Source code
Revision control
Copy as Markdown
Other Tools
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! ISO 8601 date and time without timezone.
#[cfg(any(feature = "alloc", feature = "std", test))]
use core::borrow::Borrow;
use core::ops::{Add, AddAssign, Sub, SubAssign};
use core::{fmt, hash, str};
use num_traits::ToPrimitive;
use oldtime::Duration as OldDuration;
use div::div_mod_floor;
#[cfg(any(feature = "alloc", feature = "std", test))]
use format::DelayedFormat;
use format::{parse, ParseError, ParseResult, Parsed, StrftimeItems};
use format::{Fixed, Item, Numeric, Pad};
use naive::date::{MAX_DATE, MIN_DATE};
use naive::time::{MAX_TIME, MIN_TIME};
use naive::{IsoWeek, NaiveDate, NaiveTime};
use {Datelike, Timelike, Weekday};
/// The tight upper bound guarantees that a duration with `|Duration| >= 2^MAX_SECS_BITS`
/// will always overflow the addition with any date and time type.
///
/// So why is this needed? `Duration::seconds(rhs)` may overflow, and we don't have
/// an alternative returning `Option` or `Result`. Thus we need some early bound to avoid
/// touching that call when we are already sure that it WILL overflow...
const MAX_SECS_BITS: usize = 44;
/// The minimum possible `NaiveDateTime`.
pub const MIN_DATETIME: NaiveDateTime = NaiveDateTime { date: MIN_DATE, time: MIN_TIME };
/// The maximum possible `NaiveDateTime`.
pub const MAX_DATETIME: NaiveDateTime = NaiveDateTime { date: MAX_DATE, time: MAX_TIME };
/// ISO 8601 combined date and time without timezone.
///
/// # Example
///
/// `NaiveDateTime` is commonly created from [`NaiveDate`](./struct.NaiveDate.html).
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
/// # let _ = dt;
/// ~~~~
///
/// You can use typical [date-like](../trait.Datelike.html) and
/// [time-like](../trait.Timelike.html) methods,
/// provided that relevant traits are in the scope.
///
/// ~~~~
/// # use chrono::{NaiveDate, NaiveDateTime};
/// # let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
/// use chrono::{Datelike, Timelike, Weekday};
///
/// assert_eq!(dt.weekday(), Weekday::Fri);
/// assert_eq!(dt.num_seconds_from_midnight(), 33011);
/// ~~~~
#[derive(PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
pub struct NaiveDateTime {
date: NaiveDate,
time: NaiveTime,
}
impl NaiveDateTime {
/// Makes a new `NaiveDateTime` from date and time components.
/// Equivalent to [`date.and_time(time)`](./struct.NaiveDate.html#method.and_time)
/// and many other helper constructors on `NaiveDate`.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveTime, NaiveDateTime};
///
/// let d = NaiveDate::from_ymd(2015, 6, 3);
/// let t = NaiveTime::from_hms_milli(12, 34, 56, 789);
///
/// let dt = NaiveDateTime::new(d, t);
/// assert_eq!(dt.date(), d);
/// assert_eq!(dt.time(), t);
/// ~~~~
#[inline]
pub fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime {
NaiveDateTime { date: date, time: time }
}
/// Makes a new `NaiveDateTime` corresponding to a UTC date and time,
/// from the number of non-leap seconds
/// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp")
/// and the number of nanoseconds since the last whole non-leap second.
///
/// For a non-naive version of this function see
/// [`TimeZone::timestamp`](../offset/trait.TimeZone.html#method.timestamp).
///
/// The nanosecond part can exceed 1,000,000,000 in order to represent the
/// [leap second](./struct.NaiveTime.html#leap-second-handling). (The true "UNIX
/// timestamp" cannot represent a leap second unambiguously.)
///
/// Panics on the out-of-range number of seconds and/or invalid nanosecond.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDateTime, NaiveDate};
///
/// let dt = NaiveDateTime::from_timestamp(0, 42_000_000);
/// assert_eq!(dt, NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 0, 42));
///
/// let dt = NaiveDateTime::from_timestamp(1_000_000_000, 0);
/// assert_eq!(dt, NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40));
/// ~~~~
#[inline]
pub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime {
let datetime = NaiveDateTime::from_timestamp_opt(secs, nsecs);
datetime.expect("invalid or out-of-range datetime")
}
/// Makes a new `NaiveDateTime` corresponding to a UTC date and time,
/// from the number of non-leap seconds
/// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp")
/// and the number of nanoseconds since the last whole non-leap second.
///
/// The nanosecond part can exceed 1,000,000,000
/// in order to represent the [leap second](./struct.NaiveTime.html#leap-second-handling).
/// (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
///
/// Returns `None` on the out-of-range number of seconds and/or invalid nanosecond.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDateTime, NaiveDate};
/// use std::i64;
///
/// let from_timestamp_opt = NaiveDateTime::from_timestamp_opt;
///
/// assert!(from_timestamp_opt(0, 0).is_some());
/// assert!(from_timestamp_opt(0, 999_999_999).is_some());
/// assert!(from_timestamp_opt(0, 1_500_000_000).is_some()); // leap second
/// assert!(from_timestamp_opt(0, 2_000_000_000).is_none());
/// assert!(from_timestamp_opt(i64::MAX, 0).is_none());
/// ~~~~
#[inline]
pub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime> {
let (days, secs) = div_mod_floor(secs, 86_400);
let date = days
.to_i32()
.and_then(|days| days.checked_add(719_163))
.and_then(NaiveDate::from_num_days_from_ce_opt);
let time = NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs);
match (date, time) {
(Some(date), Some(time)) => Some(NaiveDateTime { date: date, time: time }),
(_, _) => None,
}
}
/// Parses a string with the specified format string and returns a new `NaiveDateTime`.
/// See the [`format::strftime` module](../format/strftime/index.html)
/// on the supported escape sequences.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDateTime, NaiveDate};
///
/// let parse_from_str = NaiveDateTime::parse_from_str;
///
/// assert_eq!(parse_from_str("2015-09-05 23:56:04", "%Y-%m-%d %H:%M:%S"),
/// Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4)));
/// assert_eq!(parse_from_str("5sep2015pm012345.6789", "%d%b%Y%p%I%M%S%.f"),
/// Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms_micro(13, 23, 45, 678_900)));
/// ~~~~
///
/// Offset is ignored for the purpose of parsing.
///
/// ~~~~
/// # use chrono::{NaiveDateTime, NaiveDate};
/// # let parse_from_str = NaiveDateTime::parse_from_str;
/// assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
/// Ok(NaiveDate::from_ymd(2014, 5, 17).and_hms(12, 34, 56)));
/// ~~~~
///
/// [Leap seconds](./struct.NaiveTime.html#leap-second-handling) are correctly handled by
/// treating any time of the form `hh:mm:60` as a leap second.
/// (This equally applies to the formatting, so the round trip is possible.)
///
/// ~~~~
/// # use chrono::{NaiveDateTime, NaiveDate};
/// # let parse_from_str = NaiveDateTime::parse_from_str;
/// assert_eq!(parse_from_str("2015-07-01 08:59:60.123", "%Y-%m-%d %H:%M:%S%.f"),
/// Ok(NaiveDate::from_ymd(2015, 7, 1).and_hms_milli(8, 59, 59, 1_123)));
/// ~~~~
///
/// Missing seconds are assumed to be zero,
/// but out-of-bound times or insufficient fields are errors otherwise.
///
/// ~~~~
/// # use chrono::{NaiveDateTime, NaiveDate};
/// # let parse_from_str = NaiveDateTime::parse_from_str;
/// assert_eq!(parse_from_str("94/9/4 7:15", "%y/%m/%d %H:%M"),
/// Ok(NaiveDate::from_ymd(1994, 9, 4).and_hms(7, 15, 0)));
///
/// assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
/// assert!(parse_from_str("94/9/4 12", "%y/%m/%d %H").is_err());
/// assert!(parse_from_str("94/9/4 17:60", "%y/%m/%d %H:%M").is_err());
/// assert!(parse_from_str("94/9/4 24:00:00", "%y/%m/%d %H:%M:%S").is_err());
/// ~~~~
///
/// All parsed fields should be consistent to each other, otherwise it's an error.
///
/// ~~~~
/// # use chrono::NaiveDateTime;
/// # let parse_from_str = NaiveDateTime::parse_from_str;
/// let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s";
/// assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999", fmt).is_ok());
/// assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1", fmt).is_err());
/// ~~~~
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime> {
let mut parsed = Parsed::new();
parse(&mut parsed, s, StrftimeItems::new(fmt))?;
parsed.to_naive_datetime_with_offset(0) // no offset adjustment
}
/// Retrieves a date component.
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
///
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
/// assert_eq!(dt.date(), NaiveDate::from_ymd(2016, 7, 8));
/// ~~~~
#[inline]
pub fn date(&self) -> NaiveDate {
self.date
}
/// Retrieves a time component.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveTime};
///
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
/// assert_eq!(dt.time(), NaiveTime::from_hms(9, 10, 11));
/// ~~~~
#[inline]
pub fn time(&self) -> NaiveTime {
self.time
}
/// Returns the number of non-leap seconds since the midnight on January 1, 1970.
///
/// Note that this does *not* account for the timezone!
/// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch.
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
///
/// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 980);
/// assert_eq!(dt.timestamp(), 1);
///
/// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40);
/// assert_eq!(dt.timestamp(), 1_000_000_000);
///
/// let dt = NaiveDate::from_ymd(1969, 12, 31).and_hms(23, 59, 59);
/// assert_eq!(dt.timestamp(), -1);
///
/// let dt = NaiveDate::from_ymd(-1, 1, 1).and_hms(0, 0, 0);
/// assert_eq!(dt.timestamp(), -62198755200);
/// ~~~~
#[inline]
pub fn timestamp(&self) -> i64 {
const UNIX_EPOCH_DAY: i64 = 719_163;
let gregorian_day = i64::from(self.date.num_days_from_ce());
let seconds_from_midnight = i64::from(self.time.num_seconds_from_midnight());
(gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight
}
/// Returns the number of non-leap *milliseconds* since midnight on January 1, 1970.
///
/// Note that this does *not* account for the timezone!
/// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch.
///
/// Note also that this does reduce the number of years that can be
/// represented from ~584 Billion to ~584 Million. (If this is a problem,
/// please file an issue to let me know what domain needs millisecond
/// precision over billions of years, I'm curious.)
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
///
/// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 444);
/// assert_eq!(dt.timestamp_millis(), 1_444);
///
/// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_milli(1, 46, 40, 555);
/// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
///
/// let dt = NaiveDate::from_ymd(1969, 12, 31).and_hms_milli(23, 59, 59, 100);
/// assert_eq!(dt.timestamp_millis(), -900);
/// ~~~~
#[inline]
pub fn timestamp_millis(&self) -> i64 {
let as_ms = self.timestamp() * 1000;
as_ms + i64::from(self.timestamp_subsec_millis())
}
/// Returns the number of non-leap *nanoseconds* since midnight on January 1, 1970.
///
/// Note that this does *not* account for the timezone!
/// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch.
///
/// # Panics
///
/// Note also that this does reduce the number of years that can be
/// represented from ~584 Billion to ~584 years. The dates that can be
/// represented as nanoseconds are between 1677-09-21T00:12:44.0 and
/// 2262-04-11T23:47:16.854775804.
///
/// (If this is a problem, please file an issue to let me know what domain
/// needs nanosecond precision over millennia, I'm curious.)
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime};
///
/// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_nano(0, 0, 1, 444);
/// assert_eq!(dt.timestamp_nanos(), 1_000_000_444);
///
/// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_nano(1, 46, 40, 555);
///
/// const A_BILLION: i64 = 1_000_000_000;
/// let nanos = dt.timestamp_nanos();
/// assert_eq!(nanos, 1_000_000_000_000_000_555);
/// assert_eq!(
/// dt,
/// NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32)
/// );
/// ~~~~
#[inline]
pub fn timestamp_nanos(&self) -> i64 {
let as_ns = self.timestamp() * 1_000_000_000;
as_ns + i64::from(self.timestamp_subsec_nanos())
}
/// Returns the number of milliseconds since the last whole non-leap second.
///
/// The return value ranges from 0 to 999,
/// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999.
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
///
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789);
/// assert_eq!(dt.timestamp_subsec_millis(), 123);
///
/// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890);
/// assert_eq!(dt.timestamp_subsec_millis(), 1_234);
/// ~~~~
#[inline]
pub fn timestamp_subsec_millis(&self) -> u32 {
self.timestamp_subsec_nanos() / 1_000_000
}
/// Returns the number of microseconds since the last whole non-leap second.
///
/// The return value ranges from 0 to 999,999,
/// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999.
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
///
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789);
/// assert_eq!(dt.timestamp_subsec_micros(), 123_456);
///
/// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890);
/// assert_eq!(dt.timestamp_subsec_micros(), 1_234_567);
/// ~~~~
#[inline]
pub fn timestamp_subsec_micros(&self) -> u32 {
self.timestamp_subsec_nanos() / 1_000
}
/// Returns the number of nanoseconds since the last whole non-leap second.
///
/// The return value ranges from 0 to 999,999,999,
/// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999,999.
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
///
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789);
/// assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789);
///
/// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890);
/// assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890);
/// ~~~~
#[inline]
pub fn timestamp_subsec_nanos(&self) -> u32 {
self.time.nanosecond()
}
/// Adds given `Duration` to the current date and time.
///
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
/// the addition assumes that **there is no leap second ever**,
/// except when the `NaiveDateTime` itself represents a leap second
/// in which case the assumption becomes that **there is exactly a single leap second ever**.
///
/// Returns `None` when it will result in overflow.
///
/// # Example
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// use chrono::{Duration, NaiveDate};
///
/// let from_ymd = NaiveDate::from_ymd;
///
/// let d = from_ymd(2016, 7, 8);
/// let hms = |h, m, s| d.and_hms(h, m, s);
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::zero()),
/// Some(hms(3, 5, 7)));
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(1)),
/// Some(hms(3, 5, 8)));
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(-1)),
/// Some(hms(3, 5, 6)));
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(3600 + 60)),
/// Some(hms(4, 6, 7)));
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(86_400)),
/// Some(from_ymd(2016, 7, 9).and_hms(3, 5, 7)));
///
/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
/// assert_eq!(hmsm(3, 5, 7, 980).checked_add_signed(Duration::milliseconds(450)),
/// Some(hmsm(3, 5, 8, 430)));
/// # }
/// ~~~~
///
/// Overflow returns `None`.
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// # use chrono::{Duration, NaiveDate};
/// # let hms = |h, m, s| NaiveDate::from_ymd(2016, 7, 8).and_hms(h, m, s);
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::days(1_000_000_000)), None);
/// # }
/// ~~~~
///
/// Leap seconds are handled,
/// but the addition assumes that it is the only leap second happened.
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// # use chrono::{Duration, NaiveDate};
/// # let from_ymd = NaiveDate::from_ymd;
/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
/// let leap = hmsm(3, 5, 59, 1_300);
/// assert_eq!(leap.checked_add_signed(Duration::zero()),
/// Some(hmsm(3, 5, 59, 1_300)));
/// assert_eq!(leap.checked_add_signed(Duration::milliseconds(-500)),
/// Some(hmsm(3, 5, 59, 800)));
/// assert_eq!(leap.checked_add_signed(Duration::milliseconds(500)),
/// Some(hmsm(3, 5, 59, 1_800)));
/// assert_eq!(leap.checked_add_signed(Duration::milliseconds(800)),
/// Some(hmsm(3, 6, 0, 100)));
/// assert_eq!(leap.checked_add_signed(Duration::seconds(10)),
/// Some(hmsm(3, 6, 9, 300)));
/// assert_eq!(leap.checked_add_signed(Duration::seconds(-10)),
/// Some(hmsm(3, 5, 50, 300)));
/// assert_eq!(leap.checked_add_signed(Duration::days(1)),
/// Some(from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300)));
/// # }
/// ~~~~
pub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime> {
let (time, rhs) = self.time.overflowing_add_signed(rhs);
// early checking to avoid overflow in OldDuration::seconds
if rhs <= (-1 << MAX_SECS_BITS) || rhs >= (1 << MAX_SECS_BITS) {
return None;
}
let date = try_opt!(self.date.checked_add_signed(OldDuration::seconds(rhs)));
Some(NaiveDateTime { date: date, time: time })
}
/// Subtracts given `Duration` from the current date and time.
///
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
/// the subtraction assumes that **there is no leap second ever**,
/// except when the `NaiveDateTime` itself represents a leap second
/// in which case the assumption becomes that **there is exactly a single leap second ever**.
///
/// Returns `None` when it will result in overflow.
///
/// # Example
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// use chrono::{Duration, NaiveDate};
///
/// let from_ymd = NaiveDate::from_ymd;
///
/// let d = from_ymd(2016, 7, 8);
/// let hms = |h, m, s| d.and_hms(h, m, s);
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::zero()),
/// Some(hms(3, 5, 7)));
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(1)),
/// Some(hms(3, 5, 6)));
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(-1)),
/// Some(hms(3, 5, 8)));
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(3600 + 60)),
/// Some(hms(2, 4, 7)));
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(86_400)),
/// Some(from_ymd(2016, 7, 7).and_hms(3, 5, 7)));
///
/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
/// assert_eq!(hmsm(3, 5, 7, 450).checked_sub_signed(Duration::milliseconds(670)),
/// Some(hmsm(3, 5, 6, 780)));
/// # }
/// ~~~~
///
/// Overflow returns `None`.
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// # use chrono::{Duration, NaiveDate};
/// # let hms = |h, m, s| NaiveDate::from_ymd(2016, 7, 8).and_hms(h, m, s);
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::days(1_000_000_000)), None);
/// # }
/// ~~~~
///
/// Leap seconds are handled,
/// but the subtraction assumes that it is the only leap second happened.
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// # use chrono::{Duration, NaiveDate};
/// # let from_ymd = NaiveDate::from_ymd;
/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
/// let leap = hmsm(3, 5, 59, 1_300);
/// assert_eq!(leap.checked_sub_signed(Duration::zero()),
/// Some(hmsm(3, 5, 59, 1_300)));
/// assert_eq!(leap.checked_sub_signed(Duration::milliseconds(200)),
/// Some(hmsm(3, 5, 59, 1_100)));
/// assert_eq!(leap.checked_sub_signed(Duration::milliseconds(500)),
/// Some(hmsm(3, 5, 59, 800)));
/// assert_eq!(leap.checked_sub_signed(Duration::seconds(60)),
/// Some(hmsm(3, 5, 0, 300)));
/// assert_eq!(leap.checked_sub_signed(Duration::days(1)),
/// Some(from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300)));
/// # }
/// ~~~~
pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime> {
let (time, rhs) = self.time.overflowing_sub_signed(rhs);
// early checking to avoid overflow in OldDuration::seconds
if rhs <= (-1 << MAX_SECS_BITS) || rhs >= (1 << MAX_SECS_BITS) {
return None;
}
let date = try_opt!(self.date.checked_sub_signed(OldDuration::seconds(rhs)));
Some(NaiveDateTime { date: date, time: time })
}
/// Subtracts another `NaiveDateTime` from the current date and time.
/// This does not overflow or underflow at all.
///
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
/// the subtraction assumes that **there is no leap second ever**,
/// except when any of the `NaiveDateTime`s themselves represents a leap second
/// in which case the assumption becomes that
/// **there are exactly one (or two) leap second(s) ever**.
///
/// # Example
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// use chrono::{Duration, NaiveDate};
///
/// let from_ymd = NaiveDate::from_ymd;
///
/// let d = from_ymd(2016, 7, 8);
/// assert_eq!(d.and_hms(3, 5, 7).signed_duration_since(d.and_hms(2, 4, 6)),
/// Duration::seconds(3600 + 60 + 1));
///
/// // July 8 is 190th day in the year 2016
/// let d0 = from_ymd(2016, 1, 1);
/// assert_eq!(d.and_hms_milli(0, 7, 6, 500).signed_duration_since(d0.and_hms(0, 0, 0)),
/// Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
/// # }
/// ~~~~
///
/// Leap seconds are handled, but the subtraction assumes that
/// there were no other leap seconds happened.
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// # use chrono::{Duration, NaiveDate};
/// # let from_ymd = NaiveDate::from_ymd;
/// let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
/// assert_eq!(leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms(23, 0, 0)),
/// Duration::seconds(3600) + Duration::milliseconds(500));
/// assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0).signed_duration_since(leap),
/// Duration::seconds(3600) - Duration::milliseconds(500));
/// # }
/// ~~~~
pub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration {
self.date.signed_duration_since(rhs.date) + self.time.signed_duration_since(rhs.time)
}
/// Formats the combined date and time with the specified formatting items.
/// Otherwise it is the same as the ordinary [`format`](#method.format) method.
///
/// The `Iterator` of items should be `Clone`able,
/// since the resulting `DelayedFormat` value may be formatted multiple times.
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
/// use chrono::format::strftime::StrftimeItems;
///
/// let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S");
/// let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
/// assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04");
/// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
/// ~~~~
///
/// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
///
/// ~~~~
/// # use chrono::NaiveDate;
/// # use chrono::format::strftime::StrftimeItems;
/// # let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S").clone();
/// # let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
/// assert_eq!(format!("{}", dt.format_with_items(fmt)), "2015-09-05 23:56:04");
/// ~~~~
#[cfg(any(feature = "alloc", feature = "std", test))]
#[inline]
pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
{
DelayedFormat::new(Some(self.date), Some(self.time), items)
}
/// Formats the combined date and time with the specified format string.
/// See the [`format::strftime` module](../format/strftime/index.html)
/// on the supported escape sequences.
///
/// This returns a `DelayedFormat`,
/// which gets converted to a string only when actual formatting happens.
/// You may use the `to_string` method to get a `String`,
/// or just feed it into `print!` and other formatting macros.
/// (In this way it avoids the redundant memory allocation.)
///
/// A wrong format string does *not* issue an error immediately.
/// Rather, converting or formatting the `DelayedFormat` fails.
/// You are recommended to immediately use `DelayedFormat` for this reason.
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
///
/// let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
/// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
/// assert_eq!(dt.format("around %l %p on %b %-d").to_string(), "around 11 PM on Sep 5");
/// ~~~~
///
/// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
///
/// ~~~~
/// # use chrono::NaiveDate;
/// # let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
/// assert_eq!(format!("{}", dt.format("%Y-%m-%d %H:%M:%S")), "2015-09-05 23:56:04");
/// assert_eq!(format!("{}", dt.format("around %l %p on %b %-d")), "around 11 PM on Sep 5");
/// ~~~~
#[cfg(any(feature = "alloc", feature = "std", test))]
#[inline]
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
self.format_with_items(StrftimeItems::new(fmt))
}
}
impl Datelike for NaiveDateTime {
/// Returns the year number in the [calendar date](./index.html#calendar-date).
///
/// See also the [`NaiveDate::year`](./struct.NaiveDate.html#method.year) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
/// assert_eq!(dt.year(), 2015);
/// ~~~~
#[inline]
fn year(&self) -> i32 {
self.date.year()
}
/// Returns the month number starting from 1.
///
/// The return value ranges from 1 to 12.
///
/// See also the [`NaiveDate::month`](./struct.NaiveDate.html#method.month) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
/// assert_eq!(dt.month(), 9);
/// ~~~~
#[inline]
fn month(&self) -> u32 {
self.date.month()
}
/// Returns the month number starting from 0.
///
/// The return value ranges from 0 to 11.
///
/// See also the [`NaiveDate::month0`](./struct.NaiveDate.html#method.month0) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
/// assert_eq!(dt.month0(), 8);
/// ~~~~
#[inline]
fn month0(&self) -> u32 {
self.date.month0()
}
/// Returns the day of month starting from 1.
///
/// The return value ranges from 1 to 31. (The last day of month differs by months.)
///
/// See also the [`NaiveDate::day`](./struct.NaiveDate.html#method.day) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
/// assert_eq!(dt.day(), 25);
/// ~~~~
#[inline]
fn day(&self) -> u32 {
self.date.day()
}
/// Returns the day of month starting from 0.
///
/// The return value ranges from 0 to 30. (The last day of month differs by months.)
///
/// See also the [`NaiveDate::day0`](./struct.NaiveDate.html#method.day0) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
/// assert_eq!(dt.day0(), 24);
/// ~~~~
#[inline]
fn day0(&self) -> u32 {
self.date.day0()
}
/// Returns the day of year starting from 1.
///
/// The return value ranges from 1 to 366. (The last day of year differs by years.)
///
/// See also the [`NaiveDate::ordinal`](./struct.NaiveDate.html#method.ordinal) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
/// assert_eq!(dt.ordinal(), 268);
/// ~~~~
#[inline]
fn ordinal(&self) -> u32 {
self.date.ordinal()
}
/// Returns the day of year starting from 0.
///
/// The return value ranges from 0 to 365. (The last day of year differs by years.)
///
/// See also the [`NaiveDate::ordinal0`](./struct.NaiveDate.html#method.ordinal0) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
/// assert_eq!(dt.ordinal0(), 267);
/// ~~~~
#[inline]
fn ordinal0(&self) -> u32 {
self.date.ordinal0()
}
/// Returns the day of week.
///
/// See also the [`NaiveDate::weekday`](./struct.NaiveDate.html#method.weekday) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike, Weekday};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
/// assert_eq!(dt.weekday(), Weekday::Fri);
/// ~~~~
#[inline]
fn weekday(&self) -> Weekday {
self.date.weekday()
}
#[inline]
fn iso_week(&self) -> IsoWeek {
self.date.iso_week()
}
/// Makes a new `NaiveDateTime` with the year number changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
///
/// See also the
/// [`NaiveDate::with_year`](./struct.NaiveDate.html#method.with_year) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
/// assert_eq!(dt.with_year(2016), Some(NaiveDate::from_ymd(2016, 9, 25).and_hms(12, 34, 56)));
/// assert_eq!(dt.with_year(-308), Some(NaiveDate::from_ymd(-308, 9, 25).and_hms(12, 34, 56)));
/// ~~~~
#[inline]
fn with_year(&self, year: i32) -> Option<NaiveDateTime> {
self.date.with_year(year).map(|d| NaiveDateTime { date: d, ..*self })
}
/// Makes a new `NaiveDateTime` with the month number (starting from 1) changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
///
/// See also the
/// [`NaiveDate::with_month`](./struct.NaiveDate.html#method.with_month) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56);
/// assert_eq!(dt.with_month(10), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56)));
/// assert_eq!(dt.with_month(13), None); // no month 13
/// assert_eq!(dt.with_month(2), None); // no February 30
/// ~~~~
#[inline]
fn with_month(&self, month: u32) -> Option<NaiveDateTime> {
self.date.with_month(month).map(|d| NaiveDateTime { date: d, ..*self })
}
/// Makes a new `NaiveDateTime` with the month number (starting from 0) changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
///
/// See also the
/// [`NaiveDate::with_month0`](./struct.NaiveDate.html#method.with_month0) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56);
/// assert_eq!(dt.with_month0(9), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56)));
/// assert_eq!(dt.with_month0(12), None); // no month 13
/// assert_eq!(dt.with_month0(1), None); // no February 30
/// ~~~~
#[inline]
fn with_month0(&self, month0: u32) -> Option<NaiveDateTime> {
self.date.with_month0(month0).map(|d| NaiveDateTime { date: d, ..*self })
}
/// Makes a new `NaiveDateTime` with the day of month (starting from 1) changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
///
/// See also the
/// [`NaiveDate::with_day`](./struct.NaiveDate.html#method.with_day) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
/// assert_eq!(dt.with_day(30), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56)));
/// assert_eq!(dt.with_day(31), None); // no September 31
/// ~~~~
#[inline]
fn with_day(&self, day: u32) -> Option<NaiveDateTime> {
self.date.with_day(day).map(|d| NaiveDateTime { date: d, ..*self })
}
/// Makes a new `NaiveDateTime` with the day of month (starting from 0) changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
///
/// See also the
/// [`NaiveDate::with_day0`](./struct.NaiveDate.html#method.with_day0) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
/// assert_eq!(dt.with_day0(29), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56)));
/// assert_eq!(dt.with_day0(30), None); // no September 31
/// ~~~~
#[inline]
fn with_day0(&self, day0: u32) -> Option<NaiveDateTime> {
self.date.with_day0(day0).map(|d| NaiveDateTime { date: d, ..*self })
}
/// Makes a new `NaiveDateTime` with the day of year (starting from 1) changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
///
/// See also the
/// [`NaiveDate::with_ordinal`](./struct.NaiveDate.html#method.with_ordinal) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
/// assert_eq!(dt.with_ordinal(60),
/// Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56)));
/// assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56);
/// assert_eq!(dt.with_ordinal(60),
/// Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56)));
/// assert_eq!(dt.with_ordinal(366),
/// Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56)));
/// ~~~~
#[inline]
fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime> {
self.date.with_ordinal(ordinal).map(|d| NaiveDateTime { date: d, ..*self })
}
/// Makes a new `NaiveDateTime` with the day of year (starting from 0) changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
///
/// See also the
/// [`NaiveDate::with_ordinal0`](./struct.NaiveDate.html#method.with_ordinal0) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
/// assert_eq!(dt.with_ordinal0(59),
/// Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56)));
/// assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56);
/// assert_eq!(dt.with_ordinal0(59),
/// Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56)));
/// assert_eq!(dt.with_ordinal0(365),
/// Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56)));
/// ~~~~
#[inline]
fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime> {
self.date.with_ordinal0(ordinal0).map(|d| NaiveDateTime { date: d, ..*self })
}
}
impl Timelike for NaiveDateTime {
/// Returns the hour number from 0 to 23.
///
/// See also the [`NaiveTime::hour`](./struct.NaiveTime.html#method.hour) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
/// assert_eq!(dt.hour(), 12);
/// ~~~~
#[inline]
fn hour(&self) -> u32 {
self.time.hour()
}
/// Returns the minute number from 0 to 59.
///
/// See also the [`NaiveTime::minute`](./struct.NaiveTime.html#method.minute) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
/// assert_eq!(dt.minute(), 34);
/// ~~~~
#[inline]
fn minute(&self) -> u32 {
self.time.minute()
}
/// Returns the second number from 0 to 59.
///
/// See also the [`NaiveTime::second`](./struct.NaiveTime.html#method.second) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
/// assert_eq!(dt.second(), 56);
/// ~~~~
#[inline]
fn second(&self) -> u32 {
self.time.second()
}
/// Returns the number of nanoseconds since the whole non-leap second.
/// The range from 1,000,000,000 to 1,999,999,999 represents
/// the [leap second](./struct.NaiveTime.html#leap-second-handling).
///
/// See also the
/// [`NaiveTime::nanosecond`](./struct.NaiveTime.html#method.nanosecond) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
/// assert_eq!(dt.nanosecond(), 789_000_000);
/// ~~~~
#[inline]
fn nanosecond(&self) -> u32 {
self.time.nanosecond()
}
/// Makes a new `NaiveDateTime` with the hour number changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
///
/// See also the
/// [`NaiveTime::with_hour`](./struct.NaiveTime.html#method.with_hour) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
/// assert_eq!(dt.with_hour(7),
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(7, 34, 56, 789)));
/// assert_eq!(dt.with_hour(24), None);
/// ~~~~
#[inline]
fn with_hour(&self, hour: u32) -> Option<NaiveDateTime> {
self.time.with_hour(hour).map(|t| NaiveDateTime { time: t, ..*self })
}
/// Makes a new `NaiveDateTime` with the minute number changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
///
/// See also the
/// [`NaiveTime::with_minute`](./struct.NaiveTime.html#method.with_minute) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
/// assert_eq!(dt.with_minute(45),
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 45, 56, 789)));
/// assert_eq!(dt.with_minute(60), None);
/// ~~~~
#[inline]
fn with_minute(&self, min: u32) -> Option<NaiveDateTime> {
self.time.with_minute(min).map(|t| NaiveDateTime { time: t, ..*self })
}
/// Makes a new `NaiveDateTime` with the second number changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
/// As with the [`second`](#method.second) method,
/// the input range is restricted to 0 through 59.
///
/// See also the
/// [`NaiveTime::with_second`](./struct.NaiveTime.html#method.with_second) method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
/// assert_eq!(dt.with_second(17),
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 17, 789)));
/// assert_eq!(dt.with_second(60), None);
/// ~~~~
#[inline]
fn with_second(&self, sec: u32) -> Option<NaiveDateTime> {
self.time.with_second(sec).map(|t| NaiveDateTime { time: t, ..*self })
}
/// Makes a new `NaiveDateTime` with nanoseconds since the whole non-leap second changed.
///
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
/// As with the [`nanosecond`](#method.nanosecond) method,
/// the input range can exceed 1,000,000,000 for leap seconds.
///
/// See also the
/// [`NaiveTime::with_nanosecond`](./struct.NaiveTime.html#method.with_nanosecond)
/// method.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
///
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
/// assert_eq!(dt.with_nanosecond(333_333_333),
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 333_333_333)));
/// assert_eq!(dt.with_nanosecond(1_333_333_333), // leap second
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 1_333_333_333)));
/// assert_eq!(dt.with_nanosecond(2_000_000_000), None);
/// ~~~~
#[inline]
fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime> {
self.time.with_nanosecond(nano).map(|t| NaiveDateTime { time: t, ..*self })
}
}
/// `NaiveDateTime` can be used as a key to the hash maps (in principle).
///
/// Practically this also takes account of fractional seconds, so it is not recommended.
/// (For the obvious reason this also distinguishes leap seconds from non-leap seconds.)
impl hash::Hash for NaiveDateTime {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.date.hash(state);
self.time.hash(state);
}
}
/// An addition of `Duration` to `NaiveDateTime` yields another `NaiveDateTime`.
///
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
/// the addition assumes that **there is no leap second ever**,
/// except when the `NaiveDateTime` itself represents a leap second
/// in which case the assumption becomes that **there is exactly a single leap second ever**.
///
/// Panics on underflow or overflow.
/// Use [`NaiveDateTime::checked_add_signed`](#method.checked_add_signed) to detect that.
///
/// # Example
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// use chrono::{Duration, NaiveDate};
///
/// let from_ymd = NaiveDate::from_ymd;
///
/// let d = from_ymd(2016, 7, 8);
/// let hms = |h, m, s| d.and_hms(h, m, s);
/// assert_eq!(hms(3, 5, 7) + Duration::zero(), hms(3, 5, 7));
/// assert_eq!(hms(3, 5, 7) + Duration::seconds(1), hms(3, 5, 8));
/// assert_eq!(hms(3, 5, 7) + Duration::seconds(-1), hms(3, 5, 6));
/// assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7));
/// assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400),
/// from_ymd(2016, 7, 9).and_hms(3, 5, 7));
/// assert_eq!(hms(3, 5, 7) + Duration::days(365),
/// from_ymd(2017, 7, 8).and_hms(3, 5, 7));
///
/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
/// assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430));
/// # }
/// ~~~~
///
/// Leap seconds are handled,
/// but the addition assumes that it is the only leap second happened.
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// # use chrono::{Duration, NaiveDate};
/// # let from_ymd = NaiveDate::from_ymd;
/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
/// let leap = hmsm(3, 5, 59, 1_300);
/// assert_eq!(leap + Duration::zero(), hmsm(3, 5, 59, 1_300));
/// assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800));
/// assert_eq!(leap + Duration::milliseconds(500), hmsm(3, 5, 59, 1_800));
/// assert_eq!(leap + Duration::milliseconds(800), hmsm(3, 6, 0, 100));
/// assert_eq!(leap + Duration::seconds(10), hmsm(3, 6, 9, 300));
/// assert_eq!(leap + Duration::seconds(-10), hmsm(3, 5, 50, 300));
/// assert_eq!(leap + Duration::days(1),
/// from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300));
/// # }
/// ~~~~
impl Add<OldDuration> for NaiveDateTime {
type Output = NaiveDateTime;
#[inline]
fn add(self, rhs: OldDuration) -> NaiveDateTime {
self.checked_add_signed(rhs).expect("`NaiveDateTime + Duration` overflowed")
}
}
impl AddAssign<OldDuration> for NaiveDateTime {
#[inline]
fn add_assign(&mut self, rhs: OldDuration) {
*self = self.add(rhs);
}
}
/// A subtraction of `Duration` from `NaiveDateTime` yields another `NaiveDateTime`.
/// It is the same as the addition with a negated `Duration`.
///
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
/// the addition assumes that **there is no leap second ever**,
/// except when the `NaiveDateTime` itself represents a leap second
/// in which case the assumption becomes that **there is exactly a single leap second ever**.
///
/// Panics on underflow or overflow.
/// Use [`NaiveDateTime::checked_sub_signed`](#method.checked_sub_signed) to detect that.
///
/// # Example
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// use chrono::{Duration, NaiveDate};
///
/// let from_ymd = NaiveDate::from_ymd;
///
/// let d = from_ymd(2016, 7, 8);
/// let hms = |h, m, s| d.and_hms(h, m, s);
/// assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7));
/// assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6));
/// assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8));
/// assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
/// assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
/// from_ymd(2016, 7, 7).and_hms(3, 5, 7));
/// assert_eq!(hms(3, 5, 7) - Duration::days(365),
/// from_ymd(2015, 7, 9).and_hms(3, 5, 7));
///
/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
/// assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));
/// # }
/// ~~~~
///
/// Leap seconds are handled,
/// but the subtraction assumes that it is the only leap second happened.
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// # use chrono::{Duration, NaiveDate};
/// # let from_ymd = NaiveDate::from_ymd;
/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
/// let leap = hmsm(3, 5, 59, 1_300);
/// assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300));
/// assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
/// assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
/// assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300));
/// assert_eq!(leap - Duration::days(1),
/// from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300));
/// # }
/// ~~~~
impl Sub<OldDuration> for NaiveDateTime {
type Output = NaiveDateTime;
#[inline]
fn sub(self, rhs: OldDuration) -> NaiveDateTime {
self.checked_sub_signed(rhs).expect("`NaiveDateTime - Duration` overflowed")
}
}
impl SubAssign<OldDuration> for NaiveDateTime {
#[inline]
fn sub_assign(&mut self, rhs: OldDuration) {
*self = self.sub(rhs);
}
}
/// Subtracts another `NaiveDateTime` from the current date and time.
/// This does not overflow or underflow at all.
///
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
/// the subtraction assumes that **there is no leap second ever**,
/// except when any of the `NaiveDateTime`s themselves represents a leap second
/// in which case the assumption becomes that
/// **there are exactly one (or two) leap second(s) ever**.
///
/// The implementation is a wrapper around
/// [`NaiveDateTime::signed_duration_since`](#method.signed_duration_since).
///
/// # Example
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// use chrono::{Duration, NaiveDate};
///
/// let from_ymd = NaiveDate::from_ymd;
///
/// let d = from_ymd(2016, 7, 8);
/// assert_eq!(d.and_hms(3, 5, 7) - d.and_hms(2, 4, 6), Duration::seconds(3600 + 60 + 1));
///
/// // July 8 is 190th day in the year 2016
/// let d0 = from_ymd(2016, 1, 1);
/// assert_eq!(d.and_hms_milli(0, 7, 6, 500) - d0.and_hms(0, 0, 0),
/// Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
/// # }
/// ~~~~
///
/// Leap seconds are handled, but the subtraction assumes that
/// there were no other leap seconds happened.
///
/// ~~~~
/// # extern crate chrono; fn main() {
/// # use chrono::{Duration, NaiveDate};
/// # let from_ymd = NaiveDate::from_ymd;
/// let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
/// assert_eq!(leap - from_ymd(2015, 6, 30).and_hms(23, 0, 0),
/// Duration::seconds(3600) + Duration::milliseconds(500));
/// assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0) - leap,
/// Duration::seconds(3600) - Duration::milliseconds(500));
/// # }
/// ~~~~
impl Sub<NaiveDateTime> for NaiveDateTime {
type Output = OldDuration;
#[inline]
fn sub(self, rhs: NaiveDateTime) -> OldDuration {
self.signed_duration_since(rhs)
}
}
/// The `Debug` output of the naive date and time `dt` is the same as
/// [`dt.format("%Y-%m-%dT%H:%M:%S%.f")`](../format/strftime/index.html).
///
/// The string printed can be readily parsed via the `parse` method on `str`.
///
/// It should be noted that, for leap seconds not on the minute boundary,
/// it may print a representation not distinguishable from non-leap seconds.
/// This doesn't matter in practice, since such leap seconds never happened.
/// (By the time of the first leap second on 1972-06-30,
/// every time zone offset around the world has standardized to the 5-minute alignment.)
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
///
/// let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24);
/// assert_eq!(format!("{:?}", dt), "2016-11-15T07:39:24");
/// ~~~~
///
/// Leap seconds may also be used.
///
/// ~~~~
/// # use chrono::NaiveDate;
/// let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
/// assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60.500");
/// ~~~~
impl fmt::Debug for NaiveDateTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}T{:?}", self.date, self.time)
}
}
/// The `Display` output of the naive date and time `dt` is the same as
/// [`dt.format("%Y-%m-%d %H:%M:%S%.f")`](../format/strftime/index.html).
///
/// It should be noted that, for leap seconds not on the minute boundary,
/// it may print a representation not distinguishable from non-leap seconds.
/// This doesn't matter in practice, since such leap seconds never happened.
/// (By the time of the first leap second on 1972-06-30,
/// every time zone offset around the world has standardized to the 5-minute alignment.)
///
/// # Example
///
/// ~~~~
/// use chrono::NaiveDate;
///
/// let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24);
/// assert_eq!(format!("{}", dt), "2016-11-15 07:39:24");
/// ~~~~
///
/// Leap seconds may also be used.
///
/// ~~~~
/// # use chrono::NaiveDate;
/// let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
/// assert_eq!(format!("{}", dt), "2015-06-30 23:59:60.500");
/// ~~~~
impl fmt::Display for NaiveDateTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{} {}", self.date, self.time)
}
}
/// Parsing a `str` into a `NaiveDateTime` uses the same format,
/// [`%Y-%m-%dT%H:%M:%S%.f`](../format/strftime/index.html), as in `Debug`.
///
/// # Example
///
/// ~~~~
/// use chrono::{NaiveDateTime, NaiveDate};
///
/// let dt = NaiveDate::from_ymd(2015, 9, 18).and_hms(23, 56, 4);
/// assert_eq!("2015-09-18T23:56:04".parse::<NaiveDateTime>(), Ok(dt));
///
/// let dt = NaiveDate::from_ymd(12345, 6, 7).and_hms_milli(7, 59, 59, 1_500); // leap second
/// assert_eq!("+12345-6-7T7:59:60.5".parse::<NaiveDateTime>(), Ok(dt));
///
/// assert!("foo".parse::<NaiveDateTime>().is_err());
/// ~~~~
impl str::FromStr for NaiveDateTime {
type Err = ParseError;
fn from_str(s: &str) -> ParseResult<NaiveDateTime> {
const ITEMS: &'static [Item<'static>] = &[
Item::Numeric(Numeric::Year, Pad::Zero),
Item::Space(""),
Item::Literal("-"),
Item::Numeric(Numeric::Month, Pad::Zero),
Item::Space(""),
Item::Literal("-"),
Item::Numeric(Numeric::Day, Pad::Zero),
Item::Space(""),
Item::Literal("T"), // XXX shouldn't this be case-insensitive?
Item::Numeric(Numeric::Hour, Pad::Zero),
Item::Space(""),
Item::Literal(":"),
Item::Numeric(Numeric::Minute, Pad::Zero),
Item::Space(""),
Item::Literal(":"),
Item::Numeric(Numeric::Second, Pad::Zero),
Item::Fixed(Fixed::Nanosecond),
Item::Space(""),
];
let mut parsed = Parsed::new();
parse(&mut parsed, s, ITEMS.iter())?;
parsed.to_naive_datetime_with_offset(0)
}
}
#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
fn test_encodable_json<F, E>(to_string: F)
where
F: Fn(&NaiveDateTime) -> Result<String, E>,
E: ::std::fmt::Debug,
{
use naive::{MAX_DATE, MIN_DATE};
assert_eq!(
to_string(&NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90)).ok(),
Some(r#""2016-07-08T09:10:48.090""#.into())
);
assert_eq!(
to_string(&NaiveDate::from_ymd(2014, 7, 24).and_hms(12, 34, 6)).ok(),
Some(r#""2014-07-24T12:34:06""#.into())
);
assert_eq!(
to_string(&NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000)).ok(),
Some(r#""0000-01-01T00:00:60""#.into())
);
assert_eq!(
to_string(&NaiveDate::from_ymd(-1, 12, 31).and_hms_nano(23, 59, 59, 7)).ok(),
Some(r#""-0001-12-31T23:59:59.000000007""#.into())
);
assert_eq!(
to_string(&MIN_DATE.and_hms(0, 0, 0)).ok(),
Some(r#""-262144-01-01T00:00:00""#.into())
);
assert_eq!(
to_string(&MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999)).ok(),
Some(r#""+262143-12-31T23:59:60.999999999""#.into())
);
}
#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
fn test_decodable_json<F, E>(from_str: F)
where
F: Fn(&str) -> Result<NaiveDateTime, E>,
E: ::std::fmt::Debug,
{
use naive::{MAX_DATE, MIN_DATE};
assert_eq!(
from_str(r#""2016-07-08T09:10:48.090""#).ok(),
Some(NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90))
);
assert_eq!(
from_str(r#""2016-7-8T9:10:48.09""#).ok(),
Some(NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90))
);
assert_eq!(
from_str(r#""2014-07-24T12:34:06""#).ok(),
Some(NaiveDate::from_ymd(2014, 7, 24).and_hms(12, 34, 6))
);
assert_eq!(
from_str(r#""0000-01-01T00:00:60""#).ok(),
Some(NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000))
);
assert_eq!(
from_str(r#""0-1-1T0:0:60""#).ok(),
Some(NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000))
);
assert_eq!(
from_str(r#""-0001-12-31T23:59:59.000000007""#).ok(),
Some(NaiveDate::from_ymd(-1, 12, 31).and_hms_nano(23, 59, 59, 7))
);
assert_eq!(from_str(r#""-262144-01-01T00:00:00""#).ok(), Some(MIN_DATE.and_hms(0, 0, 0)));
assert_eq!(
from_str(r#""+262143-12-31T23:59:60.999999999""#).ok(),
Some(MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999))
);
assert_eq!(
from_str(r#""+262143-12-31T23:59:60.9999999999997""#).ok(), // excess digits are ignored
Some(MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999))
);
// bad formats
assert!(from_str(r#""""#).is_err());
assert!(from_str(r#""2016-07-08""#).is_err());
assert!(from_str(r#""09:10:48.090""#).is_err());
assert!(from_str(r#""20160708T091048.090""#).is_err());
assert!(from_str(r#""2000-00-00T00:00:00""#).is_err());
assert!(from_str(r#""2000-02-30T00:00:00""#).is_err());
assert!(from_str(r#""2001-02-29T00:00:00""#).is_err());
assert!(from_str(r#""2002-02-28T24:00:00""#).is_err());
assert!(from_str(r#""2002-02-28T23:60:00""#).is_err());
assert!(from_str(r#""2002-02-28T23:59:61""#).is_err());
assert!(from_str(r#""2016-07-08T09:10:48,090""#).is_err());
assert!(from_str(r#""2016-07-08 09:10:48.090""#).is_err());
assert!(from_str(r#""2016-007-08T09:10:48.090""#).is_err());
assert!(from_str(r#""yyyy-mm-ddThh:mm:ss.fffffffff""#).is_err());
assert!(from_str(r#"20160708000000"#).is_err());
assert!(from_str(r#"{}"#).is_err());
// pre-0.3.0 rustc-serialize format is now invalid
assert!(from_str(r#"{"date":{"ymdf":20},"time":{"secs":0,"frac":0}}"#).is_err());
assert!(from_str(r#"null"#).is_err());
}
#[cfg(all(test, feature = "rustc-serialize"))]
fn test_decodable_json_timestamp<F, E>(from_str: F)
where
F: Fn(&str) -> Result<rustc_serialize::TsSeconds, E>,
E: ::std::fmt::Debug,
{
assert_eq!(
*from_str("0").unwrap(),
NaiveDate::from_ymd(1970, 1, 1).and_hms(0, 0, 0),
"should parse integers as timestamps"
);
assert_eq!(
*from_str("-1").unwrap(),
NaiveDate::from_ymd(1969, 12, 31).and_hms(23, 59, 59),
"should parse integers as timestamps"
);
}
#[cfg(feature = "rustc-serialize")]
pub mod rustc_serialize {
use super::NaiveDateTime;
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use std::ops::Deref;
impl Encodable for NaiveDateTime {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
format!("{:?}", self).encode(s)
}
}
impl Decodable for NaiveDateTime {
fn decode<D: Decoder>(d: &mut D) -> Result<NaiveDateTime, D::Error> {
d.read_str()?.parse().map_err(|_| d.error("invalid date time string"))
}
}
/// A `DateTime` that can be deserialized from a seconds-based timestamp
#[derive(Debug)]
#[deprecated(
since = "1.4.2",
note = "RustcSerialize will be removed before chrono 1.0, use Serde instead"
)]
pub struct TsSeconds(NaiveDateTime);
#[allow(deprecated)]
impl From<TsSeconds> for NaiveDateTime {
/// Pull the internal NaiveDateTime out
#[allow(deprecated)]
fn from(obj: TsSeconds) -> NaiveDateTime {
obj.0
}
}
#[allow(deprecated)]
impl Deref for TsSeconds {
type Target = NaiveDateTime;
#[allow(deprecated)]
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[allow(deprecated)]
impl Decodable for TsSeconds {
#[allow(deprecated)]
fn decode<D: Decoder>(d: &mut D) -> Result<TsSeconds, D::Error> {
Ok(TsSeconds(
NaiveDateTime::from_timestamp_opt(d.read_i64()?, 0)
.ok_or_else(|| d.error("invalid timestamp"))?,
))
}
}
#[cfg(test)]
use rustc_serialize::json;
#[test]
fn test_encodable() {
super::test_encodable_json(json::encode);
}
#[test]
fn test_decodable() {
super::test_decodable_json(json::decode);
}
#[test]
fn test_decodable_timestamps() {
super::test_decodable_json_timestamp(json::decode);
}
}
/// Tools to help serializing/deserializing `NaiveDateTime`s
#[cfg(feature = "serde")]
pub mod serde {
use super::NaiveDateTime;
use core::fmt;
use serdelib::{de, ser};
/// Serialize a `NaiveDateTime` as an RFC 3339 string
///
/// See [the `serde` module](./serde/index.html) for alternate
/// serialization formats.
impl ser::Serialize for NaiveDateTime {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
struct FormatWrapped<'a, D: 'a> {
inner: &'a D,
}
impl<'a, D: fmt::Debug> fmt::Display for FormatWrapped<'a, D> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.inner.fmt(f)
}
}
serializer.collect_str(&FormatWrapped { inner: &self })
}
}
struct NaiveDateTimeVisitor;
impl<'de> de::Visitor<'de> for NaiveDateTimeVisitor {
type Value = NaiveDateTime;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "a formatted date and time string")
}
fn visit_str<E>(self, value: &str) -> Result<NaiveDateTime, E>
where
E: de::Error,
{
value.parse().map_err(E::custom)
}
}
impl<'de> de::Deserialize<'de> for NaiveDateTime {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: de::Deserializer<'de>,
{
deserializer.deserialize_str(NaiveDateTimeVisitor)
}
}
/// Used to serialize/deserialize from nanosecond-precision timestamps
///
/// # Example:
///
/// ```rust
/// # // We mark this ignored so that we can test on 1.13 (which does not
/// # // support custom derive), and run tests with --ignored on beta and
/// # // nightly to actually trigger these.
/// #
/// # #[macro_use] extern crate serde_derive;
/// # extern crate serde_json;
/// # extern crate serde;
/// # extern crate chrono;
/// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
/// use chrono::naive::serde::ts_nanoseconds;
/// #[derive(Deserialize, Serialize)]
/// struct S {
/// #[serde(with = "ts_nanoseconds")]
/// time: NaiveDateTime
/// }
///
/// # fn example() -> Result<S, serde_json::Error> {
/// let time = NaiveDate::from_ymd(2018, 5, 17).and_hms_nano(02, 04, 59, 918355733);
/// let my_s = S {
/// time: time.clone(),
/// };
///
/// let as_string = serde_json::to_string(&my_s)?;
/// assert_eq!(as_string, r#"{"time":1526522699918355733}"#);
/// let my_s: S = serde_json::from_str(&as_string)?;
/// assert_eq!(my_s.time, time);
/// # Ok(my_s)
/// # }
/// # fn main() { example().unwrap(); }
/// ```
pub mod ts_nanoseconds {
use core::fmt;
use serdelib::{de, ser};
use {ne_timestamp, NaiveDateTime};
/// Serialize a UTC datetime into an integer number of nanoseconds since the epoch
///
/// Intended for use with `serde`s `serialize_with` attribute.
///
/// # Example:
///
/// ```rust
/// # // We mark this ignored so that we can test on 1.13 (which does not
/// # // support custom derive), and run tests with --ignored on beta and
/// # // nightly to actually trigger these.
/// #
/// # #[macro_use] extern crate serde_derive;
/// # #[macro_use] extern crate serde_json;
/// # #[macro_use] extern crate serde;
/// # extern crate chrono;
/// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
/// # use serde::Serialize;
/// use chrono::naive::serde::ts_nanoseconds::serialize as to_nano_ts;
/// #[derive(Serialize)]
/// struct S {
/// #[serde(serialize_with = "to_nano_ts")]
/// time: NaiveDateTime
/// }
///
/// # fn example() -> Result<String, serde_json::Error> {
/// let my_s = S {
/// time: NaiveDate::from_ymd(2018, 5, 17).and_hms_nano(02, 04, 59, 918355733),
/// };
/// let as_string = serde_json::to_string(&my_s)?;
/// assert_eq!(as_string, r#"{"time":1526522699918355733}"#);
/// # Ok(as_string)
/// # }
/// # fn main() { example().unwrap(); }
/// ```
pub fn serialize<S>(dt: &NaiveDateTime, serializer: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
serializer.serialize_i64(dt.timestamp_nanos())
}
/// Deserialize a `DateTime` from a nanoseconds timestamp
///
/// Intended for use with `serde`s `deserialize_with` attribute.
///
/// # Example:
///
/// ```rust
/// # // We mark this ignored so that we can test on 1.13 (which does not
/// # // support custom derive), and run tests with --ignored on beta and
/// # // nightly to actually trigger these.
/// #
/// # #[macro_use] extern crate serde_derive;
/// # #[macro_use] extern crate serde_json;
/// # extern crate serde;
/// # extern crate chrono;
/// # use chrono::{NaiveDateTime, Utc};
/// # use serde::Deserialize;
/// use chrono::naive::serde::ts_nanoseconds::deserialize as from_nano_ts;
/// #[derive(Deserialize)]
/// struct S {
/// #[serde(deserialize_with = "from_nano_ts")]
/// time: NaiveDateTime
/// }
///
/// # fn example() -> Result<S, serde_json::Error> {
/// let my_s: S = serde_json::from_str(r#"{ "time": 1526522699918355733 }"#)?;
/// # Ok(my_s)
/// # }
/// # fn main() { example().unwrap(); }
/// ```
pub fn deserialize<'de, D>(d: D) -> Result<NaiveDateTime, D::Error>
where
D: de::Deserializer<'de>,
{
Ok(d.deserialize_i64(NaiveDateTimeFromNanoSecondsVisitor)?)
}
struct NaiveDateTimeFromNanoSecondsVisitor;
impl<'de> de::Visitor<'de> for NaiveDateTimeFromNanoSecondsVisitor {
type Value = NaiveDateTime;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a unix timestamp")
}
fn visit_i64<E>(self, value: i64) -> Result<NaiveDateTime, E>
where
E: de::Error,
{
NaiveDateTime::from_timestamp_opt(
value / 1_000_000_000,
(value % 1_000_000_000) as u32,
)
.ok_or_else(|| E::custom(ne_timestamp(value)))
}
fn visit_u64<E>(self, value: u64) -> Result<NaiveDateTime, E>
where
E: de::Error,
{
NaiveDateTime::from_timestamp_opt(
value as i64 / 1_000_000_000,
(value as i64 % 1_000_000_000) as u32,
)
.ok_or_else(|| E::custom(ne_timestamp(value)))
}
}
}
/// Used to serialize/deserialize from millisecond-precision timestamps
///
/// # Example:
///
/// ```rust
/// # // We mark this ignored so that we can test on 1.13 (which does not
/// # // support custom derive), and run tests with --ignored on beta and
/// # // nightly to actually trigger these.
/// #
/// # #[macro_use] extern crate serde_derive;
/// # extern crate serde_json;
/// # extern crate serde;
/// # extern crate chrono;
/// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
/// use chrono::naive::serde::ts_milliseconds;
/// #[derive(Deserialize, Serialize)]
/// struct S {
/// #[serde(with = "ts_milliseconds")]
/// time: NaiveDateTime
/// }
///
/// # fn example() -> Result<S, serde_json::Error> {
/// let time = NaiveDate::from_ymd(2018, 5, 17).and_hms_milli(02, 04, 59, 918);
/// let my_s = S {
/// time: time.clone(),
/// };
///
/// let as_string = serde_json::to_string(&my_s)?;
/// assert_eq!(as_string, r#"{"time":1526522699918}"#);
/// let my_s: S = serde_json::from_str(&as_string)?;
/// assert_eq!(my_s.time, time);
/// # Ok(my_s)
/// # }
/// # fn main() { example().unwrap(); }
/// ```
pub mod ts_milliseconds {
use core::fmt;
use serdelib::{de, ser};
use {ne_timestamp, NaiveDateTime};
/// Serialize a UTC datetime into an integer number of milliseconds since the epoch
///
/// Intended for use with `serde`s `serialize_with` attribute.
///
/// # Example:
///
/// ```rust
/// # // We mark this ignored so that we can test on 1.13 (which does not
/// # // support custom derive), and run tests with --ignored on beta and
/// # // nightly to actually trigger these.
/// #
/// # #[macro_use] extern crate serde_derive;
/// # #[macro_use] extern crate serde_json;
/// # #[macro_use] extern crate serde;
/// # extern crate chrono;
/// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
/// # use serde::Serialize;
/// use chrono::naive::serde::ts_milliseconds::serialize as to_milli_ts;
/// #[derive(Serialize)]
/// struct S {
/// #[serde(serialize_with = "to_milli_ts")]
/// time: NaiveDateTime
/// }
///
/// # fn example() -> Result<String, serde_json::Error> {
/// let my_s = S {
/// time: NaiveDate::from_ymd(2018, 5, 17).and_hms_milli(02, 04, 59, 918),
/// };
/// let as_string = serde_json::to_string(&my_s)?;
/// assert_eq!(as_string, r#"{"time":1526522699918}"#);
/// # Ok(as_string)
/// # }
/// # fn main() { example().unwrap(); }
/// ```
pub fn serialize<S>(dt: &NaiveDateTime, serializer: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
serializer.serialize_i64(dt.timestamp_millis())
}
/// Deserialize a `DateTime` from a milliseconds timestamp
///
/// Intended for use with `serde`s `deserialize_with` attribute.
///
/// # Example:
///
/// ```rust
/// # // We mark this ignored so that we can test on 1.13 (which does not
/// # // support custom derive), and run tests with --ignored on beta and
/// # // nightly to actually trigger these.
/// #
/// # #[macro_use] extern crate serde_derive;
/// # #[macro_use] extern crate serde_json;
/// # extern crate serde;
/// # extern crate chrono;
/// # use chrono::{NaiveDateTime, Utc};
/// # use serde::Deserialize;
/// use chrono::naive::serde::ts_milliseconds::deserialize as from_milli_ts;
/// #[derive(Deserialize)]
/// struct S {
/// #[serde(deserialize_with = "from_milli_ts")]
/// time: NaiveDateTime
/// }
///
/// # fn example() -> Result<S, serde_json::Error> {
/// let my_s: S = serde_json::from_str(r#"{ "time": 1526522699918 }"#)?;
/// # Ok(my_s)
/// # }
/// # fn main() { example().unwrap(); }
/// ```
pub fn deserialize<'de, D>(d: D) -> Result<NaiveDateTime, D::Error>
where
D: de::Deserializer<'de>,
{
Ok(d.deserialize_i64(NaiveDateTimeFromMilliSecondsVisitor)?)
}
struct NaiveDateTimeFromMilliSecondsVisitor;
impl<'de> de::Visitor<'de> for NaiveDateTimeFromMilliSecondsVisitor {
type Value = NaiveDateTime;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a unix timestamp")
}
fn visit_i64<E>(self, value: i64) -> Result<NaiveDateTime, E>
where
E: de::Error,
{
NaiveDateTime::from_timestamp_opt(value / 1000, ((value % 1000) * 1_000_000) as u32)
.ok_or_else(|| E::custom(ne_timestamp(value)))
}
fn visit_u64<E>(self, value: u64) -> Result<NaiveDateTime, E>
where
E: de::Error,
{
NaiveDateTime::from_timestamp_opt(
(value / 1000) as i64,
((value % 1000) * 1_000_000) as u32,
)
.ok_or_else(|| E::custom(ne_timestamp(value)))
}
}
}
/// Used to serialize/deserialize from second-precision timestamps
///
/// # Example:
///
/// ```rust
/// # // We mark this ignored so that we can test on 1.13 (which does not
/// # // support custom derive), and run tests with --ignored on beta and
/// # // nightly to actually trigger these.
/// #
/// # #[macro_use] extern crate serde_derive;
/// # extern crate serde_json;
/// # extern crate serde;
/// # extern crate chrono;
/// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
/// use chrono::naive::serde::ts_seconds;
/// #[derive(Deserialize, Serialize)]
/// struct S {
/// #[serde(with = "ts_seconds")]
/// time: NaiveDateTime
/// }
///
/// # fn example() -> Result<S, serde_json::Error> {
/// let time = NaiveDate::from_ymd(2015, 5, 15).and_hms(10, 0, 0);
/// let my_s = S {
/// time: time.clone(),
/// };
///
/// let as_string = serde_json::to_string(&my_s)?;
/// assert_eq!(as_string, r#"{"time":1431684000}"#);
/// let my_s: S = serde_json::from_str(&as_string)?;
/// assert_eq!(my_s.time, time);
/// # Ok(my_s)
/// # }
/// # fn main() { example().unwrap(); }
/// ```
pub mod ts_seconds {
use core::fmt;
use serdelib::{de, ser};
use {ne_timestamp, NaiveDateTime};
/// Serialize a UTC datetime into an integer number of seconds since the epoch
///
/// Intended for use with `serde`s `serialize_with` attribute.
///
/// # Example:
///
/// ```rust
/// # // We mark this ignored so that we can test on 1.13 (which does not
/// # // support custom derive), and run tests with --ignored on beta and
/// # // nightly to actually trigger these.
/// #
/// # #[macro_use] extern crate serde_derive;
/// # #[macro_use] extern crate serde_json;
/// # #[macro_use] extern crate serde;
/// # extern crate chrono;
/// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
/// # use serde::Serialize;
/// use chrono::naive::serde::ts_seconds::serialize as to_ts;
/// #[derive(Serialize)]
/// struct S {
/// #[serde(serialize_with = "to_ts")]
/// time: NaiveDateTime
/// }
///
/// # fn example() -> Result<String, serde_json::Error> {
/// let my_s = S {
/// time: NaiveDate::from_ymd(2015, 5, 15).and_hms(10, 0, 0),
/// };
/// let as_string = serde_json::to_string(&my_s)?;
/// assert_eq!(as_string, r#"{"time":1431684000}"#);
/// # Ok(as_string)
/// # }
/// # fn main() { example().unwrap(); }
/// ```
pub fn serialize<S>(dt: &NaiveDateTime, serializer: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
serializer.serialize_i64(dt.timestamp())
}
/// Deserialize a `DateTime` from a seconds timestamp
///
/// Intended for use with `serde`s `deserialize_with` attribute.
///
/// # Example:
///
/// ```rust
/// # // We mark this ignored so that we can test on 1.13 (which does not
/// # // support custom derive), and run tests with --ignored on beta and
/// # // nightly to actually trigger these.
/// #
/// # #[macro_use] extern crate serde_derive;
/// # #[macro_use] extern crate serde_json;
/// # extern crate serde;
/// # extern crate chrono;
/// # use chrono::{NaiveDateTime, Utc};
/// # use serde::Deserialize;
/// use chrono::naive::serde::ts_seconds::deserialize as from_ts;
/// #[derive(Deserialize)]
/// struct S {
/// #[serde(deserialize_with = "from_ts")]
/// time: NaiveDateTime
/// }
///
/// # fn example() -> Result<S, serde_json::Error> {
/// let my_s: S = serde_json::from_str(r#"{ "time": 1431684000 }"#)?;
/// # Ok(my_s)
/// # }
/// # fn main() { example().unwrap(); }
/// ```
pub fn deserialize<'de, D>(d: D) -> Result<NaiveDateTime, D::Error>
where
D: de::Deserializer<'de>,
{
Ok(d.deserialize_i64(NaiveDateTimeFromSecondsVisitor)?)
}
struct NaiveDateTimeFromSecondsVisitor;
impl<'de> de::Visitor<'de> for NaiveDateTimeFromSecondsVisitor {
type Value = NaiveDateTime;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a unix timestamp")
}
fn visit_i64<E>(self, value: i64) -> Result<NaiveDateTime, E>
where
E: de::Error,
{
NaiveDateTime::from_timestamp_opt(value, 0)
.ok_or_else(|| E::custom(ne_timestamp(value)))
}
fn visit_u64<E>(self, value: u64) -> Result<NaiveDateTime, E>
where
E: de::Error,
{
NaiveDateTime::from_timestamp_opt(value as i64, 0)
.ok_or_else(|| E::custom(ne_timestamp(value)))
}
}
}
#[cfg(test)]
extern crate bincode;
#[cfg(test)]
extern crate serde_derive;
#[cfg(test)]
extern crate serde_json;
#[test]
fn test_serde_serialize() {
super::test_encodable_json(self::serde_json::to_string);
}
#[test]
fn test_serde_deserialize() {
super::test_decodable_json(|input| self::serde_json::from_str(&input));
}
// Bincode is relevant to test separately from JSON because
// it is not self-describing.
#[test]
fn test_serde_bincode() {
use self::bincode::{deserialize, serialize, Infinite};
use naive::NaiveDate;
let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90);
let encoded = serialize(&dt, Infinite).unwrap();
let decoded: NaiveDateTime = deserialize(&encoded).unwrap();
assert_eq!(dt, decoded);
}
#[test]
fn test_serde_bincode_optional() {
use self::bincode::{deserialize, serialize, Infinite};
use self::serde_derive::{Deserialize, Serialize};
use prelude::*;
use serde::ts_nanoseconds_option;
#[derive(Debug, PartialEq, Eq, Serialize, Deserialize)]
struct Test {
one: Option<i64>,
#[serde(with = "ts_nanoseconds_option")]
two: Option<DateTime<Utc>>,
}
let expected = Test { one: Some(1), two: Some(Utc.ymd(1970, 1, 1).and_hms(0, 1, 1)) };
let bytes: Vec<u8> = serialize(&expected, Infinite).unwrap();
let actual = deserialize::<Test>(&(bytes)).unwrap();
assert_eq!(expected, actual);
}
}
#[cfg(test)]
mod tests {
use super::NaiveDateTime;
use naive::{NaiveDate, MAX_DATE, MIN_DATE};
use oldtime::Duration;
use std::i64;
use Datelike;
#[test]
fn test_datetime_from_timestamp() {
let from_timestamp = |secs| NaiveDateTime::from_timestamp_opt(secs, 0);
let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
assert_eq!(from_timestamp(-1), Some(ymdhms(1969, 12, 31, 23, 59, 59)));
assert_eq!(from_timestamp(0), Some(ymdhms(1970, 1, 1, 0, 0, 0)));
assert_eq!(from_timestamp(1), Some(ymdhms(1970, 1, 1, 0, 0, 1)));
assert_eq!(from_timestamp(1_000_000_000), Some(ymdhms(2001, 9, 9, 1, 46, 40)));
assert_eq!(from_timestamp(0x7fffffff), Some(ymdhms(2038, 1, 19, 3, 14, 7)));
assert_eq!(from_timestamp(i64::MIN), None);
assert_eq!(from_timestamp(i64::MAX), None);
}
#[test]
fn test_datetime_add() {
fn check(
(y, m, d, h, n, s): (i32, u32, u32, u32, u32, u32),
rhs: Duration,
result: Option<(i32, u32, u32, u32, u32, u32)>,
) {
let lhs = NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
let sum =
result.map(|(y, m, d, h, n, s)| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s));
assert_eq!(lhs.checked_add_signed(rhs), sum);
assert_eq!(lhs.checked_sub_signed(-rhs), sum);
};
check(
(2014, 5, 6, 7, 8, 9),
Duration::seconds(3600 + 60 + 1),
Some((2014, 5, 6, 8, 9, 10)),
);
check(
(2014, 5, 6, 7, 8, 9),
Duration::seconds(-(3600 + 60 + 1)),
Some((2014, 5, 6, 6, 7, 8)),
);
check((2014, 5, 6, 7, 8, 9), Duration::seconds(86399), Some((2014, 5, 7, 7, 8, 8)));
check((2014, 5, 6, 7, 8, 9), Duration::seconds(86_400 * 10), Some((2014, 5, 16, 7, 8, 9)));
check((2014, 5, 6, 7, 8, 9), Duration::seconds(-86_400 * 10), Some((2014, 4, 26, 7, 8, 9)));
check((2014, 5, 6, 7, 8, 9), Duration::seconds(86_400 * 10), Some((2014, 5, 16, 7, 8, 9)));
// overflow check
// assumes that we have correct values for MAX/MIN_DAYS_FROM_YEAR_0 from `naive::date`.
// (they are private constants, but the equivalence is tested in that module.)
let max_days_from_year_0 = MAX_DATE.signed_duration_since(NaiveDate::from_ymd(0, 1, 1));
check((0, 1, 1, 0, 0, 0), max_days_from_year_0, Some((MAX_DATE.year(), 12, 31, 0, 0, 0)));
check(
(0, 1, 1, 0, 0, 0),
max_days_from_year_0 + Duration::seconds(86399),
Some((MAX_DATE.year(), 12, 31, 23, 59, 59)),
);
check((0, 1, 1, 0, 0, 0), max_days_from_year_0 + Duration::seconds(86_400), None);
check((0, 1, 1, 0, 0, 0), Duration::max_value(), None);
let min_days_from_year_0 = MIN_DATE.signed_duration_since(NaiveDate::from_ymd(0, 1, 1));
check((0, 1, 1, 0, 0, 0), min_days_from_year_0, Some((MIN_DATE.year(), 1, 1, 0, 0, 0)));
check((0, 1, 1, 0, 0, 0), min_days_from_year_0 - Duration::seconds(1), None);
check((0, 1, 1, 0, 0, 0), Duration::min_value(), None);
}
#[test]
fn test_datetime_sub() {
let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
let since = NaiveDateTime::signed_duration_since;
assert_eq!(
since(ymdhms(2014, 5, 6, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 9)),
Duration::zero()
);
assert_eq!(
since(ymdhms(2014, 5, 6, 7, 8, 10), ymdhms(2014, 5, 6, 7, 8, 9)),
Duration::seconds(1)
);
assert_eq!(
since(ymdhms(2014, 5, 6, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 10)),
Duration::seconds(-1)
);
assert_eq!(
since(ymdhms(2014, 5, 7, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 10)),
Duration::seconds(86399)
);
assert_eq!(
since(ymdhms(2001, 9, 9, 1, 46, 39), ymdhms(1970, 1, 1, 0, 0, 0)),
Duration::seconds(999_999_999)
);
}
#[test]
fn test_datetime_addassignment() {
let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
let mut date = ymdhms(2016, 10, 1, 10, 10, 10);
date += Duration::minutes(10_000_000);
assert_eq!(date, ymdhms(2035, 10, 6, 20, 50, 10));
date += Duration::days(10);
assert_eq!(date, ymdhms(2035, 10, 16, 20, 50, 10));
}
#[test]
fn test_datetime_subassignment() {
let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
let mut date = ymdhms(2016, 10, 1, 10, 10, 10);
date -= Duration::minutes(10_000_000);
assert_eq!(date, ymdhms(1997, 9, 26, 23, 30, 10));
date -= Duration::days(10);
assert_eq!(date, ymdhms(1997, 9, 16, 23, 30, 10));
}
#[test]
fn test_datetime_timestamp() {
let to_timestamp =
|y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s).timestamp();
assert_eq!(to_timestamp(1969, 12, 31, 23, 59, 59), -1);
assert_eq!(to_timestamp(1970, 1, 1, 0, 0, 0), 0);
assert_eq!(to_timestamp(1970, 1, 1, 0, 0, 1), 1);
assert_eq!(to_timestamp(2001, 9, 9, 1, 46, 40), 1_000_000_000);
assert_eq!(to_timestamp(2038, 1, 19, 3, 14, 7), 0x7fffffff);
}
#[test]
fn test_datetime_from_str() {
// valid cases
let valid = [
"2015-2-18T23:16:9.15",
"-77-02-18T23:16:09",
" +82701 - 05 - 6 T 15 : 9 : 60.898989898989 ",
];
for &s in &valid {
let d = match s.parse::<NaiveDateTime>() {
Ok(d) => d,
Err(e) => panic!("parsing `{}` has failed: {}", s, e),
};
let s_ = format!("{:?}", d);
// `s` and `s_` may differ, but `s.parse()` and `s_.parse()` must be same
let d_ = match s_.parse::<NaiveDateTime>() {
Ok(d) => d,
Err(e) => {
panic!("`{}` is parsed into `{:?}`, but reparsing that has failed: {}", s, d, e)
}
};
assert!(
d == d_,
"`{}` is parsed into `{:?}`, but reparsed result \
`{:?}` does not match",
s,
d,
d_
);
}
// some invalid cases
// since `ParseErrorKind` is private, all we can do is to check if there was an error
assert!("".parse::<NaiveDateTime>().is_err());
assert!("x".parse::<NaiveDateTime>().is_err());
assert!("15".parse::<NaiveDateTime>().is_err());
assert!("15:8:9".parse::<NaiveDateTime>().is_err());
assert!("15-8-9".parse::<NaiveDateTime>().is_err());
assert!("2015-15-15T15:15:15".parse::<NaiveDateTime>().is_err());
assert!("2012-12-12T12:12:12x".parse::<NaiveDateTime>().is_err());
assert!("2012-123-12T12:12:12".parse::<NaiveDateTime>().is_err());
assert!("+ 82701-123-12T12:12:12".parse::<NaiveDateTime>().is_err());
assert!("+802701-123-12T12:12:12".parse::<NaiveDateTime>().is_err()); // out-of-bound
}
#[test]
fn test_datetime_parse_from_str() {
let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
let ymdhmsn =
|y, m, d, h, n, s, nano| NaiveDate::from_ymd(y, m, d).and_hms_nano(h, n, s, nano);
assert_eq!(
NaiveDateTime::parse_from_str("2014-5-7T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
Ok(ymdhms(2014, 5, 7, 12, 34, 56))
); // ignore offset
assert_eq!(
NaiveDateTime::parse_from_str("2015-W06-1 000000", "%G-W%V-%u%H%M%S"),
Ok(ymdhms(2015, 2, 2, 0, 0, 0))
);
assert_eq!(
NaiveDateTime::parse_from_str(
"Fri, 09 Aug 2013 23:54:35 GMT",
"%a, %d %b %Y %H:%M:%S GMT"
),
Ok(ymdhms(2013, 8, 9, 23, 54, 35))
);
assert!(NaiveDateTime::parse_from_str(
"Sat, 09 Aug 2013 23:54:35 GMT",
"%a, %d %b %Y %H:%M:%S GMT"
)
.is_err());
assert!(NaiveDateTime::parse_from_str("2014-5-7 12:3456", "%Y-%m-%d %H:%M:%S").is_err());
assert!(NaiveDateTime::parse_from_str("12:34:56", "%H:%M:%S").is_err()); // insufficient
assert_eq!(
NaiveDateTime::parse_from_str("1441497364", "%s"),
Ok(ymdhms(2015, 9, 5, 23, 56, 4))
);
assert_eq!(
NaiveDateTime::parse_from_str("1283929614.1234", "%s.%f"),
Ok(ymdhmsn(2010, 9, 8, 7, 6, 54, 1234))
);
assert_eq!(
NaiveDateTime::parse_from_str("1441497364.649", "%s%.3f"),
Ok(ymdhmsn(2015, 9, 5, 23, 56, 4, 649000000))
);
assert_eq!(
NaiveDateTime::parse_from_str("1497854303.087654", "%s%.6f"),
Ok(ymdhmsn(2017, 6, 19, 6, 38, 23, 87654000))
);
assert_eq!(
NaiveDateTime::parse_from_str("1437742189.918273645", "%s%.9f"),
Ok(ymdhmsn(2015, 7, 24, 12, 49, 49, 918273645))
);
}
#[test]
fn test_datetime_format() {
let dt = NaiveDate::from_ymd(2010, 9, 8).and_hms_milli(7, 6, 54, 321);
assert_eq!(dt.format("%c").to_string(), "Wed Sep 8 07:06:54 2010");
assert_eq!(dt.format("%s").to_string(), "1283929614");
assert_eq!(dt.format("%t%n%%%n%t").to_string(), "\t\n%\n\t");
// a horror of leap second: coming near to you.
let dt = NaiveDate::from_ymd(2012, 6, 30).and_hms_milli(23, 59, 59, 1_000);
assert_eq!(dt.format("%c").to_string(), "Sat Jun 30 23:59:60 2012");
assert_eq!(dt.format("%s").to_string(), "1341100799"); // not 1341100800, it's intentional.
}
#[test]
fn test_datetime_add_sub_invariant() {
// issue #37
let base = NaiveDate::from_ymd(2000, 1, 1).and_hms(0, 0, 0);
let t = -946684799990000;
let time = base + Duration::microseconds(t);
assert_eq!(t, time.signed_duration_since(base).num_microseconds().unwrap());
}
#[test]
fn test_nanosecond_range() {
const A_BILLION: i64 = 1_000_000_000;
let maximum = "2262-04-11T23:47:16.854775804";
let parsed: NaiveDateTime = maximum.parse().unwrap();
let nanos = parsed.timestamp_nanos();
assert_eq!(
parsed,
NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32)
);
let minimum = "1677-09-21T00:12:44.000000000";
let parsed: NaiveDateTime = minimum.parse().unwrap();
let nanos = parsed.timestamp_nanos();
assert_eq!(
parsed,
NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32)
);
}
}