mut self, cx: &Context) -> Poll<Option<Result<HeaderMap, proto::Error>>> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.key);
me.actions.recv.poll_trailers(cx, &mut stream)
}
pub(crate) fn available_recv_capacity(&self) -> isize {
let me = self.inner.lock().unwrap();
let me = &*me;
let stream = &me.store[self.key];
stream.recv_flow.available().into()
}
pub(crate) fn used_recv_capacity(&self) -> WindowSize {
let me = self.inner.lock().unwrap();
let me = &*me;
let stream = &me.store[self.key];
stream.in_flight_recv_data
}
/// Releases recv capacity back to the peer. This may result in sending
/// WINDOW_UPDATE frames on both the stream and connection.
pub fn release_capacity(&mut self, capacity: WindowSize) -> Result<(), UserError> {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.key);
me.actions
.recv
.release_capacity(capacity, &mut stream, &mut me.actions.task)
}
/// Clear the receive queue and set the status to no longer receive data frames.
pub(crate) fn clear_recv_buffer(&mut self) {
let mut me = self.inner.lock().unwrap();
let me = &mut *me;
let mut stream = me.store.resolve(self.key);
stream.is_recv = false;
me.actions.recv.clear_recv_buffer(&mut stream);
}
pub fn stream_id(&self) -> StreamId {
self.inner.lock().unwrap().store[self.key].id
}
}
impl fmt::Debug for OpaqueStreamRef {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
use std::sync::TryLockError::*;
match self.inner.try_lock() {
Ok(me) => {
let stream = &me.store[self.key];
fmt.debug_struct("OpaqueStreamRef")
.field("stream_id", &stream.id)
.field("ref_count", &stream.ref_count)
.finish()
}
Err(Poisoned(_)) => fmt
.debug_struct("OpaqueStreamRef")
.field("inner", &"<Poisoned>")
.finish(),
Err(WouldBlock) => fmt
.debug_struct("OpaqueStreamRef")
.field("inner", &"<Locked>")
.finish(),
}
}
}
impl Clone for OpaqueStreamRef {
fn clone(&self) -> Self {
// Increment the ref count
let mut inner = self.inner.lock().unwrap();
inner.store.resolve(self.key).ref_inc();
inner.refs += 1;
OpaqueStreamRef {
inner: self.inner.clone(),
key: self.key,
}
}
}
impl Drop for OpaqueStreamRef {
fn drop(&mut self) {
drop_stream_ref(&self.inner, self.key);
}
}
// TODO: Move back in fn above
fn drop_stream_ref(inner: &Mutex<Inner>, key: store::Key) {
let mut me = match inner.lock() {
Ok(inner) => inner,
Err(_) => {
if ::std::thread::panicking() {
tracing::trace!("StreamRef::drop; mutex poisoned");
return;
} else {
panic!("StreamRef::drop; mutex poisoned");
}
}
};
let me = &mut *me;
me.refs -= 1;
let mut stream = me.store.resolve(key);
tracing::trace!("drop_stream_ref; stream={:?}", stream);
// decrement the stream's ref count by 1.
stream.ref_dec();
let actions = &mut me.actions;
// If the stream is not referenced and it is already
// closed (does not have to go through logic below
// of canceling the stream), we should notify the task
// (connection) so that it can close properly
if stream.ref_count == 0 && stream.is_closed() {
if let Some(task) = actions.task.take() {
task.wake();
}
}
me.counts.transition(stream, |counts, stream| {
maybe_cancel(stream, actions, counts);
if stream.ref_count == 0 {
// Release any recv window back to connection, no one can access
// it anymore.
actions
.recv
.release_closed_capacity(stream, &mut actions.task);
// We won't be able to reach our push promises anymore
let mut ppp = stream.pending_push_promises.take();
while let Some(promise) = ppp.pop(stream.store_mut()) {
counts.transition(promise, |counts, stream| {
maybe_cancel(stream, actions, counts);
});
}
}
});
}
fn maybe_cancel(stream: &mut store::Ptr, actions: &mut Actions, counts: &mut Counts) {
if stream.is_canceled_interest() {
// Server is allowed to early respond without fully consuming the client input stream
// But per the RFC, must send a RST_STREAM(NO_ERROR) in such cases. https://www.rfc-editor.org/rfc/rfc7540#section-8.1
// Some other http2 implementation may interpret other error code as fatal if not respected (i.e: nginx https://trac.nginx.org/nginx/ticket/2376)
let reason = if counts.peer().is_server()
&& stream.state.is_send_closed()
&& stream.state.is_recv_streaming()
{
Reason::NO_ERROR
} else {
Reason::CANCEL
};
actions
.send
.schedule_implicit_reset(stream, reason, counts, &mut actions.task);
actions.recv.enqueue_reset_expiration(stream, counts);
}
}
// ===== impl SendBuffer =====
impl<B> SendBuffer<B> {
fn new() -> Self {
let inner = Mutex::new(Buffer::new());
SendBuffer { inner }
}
}
// ===== impl Actions =====
impl Actions {
fn send_reset<B>(
&mut self,
stream: store::Ptr,
reason: Reason,
initiator: Initiator,
counts: &mut Counts,
send_buffer: &mut Buffer<Frame<B>>,
) {
counts.transition(stream, |counts, stream| {
self.send.send_reset(
reason,
initiator,
send_buffer,
stream,
counts,
&mut self.task,
);
self.recv.enqueue_reset_expiration(stream, counts);
// if a RecvStream is parked, ensure it's notified
stream.notify_recv();
});
}
fn reset_on_recv_stream_err<B>(
&mut self,
buffer: &mut Buffer<Frame<B>>,
stream: &mut store::Ptr,
counts: &mut Counts,
res: Result<(), Error>,
) -> Result<(), Error> {
if let Err(Error::Reset(stream_id, reason, initiator)) = res {
debug_assert_eq!(stream_id, stream.id);
// Reset the stream.
self.send
.send_reset(reason, initiator, buffer, stream, counts, &mut self.task);
Ok(())
} else {
res
}
}
fn ensure_not_idle(&mut self, peer: peer::Dyn, id: StreamId) -> Result<(), Reason> {
if peer.is_local_init(id) {
self.send.ensure_not_idle(id)
} else {
self.recv.ensure_not_idle(id)
}
}
fn ensure_no_conn_error(&self) -> Result<(), proto::Error> {
if let Some(ref err) = self.conn_error {
Err(err.clone())
} else {
Ok(())
}
}
/// Check if we possibly could have processed and since forgotten this stream.
///
/// If we send a RST_STREAM for a stream, we will eventually "forget" about
/// the stream to free up memory. It's possible that the remote peer had
/// frames in-flight, and by the time we receive them, our own state is
/// gone. We *could* tear everything down by sending a GOAWAY, but it
/// is more likely to be latency/memory constraints that caused this,
/// and not a bad actor. So be less catastrophic, the spec allows
/// us to send another RST_STREAM of STREAM_CLOSED.
fn may_have_forgotten_stream(&self, peer: peer::Dyn, id: StreamId) -> bool {
if id.is_zero() {
return false;
}
if peer.is_local_init(id) {
self.send.may_have_created_stream(id)
} else {
self.recv.may_have_created_stream(id)
}
}
fn clear_queues(&mut self, clear_pending_accept: bool, store: &mut Store, counts: &mut Counts) {
self.recv.clear_queues(clear_pending_accept, store, counts);
self.send.clear_queues(store, counts);
}
}