Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ir_validate.cpp
*
* Attempts to verify that various invariants of the IR tree are true.
*
* In particular, at the moment it makes sure that no single
* ir_instruction node except for ir_variable appears multiple times
* in the ir tree. ir_variable does appear multiple times: Once as a
* declaration in an exec_list, and multiple times as the endpoint of
* a dereference chain.
*/
#include "ir.h"
#include "ir_hierarchical_visitor.h"
#include "util/hash_table.h"
#include "util/macros.h"
#include "util/set.h"
#include "compiler/glsl_types.h"
namespace {
class ir_validate : public ir_hierarchical_visitor {
public:
ir_validate()
{
this->ir_set = _mesa_pointer_set_create(NULL);
this->current_function = NULL;
this->callback_enter = ir_validate::validate_ir;
this->data_enter = ir_set;
}
~ir_validate()
{
_mesa_set_destroy(this->ir_set, NULL);
}
virtual ir_visitor_status visit(ir_variable *v);
virtual ir_visitor_status visit(ir_dereference_variable *ir);
virtual ir_visitor_status visit_enter(ir_discard *ir);
virtual ir_visitor_status visit_enter(ir_if *ir);
virtual ir_visitor_status visit_enter(ir_function *ir);
virtual ir_visitor_status visit_leave(ir_function *ir);
virtual ir_visitor_status visit_enter(ir_function_signature *ir);
virtual ir_visitor_status visit_leave(ir_expression *ir);
virtual ir_visitor_status visit_leave(ir_swizzle *ir);
virtual ir_visitor_status visit_enter(class ir_dereference_array *);
virtual ir_visitor_status visit_enter(ir_assignment *ir);
virtual ir_visitor_status visit_enter(ir_call *ir);
static void validate_ir(ir_instruction *ir, void *data);
ir_function *current_function;
struct set *ir_set;
};
} /* anonymous namespace */
ir_visitor_status
ir_validate::visit(ir_dereference_variable *ir)
{
if ((ir->var == NULL) || (ir->var->as_variable() == NULL)) {
printf("ir_dereference_variable @ %p does not specify a variable %p\n",
(void *) ir, (void *) ir->var);
abort();
}
if (_mesa_set_search(ir_set, ir->var) == NULL) {
printf("ir_dereference_variable @ %p specifies undeclared variable "
"`%s' @ %p\n",
(void *) ir, ir->var->name, (void *) ir->var);
abort();
}
this->validate_ir(ir, this->data_enter);
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(class ir_dereference_array *ir)
{
if (!ir->array->type->is_array() && !ir->array->type->is_matrix() &&
!ir->array->type->is_vector()) {
printf("ir_dereference_array @ %p does not specify an array, a vector "
"or a matrix\n",
(void *) ir);
ir->print();
printf("\n");
abort();
}
if (!ir->array_index->type->is_scalar()) {
printf("ir_dereference_array @ %p does not have scalar index: %s\n",
(void *) ir, ir->array_index->type->name);
abort();
}
if (!ir->array_index->type->is_integer_32()) {
printf("ir_dereference_array @ %p does not have integer index: %s\n",
(void *) ir, ir->array_index->type->name);
abort();
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(ir_discard *ir)
{
if (ir->condition && ir->condition->type != glsl_type::bool_type) {
printf("ir_discard condition %s type instead of bool.\n",
ir->condition->type->name);
ir->print();
printf("\n");
abort();
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(ir_if *ir)
{
if (ir->condition->type != glsl_type::bool_type) {
printf("ir_if condition %s type instead of bool.\n",
ir->condition->type->name);
ir->print();
printf("\n");
abort();
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(ir_function *ir)
{
/* Function definitions cannot be nested.
*/
if (this->current_function != NULL) {
printf("Function definition nested inside another function "
"definition:\n");
printf("%s %p inside %s %p\n",
ir->name, (void *) ir,
this->current_function->name, (void *) this->current_function);
abort();
}
/* Store the current function hierarchy being traversed. This is used
* by the function signature visitor to ensure that the signatures are
* linked with the correct functions.
*/
this->current_function = ir;
this->validate_ir(ir, this->data_enter);
/* Verify that all of the things stored in the list of signatures are,
* in fact, function signatures.
*/
foreach_in_list(ir_instruction, sig, &ir->signatures) {
if (sig->ir_type != ir_type_function_signature) {
printf("Non-signature in signature list of function `%s'\n",
ir->name);
abort();
}
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit_leave(ir_function *ir)
{
assert(ralloc_parent(ir->name) == ir);
this->current_function = NULL;
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(ir_function_signature *ir)
{
if (this->current_function != ir->function()) {
printf("Function signature nested inside wrong function "
"definition:\n");
printf("%p inside %s %p instead of %s %p\n",
(void *) ir,
this->current_function->name, (void *) this->current_function,
ir->function_name(), (void *) ir->function());
abort();
}
if (ir->return_type == NULL) {
printf("Function signature %p for function %s has NULL return type.\n",
(void *) ir, ir->function_name());
abort();
}
this->validate_ir(ir, this->data_enter);
return visit_continue;
}
ir_visitor_status
ir_validate::visit_leave(ir_expression *ir)
{
for (unsigned i = ir->num_operands; i < 4; i++) {
assert(ir->operands[i] == NULL);
}
for (unsigned i = 0; i < ir->num_operands; i++) {
assert(ir->operands[i] != NULL);
}
switch (ir->operation) {
case ir_unop_bit_not:
assert(ir->operands[0]->type == ir->type);
break;
case ir_unop_logic_not:
assert(ir->type->is_boolean());
assert(ir->operands[0]->type->is_boolean());
break;
case ir_unop_neg:
assert(ir->type == ir->operands[0]->type);
break;
case ir_unop_abs:
case ir_unop_sign:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT ||
ir->operands[0]->type->is_float_16_32_64() ||
ir->operands[0]->type->base_type == GLSL_TYPE_INT64);
assert(ir->type == ir->operands[0]->type);
break;
case ir_unop_rcp:
case ir_unop_rsq:
case ir_unop_sqrt:
assert(ir->type->is_float_16_32_64());
assert(ir->type == ir->operands[0]->type);
break;
case ir_unop_exp:
case ir_unop_log:
case ir_unop_exp2:
case ir_unop_log2:
case ir_unop_saturate:
assert(ir->operands[0]->type->is_float_16_32());
assert(ir->type == ir->operands[0]->type);
break;
case ir_unop_f2i:
assert(ir->operands[0]->type->is_float());
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_f2u:
assert(ir->operands[0]->type->is_float());
assert(ir->type->base_type == GLSL_TYPE_UINT);
break;
case ir_unop_i2f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
assert(ir->type->is_float());
break;
case ir_unop_f2b:
assert(ir->operands[0]->type->is_float());
assert(ir->type->is_boolean());
break;
case ir_unop_f162b:
assert(ir->operands[0]->type->base_type ==
GLSL_TYPE_FLOAT16);
assert(ir->type->is_boolean());
break;
case ir_unop_b2f:
assert(ir->operands[0]->type->is_boolean());
assert(ir->type->is_float());
break;
case ir_unop_b2f16:
assert(ir->operands[0]->type->is_boolean());
assert(ir->type->base_type == GLSL_TYPE_FLOAT16);
break;
case ir_unop_i2b:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
assert(ir->type->is_boolean());
break;
case ir_unop_b2i:
assert(ir->operands[0]->type->is_boolean());
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_u2f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
assert(ir->type->is_float());
break;
case ir_unop_i2u:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
assert(ir->type->base_type == GLSL_TYPE_UINT);
break;
case ir_unop_u2i:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_bitcast_i2f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
assert(ir->type->is_float());
break;
case ir_unop_bitcast_f2i:
assert(ir->operands[0]->type->is_float());
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_bitcast_u2f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
assert(ir->type->is_float());
break;
case ir_unop_bitcast_f2u:
assert(ir->operands[0]->type->is_float());
assert(ir->type->base_type == GLSL_TYPE_UINT);
break;
case ir_unop_bitcast_u642d:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT64);
assert(ir->type->is_double());
break;
case ir_unop_bitcast_i642d:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT64);
assert(ir->type->is_double());
break;
case ir_unop_bitcast_d2u64:
assert(ir->operands[0]->type->is_double());
assert(ir->type->base_type == GLSL_TYPE_UINT64);
break;
case ir_unop_bitcast_d2i64:
assert(ir->operands[0]->type->is_double());
assert(ir->type->base_type == GLSL_TYPE_INT64);
break;
case ir_unop_i642i:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT64);
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_u642i:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT64);
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_i642u:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT64);
assert(ir->type->base_type == GLSL_TYPE_UINT);
break;
case ir_unop_u642u:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT64);
assert(ir->type->base_type == GLSL_TYPE_UINT);
break;
case ir_unop_i642b:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT64);
assert(ir->type->is_boolean());
break;
case ir_unop_i642f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT64);
assert(ir->type->is_float());
break;
case ir_unop_u642f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT64);
assert(ir->type->is_float());
break;
case ir_unop_i642d:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT64);
assert(ir->type->is_double());
break;
case ir_unop_u642d:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT64);
assert(ir->type->is_double());
break;
case ir_unop_i2i64:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
assert(ir->type->base_type == GLSL_TYPE_INT64);
break;
case ir_unop_u2i64:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
assert(ir->type->base_type == GLSL_TYPE_INT64);
break;
case ir_unop_b2i64:
assert(ir->operands[0]->type->is_boolean());
assert(ir->type->base_type == GLSL_TYPE_INT64);
break;
case ir_unop_f2i64:
assert(ir->operands[0]->type->is_float());
assert(ir->type->base_type == GLSL_TYPE_INT64);
break;
case ir_unop_d2i64:
assert(ir->operands[0]->type->is_double());
assert(ir->type->base_type == GLSL_TYPE_INT64);
break;
case ir_unop_i2u64:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
assert(ir->type->base_type == GLSL_TYPE_UINT64);
break;
case ir_unop_u2u64:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
assert(ir->type->base_type == GLSL_TYPE_UINT64);
break;
case ir_unop_f2u64:
assert(ir->operands[0]->type->is_float());
assert(ir->type->base_type == GLSL_TYPE_UINT64);
break;
case ir_unop_d2u64:
assert(ir->operands[0]->type->is_double());
assert(ir->type->base_type == GLSL_TYPE_UINT64);
break;
case ir_unop_u642i64:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT64);
assert(ir->type->base_type == GLSL_TYPE_INT64);
break;
case ir_unop_i642u64:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT64);
assert(ir->type->base_type == GLSL_TYPE_UINT64);
break;
case ir_unop_trunc:
case ir_unop_round_even:
case ir_unop_ceil:
case ir_unop_floor:
case ir_unop_fract:
assert(ir->operands[0]->type->is_float_16_32_64());
assert(ir->operands[0]->type == ir->type);
break;
case ir_unop_sin:
case ir_unop_cos:
case ir_unop_dFdx:
case ir_unop_dFdx_coarse:
case ir_unop_dFdx_fine:
case ir_unop_dFdy:
case ir_unop_dFdy_coarse:
case ir_unop_dFdy_fine:
assert(ir->operands[0]->type->is_float_16_32());
assert(ir->operands[0]->type == ir->type);
break;
case ir_unop_pack_snorm_2x16:
case ir_unop_pack_unorm_2x16:
case ir_unop_pack_half_2x16:
assert(ir->type == glsl_type::uint_type);
assert(ir->operands[0]->type == glsl_type::vec2_type);
break;
case ir_unop_pack_snorm_4x8:
case ir_unop_pack_unorm_4x8:
assert(ir->type == glsl_type::uint_type);
assert(ir->operands[0]->type == glsl_type::vec4_type);
break;
case ir_unop_pack_double_2x32:
assert(ir->type == glsl_type::double_type);
assert(ir->operands[0]->type == glsl_type::uvec2_type);
break;
case ir_unop_pack_int_2x32:
assert(ir->type == glsl_type::int64_t_type);
assert(ir->operands[0]->type == glsl_type::ivec2_type);
break;
case ir_unop_pack_uint_2x32:
assert(ir->type == glsl_type::uint64_t_type);
assert(ir->operands[0]->type == glsl_type::uvec2_type);
break;
case ir_unop_pack_sampler_2x32:
assert(ir->type->is_sampler());
assert(ir->operands[0]->type == glsl_type::uvec2_type);
break;
case ir_unop_pack_image_2x32:
assert(ir->type->is_image());
assert(ir->operands[0]->type == glsl_type::uvec2_type);
break;
case ir_unop_unpack_snorm_2x16:
case ir_unop_unpack_unorm_2x16:
case ir_unop_unpack_half_2x16:
assert(ir->type == glsl_type::vec2_type);
assert(ir->operands[0]->type == glsl_type::uint_type);
break;
case ir_unop_unpack_snorm_4x8:
case ir_unop_unpack_unorm_4x8:
assert(ir->type == glsl_type::vec4_type);
assert(ir->operands[0]->type == glsl_type::uint_type);
break;
case ir_unop_unpack_double_2x32:
assert(ir->type == glsl_type::uvec2_type);
assert(ir->operands[0]->type == glsl_type::double_type);
break;
case ir_unop_unpack_int_2x32:
assert(ir->type == glsl_type::ivec2_type);
assert(ir->operands[0]->type == glsl_type::int64_t_type);
break;
case ir_unop_unpack_uint_2x32:
assert(ir->type == glsl_type::uvec2_type);
assert(ir->operands[0]->type == glsl_type::uint64_t_type);
break;
case ir_unop_unpack_sampler_2x32:
assert(ir->type == glsl_type::uvec2_type);
assert(ir->operands[0]->type->is_sampler());
break;
case ir_unop_unpack_image_2x32:
assert(ir->type == glsl_type::uvec2_type);
assert(ir->operands[0]->type->is_image());
break;
case ir_unop_bitfield_reverse:
assert(ir->operands[0]->type == ir->type);
assert(ir->type->is_integer_32());
break;
case ir_unop_bit_count:
case ir_unop_find_msb:
case ir_unop_find_lsb:
assert(ir->operands[0]->type->vector_elements == ir->type->vector_elements);
assert(ir->operands[0]->type->is_integer_32());
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_clz:
assert(ir->operands[0]->type == ir->type);
assert(ir->type->base_type == GLSL_TYPE_UINT);
break;
case ir_unop_interpolate_at_centroid:
assert(ir->operands[0]->type == ir->type);
assert(ir->operands[0]->type->is_float_16_32());
break;
case ir_unop_get_buffer_size:
assert(ir->type == glsl_type::int_type);
assert(ir->operands[0]->type == glsl_type::uint_type);
break;
case ir_unop_ssbo_unsized_array_length:
assert(ir->type == glsl_type::int_type);
assert(ir->operands[0]->type->is_array());
assert(ir->operands[0]->type->is_unsized_array());
break;
case ir_unop_d2f:
assert(ir->operands[0]->type->is_double());
assert(ir->type->is_float());
break;
case ir_unop_f2d:
assert(ir->operands[0]->type->is_float());
assert(ir->type->is_double());
break;
case ir_unop_f162f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT16);
assert(ir->type->is_float());
break;
case ir_unop_f2f16:
case ir_unop_f2fmp:
assert(ir->operands[0]->type->is_float());
assert(ir->type->base_type == GLSL_TYPE_FLOAT16);
break;
case ir_unop_d2i:
assert(ir->operands[0]->type->is_double());
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_i2d:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
assert(ir->type->is_double());
break;
case ir_unop_d2u:
assert(ir->operands[0]->type->is_double());
assert(ir->type->base_type == GLSL_TYPE_UINT);
break;
case ir_unop_u2d:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
assert(ir->type->is_double());
break;
case ir_unop_d2b:
assert(ir->operands[0]->type->is_double());
assert(ir->type->is_boolean());
break;
case ir_unop_frexp_sig:
assert(ir->operands[0]->type->is_float_16_32_64());
assert(ir->type->is_double());
break;
case ir_unop_frexp_exp:
assert(ir->operands[0]->type->is_float_16_32_64());
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_subroutine_to_int:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_SUBROUTINE);
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_atan:
assert(ir->operands[0]->type->is_float_16_32_64());
assert(ir->type == ir->operands[0]->type);
break;
case ir_binop_add:
case ir_binop_sub:
case ir_binop_mul:
case ir_binop_div:
case ir_binop_mod:
case ir_binop_min:
case ir_binop_max:
case ir_binop_pow:
assert(ir->operands[0]->type->base_type ==
ir->operands[1]->type->base_type);
if (ir->operation == ir_binop_mul &&
(ir->type->base_type == GLSL_TYPE_UINT64 ||
ir->type->base_type == GLSL_TYPE_INT64) &&
(ir->operands[0]->type->base_type == GLSL_TYPE_INT ||
ir->operands[1]->type->base_type == GLSL_TYPE_INT ||
ir->operands[0]->type->base_type == GLSL_TYPE_UINT ||
ir->operands[1]->type->base_type == GLSL_TYPE_UINT)) {
assert(ir->operands[0]->type == ir->operands[1]->type);
break;
}
if (ir->operands[0]->type->is_scalar())
assert(ir->operands[1]->type == ir->type);
else if (ir->operands[1]->type->is_scalar())
assert(ir->operands[0]->type == ir->type);
else if (ir->operands[0]->type->is_vector() &&
ir->operands[1]->type->is_vector()) {
assert(ir->operands[0]->type == ir->operands[1]->type);
assert(ir->operands[0]->type == ir->type);
}
break;
case ir_binop_abs_sub:
assert(ir->operands[0]->type == ir->operands[1]->type);
assert(ir->operands[0]->type->is_integer_32_64());
assert(ir->operands[0]->type->vector_elements ==
ir->type->vector_elements);
assert(ir->type->base_type == GLSL_TYPE_UINT ||
ir->type->base_type == GLSL_TYPE_UINT64);
break;
case ir_binop_add_sat:
case ir_binop_sub_sat:
case ir_binop_avg:
case ir_binop_avg_round:
assert(ir->type == ir->operands[0]->type);
assert(ir->type == ir->operands[1]->type);
assert(ir->type->is_integer_32_64());
break;
case ir_binop_mul_32x16:
case ir_binop_imul_high:
assert(ir->type == ir->operands[0]->type);
assert(ir->type == ir->operands[1]->type);
assert(ir->type->is_integer_32());
break;
case ir_binop_carry:
case ir_binop_borrow:
assert(ir->type == ir->operands[0]->type);
assert(ir->type == ir->operands[1]->type);
assert(ir->type->base_type == GLSL_TYPE_UINT);
break;
case ir_binop_less:
case ir_binop_gequal:
case ir_binop_equal:
case ir_binop_nequal:
/* The semantics of the IR operators differ from the GLSL <, >, <=, >=,
* ==, and != operators. The IR operators perform a component-wise
* comparison on scalar or vector types and return a boolean scalar or
* vector type of the same size.
*/
assert(ir->type->is_boolean());
assert(ir->operands[0]->type == ir->operands[1]->type);
assert(ir->operands[0]->type->is_vector()
|| ir->operands[0]->type->is_scalar());
assert(ir->operands[0]->type->vector_elements
== ir->type->vector_elements);
break;
case ir_binop_all_equal:
case ir_binop_any_nequal:
/* GLSL == and != operate on scalars, vectors, matrices and arrays, and
* return a scalar boolean. The IR matches that.
*/
assert(ir->type == glsl_type::bool_type);
assert(ir->operands[0]->type == ir->operands[1]->type);
break;
case ir_binop_lshift:
case ir_binop_rshift:
assert(ir->operands[0]->type->is_integer_32_64() &&
ir->operands[1]->type->is_integer_32());
if (ir->operands[0]->type->is_scalar()) {
assert(ir->operands[1]->type->is_scalar());
}
if (ir->operands[0]->type->is_vector() &&
ir->operands[1]->type->is_vector()) {
assert(ir->operands[0]->type->components() ==
ir->operands[1]->type->components());
}
assert(ir->type == ir->operands[0]->type);
break;
case ir_binop_bit_and:
case ir_binop_bit_xor:
case ir_binop_bit_or:
assert(ir->operands[0]->type->base_type ==
ir->operands[1]->type->base_type);
assert(ir->type->is_integer_32_64());
if (ir->operands[0]->type->is_vector() &&
ir->operands[1]->type->is_vector()) {
assert(ir->operands[0]->type->vector_elements ==
ir->operands[1]->type->vector_elements);
}
break;
case ir_binop_logic_and:
case ir_binop_logic_xor:
case ir_binop_logic_or:
assert(ir->type->is_boolean());
assert(ir->operands[0]->type->is_boolean());
assert(ir->operands[1]->type->is_boolean());
break;
case ir_binop_dot:
assert(ir->type == glsl_type::float_type ||
ir->type == glsl_type::double_type ||
ir->type == glsl_type::float16_t_type);
assert(ir->operands[0]->type->is_float_16_32_64());
assert(ir->operands[0]->type->is_vector());
assert(ir->operands[0]->type == ir->operands[1]->type);
break;
case ir_binop_ubo_load:
assert(ir->operands[0]->type == glsl_type::uint_type);
assert(ir->operands[1]->type == glsl_type::uint_type);
break;
case ir_binop_ldexp:
assert(ir->operands[0]->type == ir->type);
assert(ir->operands[0]->type->is_float_16_32_64());
assert(ir->operands[1]->type->base_type == GLSL_TYPE_INT);
assert(ir->operands[0]->type->components() ==
ir->operands[1]->type->components());
break;
case ir_binop_vector_extract:
assert(ir->operands[0]->type->is_vector());
assert(ir->operands[1]->type->is_scalar()
&& ir->operands[1]->type->is_integer_32());
break;
case ir_binop_interpolate_at_offset:
assert(ir->operands[0]->type == ir->type);
assert(ir->operands[0]->type->is_float());
assert(ir->operands[1]->type->components() == 2);
assert(ir->operands[1]->type->is_float());
break;
case ir_binop_interpolate_at_sample:
assert(ir->operands[0]->type == ir->type);
assert(ir->operands[0]->type->is_float());
assert(ir->operands[1]->type == glsl_type::int_type);
break;
case ir_binop_atan2:
assert(ir->operands[0]->type->is_float_16_32_64());
assert(ir->operands[1]->type == ir->operands[0]->type);
assert(ir->type == ir->operands[0]->type);
break;
case ir_triop_fma:
assert(ir->type->is_float_16_32_64());
assert(ir->type == ir->operands[0]->type);
assert(ir->type == ir->operands[1]->type);
assert(ir->type == ir->operands[2]->type);
break;
case ir_triop_lrp:
assert(ir->operands[0]->type->is_float_16_32_64());
assert(ir->operands[0]->type == ir->operands[1]->type);
assert(ir->operands[2]->type == ir->operands[0]->type ||
ir->operands[2]->type == glsl_type::float_type ||
ir->operands[2]->type == glsl_type::double_type ||
ir->operands[2]->type == glsl_type::float16_t_type);
break;
case ir_triop_csel:
assert(ir->operands[0]->type->is_boolean());
assert(ir->type->vector_elements == ir->operands[0]->type->vector_elements);
assert(ir->type == ir->operands[1]->type);
assert(ir->type == ir->operands[2]->type);
break;
case ir_triop_bitfield_extract:
assert(ir->type->is_integer_32());
assert(ir->operands[0]->type == ir->type);
assert(ir->operands[1]->type == ir->type);
assert(ir->operands[2]->type == ir->type);
break;
case ir_triop_vector_insert:
assert(ir->operands[0]->type->is_vector());
assert(ir->operands[1]->type->is_scalar());
assert(ir->operands[0]->type->base_type == ir->operands[1]->type->base_type);
assert(ir->operands[2]->type->is_scalar()
&& ir->operands[2]->type->is_integer_32());
assert(ir->type == ir->operands[0]->type);
break;
case ir_quadop_bitfield_insert:
assert(ir->type->is_integer_32());
assert(ir->operands[0]->type == ir->type);
assert(ir->operands[1]->type == ir->type);
assert(ir->operands[2]->type == ir->type);
assert(ir->operands[3]->type == ir->type);
break;
case ir_quadop_vector:
/* The vector operator collects some number of scalars and generates a
* vector from them.
*
* - All of the operands must be scalar.
* - Number of operands must matche the size of the resulting vector.
* - Base type of the operands must match the base type of the result.
*/
assert(ir->type->is_vector());
switch (ir->type->vector_elements) {
case 2:
assert(ir->operands[0]->type->is_scalar());
assert(ir->operands[0]->type->base_type == ir->type->base_type);
assert(ir->operands[1]->type->is_scalar());
assert(ir->operands[1]->type->base_type == ir->type->base_type);
assert(ir->operands[2] == NULL);
assert(ir->operands[3] == NULL);
break;
case 3:
assert(ir->operands[0]->type->is_scalar());
assert(ir->operands[0]->type->base_type == ir->type->base_type);
assert(ir->operands[1]->type->is_scalar());
assert(ir->operands[1]->type->base_type == ir->type->base_type);
assert(ir->operands[2]->type->is_scalar());
assert(ir->operands[2]->type->base_type == ir->type->base_type);
assert(ir->operands[3] == NULL);
break;
case 4:
assert(ir->operands[0]->type->is_scalar());
assert(ir->operands[0]->type->base_type == ir->type->base_type);
assert(ir->operands[1]->type->is_scalar());
assert(ir->operands[1]->type->base_type == ir->type->base_type);
assert(ir->operands[2]->type->is_scalar());
assert(ir->operands[2]->type->base_type == ir->type->base_type);
assert(ir->operands[3]->type->is_scalar());
assert(ir->operands[3]->type->base_type == ir->type->base_type);
break;
default:
/* The is_vector assertion above should prevent execution from ever
* getting here.
*/
assert(!"Should not get here.");
break;
}
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit_leave(ir_swizzle *ir)
{
unsigned int chans[4] = {ir->mask.x, ir->mask.y, ir->mask.z, ir->mask.w};
for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
if (chans[i] >= ir->val->type->vector_elements) {
printf("ir_swizzle @ %p specifies a channel not present "
"in the value.\n", (void *) ir);
ir->print();
abort();
}
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit(ir_variable *ir)
{
/* An ir_variable is the one thing that can (and will) appear multiple times
* in an IR tree. It is added to the hashtable so that it can be used
* in the ir_dereference_variable handler to ensure that a variable is
* declared before it is dereferenced.
*/
if (ir->name && ir->is_name_ralloced())
assert(ralloc_parent(ir->name) == ir);
_mesa_set_add(ir_set, ir);
/* If a variable is an array, verify that the maximum array index is in
* bounds. There was once an error in AST-to-HIR conversion that set this
* to be out of bounds.
*/
if (ir->type->array_size() > 0) {
if (ir->data.max_array_access >= (int)ir->type->length) {
printf("ir_variable has maximum access out of bounds (%d vs %d)\n",
ir->data.max_array_access, ir->type->length - 1);
ir->print();
abort();
}
}
/* If a variable is an interface block (or an array of interface blocks),
* verify that the maximum array index for each interface member is in
* bounds.
*/
if (ir->is_interface_instance()) {
const glsl_struct_field *fields =
ir->get_interface_type()->fields.structure;
for (unsigned i = 0; i < ir->get_interface_type()->length; i++) {
if (fields[i].type->array_size() > 0 &&
!fields[i].implicit_sized_array) {
const int *const max_ifc_array_access =
ir->get_max_ifc_array_access();
assert(max_ifc_array_access != NULL);
if (max_ifc_array_access[i] >= (int)fields[i].type->length) {
printf("ir_variable has maximum access out of bounds for "
"field %s (%d vs %d)\n", fields[i].name,
max_ifc_array_access[i], fields[i].type->length);
ir->print();
abort();
}
}
}
}
if (ir->constant_initializer != NULL && !ir->data.has_initializer) {
printf("ir_variable didn't have an initializer, but has a constant "
"initializer value.\n");
ir->print();
abort();
}
if (ir->data.mode == ir_var_uniform
&& is_gl_identifier(ir->name)
&& ir->get_state_slots() == NULL) {
printf("built-in uniform has no state\n");
ir->print();
abort();
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(ir_assignment *ir)
{
const ir_dereference *const lhs = ir->lhs;
if (lhs->type->is_scalar() || lhs->type->is_vector()) {
if (ir->write_mask == 0) {
printf("Assignment LHS is %s, but write mask is 0:\n",
lhs->type->is_scalar() ? "scalar" : "vector");
ir->print();
abort();
}
int lhs_components = 0;
for (int i = 0; i < 4; i++) {
if (ir->write_mask & (1 << i))
lhs_components++;
}
if (lhs_components != ir->rhs->type->vector_elements) {
printf("Assignment count of LHS write mask channels enabled not\n"
"matching RHS vector size (%d LHS, %d RHS).\n",
lhs_components, ir->rhs->type->vector_elements);
ir->print();
abort();
}
}
this->validate_ir(ir, this->data_enter);
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(ir_call *ir)
{
ir_function_signature *const callee = ir->callee;
if (callee->ir_type != ir_type_function_signature) {
printf("IR called by ir_call is not ir_function_signature!\n");
abort();
}
if (ir->return_deref) {
if (ir->return_deref->type != callee->return_type) {
printf("callee type %s does not match return storage type %s\n",
callee->return_type->name, ir->return_deref->type->name);
abort();
}
} else if (callee->return_type != glsl_type::void_type) {
printf("ir_call has non-void callee but no return storage\n");
abort();
}
const exec_node *formal_param_node = callee->parameters.get_head_raw();
const exec_node *actual_param_node = ir->actual_parameters.get_head_raw();
while (true) {
if (formal_param_node->is_tail_sentinel()
!= actual_param_node->is_tail_sentinel()) {
printf("ir_call has the wrong number of parameters:\n");
goto dump_ir;
}
if (formal_param_node->is_tail_sentinel()) {
break;
}
const ir_variable *formal_param
= (const ir_variable *) formal_param_node;
const ir_rvalue *actual_param
= (const ir_rvalue *) actual_param_node;
if (formal_param->type != actual_param->type) {
printf("ir_call parameter type mismatch:\n");
goto dump_ir;
}
if (formal_param->data.mode == ir_var_function_out
|| formal_param->data.mode == ir_var_function_inout) {
if (!actual_param->is_lvalue()) {
printf("ir_call out/inout parameters must be lvalues:\n");
goto dump_ir;
}
}
formal_param_node = formal_param_node->next;
actual_param_node = actual_param_node->next;
}
return visit_continue;
dump_ir:
ir->print();
printf("callee:\n");
callee->print();
abort();
return visit_stop;
}
void
ir_validate::validate_ir(ir_instruction *ir, void *data)
{
struct set *ir_set = (struct set *) data;
if (_mesa_set_search(ir_set, ir)) {
printf("Instruction node present twice in ir tree:\n");
ir->print();
printf("\n");
abort();
}
_mesa_set_add(ir_set, ir);
}
#ifdef DEBUG
static void
check_node_type(ir_instruction *ir, void *data)
{
(void) data;
if (ir->ir_type >= ir_type_max) {
printf("Instruction node with unset type\n");
ir->print(); printf("\n");
}
ir_rvalue *value = ir->as_rvalue();
if (value != NULL)
assert(value->type != glsl_type::error_type);
}
#endif
void
validate_ir_tree(exec_list *instructions)
{
/* We shouldn't have any reason to validate IR in a release build,
* and it's half composed of assert()s anyway which wouldn't do
* anything.
*/
#ifdef DEBUG
ir_validate v;
v.run(instructions);
foreach_in_list(ir_instruction, ir, instructions) {
visit_tree(ir, check_node_type, NULL);
}
#endif
}