Revision control

Line Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// A simple segmented vector class.
//
// This class should be used in preference to mozilla::Vector or nsTArray when
// you are simply gathering items in order to later iterate over them.
//
// - In the case where you don't know the final size in advance, using
//   SegmentedVector avoids the need to repeatedly allocate increasingly large
//   buffers and copy the data into them.
//
// - In the case where you know the final size in advance and so can set the
//   capacity appropriately, using SegmentedVector still avoids the need for
//   large allocations (which can trigger OOMs).

#ifndef mozilla_SegmentedVector_h
#define mozilla_SegmentedVector_h

#include "mozilla/Alignment.h"
#include "mozilla/AllocPolicy.h"
#include "mozilla/Array.h"
#include "mozilla/LinkedList.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/TypeTraits.h"

#include <new>  // for placement new

namespace mozilla {

// |IdealSegmentSize| specifies how big each segment will be in bytes (or as
// close as is possible). Use the following guidelines to choose a size.
//
// - It should be a power-of-two, to avoid slop.
//
// - It should not be too small, so that segment allocations are infrequent,
//   and so that per-segment bookkeeping overhead is low. Typically each
//   segment should be able to hold hundreds of elements, at least.
//
// - It should not be too large, so that OOMs are unlikely when allocating
//   segments, and so that not too much space is wasted when the final segment
//   is not full.
//
// The ideal size depends on how the SegmentedVector is used and the size of
// |T|, but reasonable sizes include 1024, 4096 (the default), 8192, and 16384.
//
template<typename T,
         size_t IdealSegmentSize = 4096,
         typename AllocPolicy = MallocAllocPolicy>
class SegmentedVector : private AllocPolicy
{
  template<size_t SegmentCapacity>
  struct SegmentImpl
    : public mozilla::LinkedListElement<SegmentImpl<SegmentCapacity>>
  {
    SegmentImpl() : mLength(0) {}

    ~SegmentImpl()
    {
      for (uint32_t i = 0; i < mLength; i++) {
        (*this)[i].~T();
      }
    }

    uint32_t Length() const { return mLength; }

    T* Elems() { return reinterpret_cast<T*>(&mStorage.mBuf); }

    T& operator[](size_t aIndex)
    {
      MOZ_ASSERT(aIndex < mLength);
      return Elems()[aIndex];
    }

    const T& operator[](size_t aIndex) const
    {
      MOZ_ASSERT(aIndex < mLength);
      return Elems()[aIndex];
    }

    template<typename U>
    void Append(U&& aU)
    {
      MOZ_ASSERT(mLength < SegmentCapacity);
      // Pre-increment mLength so that the bounds-check in operator[] passes.
      mLength++;
      T* elem = &(*this)[mLength - 1];
      new (elem) T(mozilla::Forward<U>(aU));
    }

    void PopLast()
    {
      MOZ_ASSERT(mLength > 0);
      (*this)[mLength - 1].~T();
      mLength--;
    }

    uint32_t mLength;

    // The union ensures that the elements are appropriately aligned.
    union Storage
    {
      char mBuf[sizeof(T) * SegmentCapacity];
      mozilla::AlignedElem<MOZ_ALIGNOF(T)> mAlign;
    } mStorage;

    static_assert(MOZ_ALIGNOF(T) == MOZ_ALIGNOF(Storage),
                  "SegmentedVector provides incorrect alignment");
  };

  // See how many we elements we can fit in a segment of IdealSegmentSize. If
  // IdealSegmentSize is too small, it'll be just one. The +1 is because
  // kSingleElementSegmentSize already accounts for one element.
  static const size_t kSingleElementSegmentSize = sizeof(SegmentImpl<1>);
  static const size_t kSegmentCapacity =
    kSingleElementSegmentSize <= IdealSegmentSize
    ? (IdealSegmentSize - kSingleElementSegmentSize) / sizeof(T) + 1
    : 1;

public:
  typedef SegmentImpl<kSegmentCapacity> Segment;

  // The |aIdealSegmentSize| is only for sanity checking. If it's specified, we
  // check that the actual segment size is as close as possible to it. This
  // serves as a sanity check for SegmentedVectorCapacity's capacity
  // computation.
  explicit SegmentedVector(size_t aIdealSegmentSize = 0)
  {
    // The difference between the actual segment size and the ideal segment
    // size should be less than the size of a single element... unless the
    // ideal size was too small, in which case the capacity should be one.
    MOZ_ASSERT_IF(
      aIdealSegmentSize != 0,
      (sizeof(Segment) > aIdealSegmentSize && kSegmentCapacity == 1) ||
      aIdealSegmentSize - sizeof(Segment) < sizeof(T));
  }

  ~SegmentedVector() { Clear(); }

  bool IsEmpty() const { return !mSegments.getFirst(); }

  // Note that this is O(n) rather than O(1), but the constant factor is very
  // small because it only has to do one addition per segment.
  size_t Length() const
  {
    size_t n = 0;
    for (auto segment = mSegments.getFirst();
         segment;
         segment = segment->getNext()) {
      n += segment->Length();
    }
    return n;
  }

  // Returns false if the allocation failed. (If you are using an infallible
  // allocation policy, use InfallibleAppend() instead.)
  template<typename U>
  MOZ_MUST_USE bool Append(U&& aU)
  {
    Segment* last = mSegments.getLast();
    if (!last || last->Length() == kSegmentCapacity) {
      last = this->template pod_malloc<Segment>(1);
      if (!last) {
        return false;
      }
      new (last) Segment();
      mSegments.insertBack(last);
    }
    last->Append(mozilla::Forward<U>(aU));
    return true;
  }

  // You should probably only use this instead of Append() if you are using an
  // infallible allocation policy. It will crash if the allocation fails.
  template<typename U>
  void InfallibleAppend(U&& aU)
  {
    bool ok = Append(mozilla::Forward<U>(aU));
    MOZ_RELEASE_ASSERT(ok);
  }

  void Clear()
  {
    Segment* segment;
    while ((segment = mSegments.popFirst())) {
      segment->~Segment();
      this->free_(segment);
    }
  }

  T& GetLast()
  {
    MOZ_ASSERT(!IsEmpty());
    Segment* last = mSegments.getLast();
    return (*last)[last->Length() - 1];
  }

  const T& GetLast() const
  {
    MOZ_ASSERT(!IsEmpty());
    Segment* last = mSegments.getLast();
    return (*last)[last->Length() - 1];
  }

  void PopLast()
  {
    MOZ_ASSERT(!IsEmpty());
    Segment* last = mSegments.getLast();
    last->PopLast();
    if (!last->Length()) {
      mSegments.popLast();
      last->~Segment();
      this->free_(last);
    }
  }

  // Equivalent to calling |PopLast| |aNumElements| times, but potentially
  // more efficient.
  void PopLastN(uint32_t aNumElements)
  {
    MOZ_ASSERT(aNumElements <= Length());

    Segment* last;

    // Pop full segments for as long as we can.  Note that this loop
    // cleanly handles the case when the initial last segment is not
    // full and we are popping more elements than said segment contains.
    do {
      last = mSegments.getLast();

      // The list is empty.  We're all done.
      if (!last) {
        return;
      }

      // Check to see if the list contains too many elements.  Handle
      // that in the epilogue.
      uint32_t segmentLen = last->Length();
      if (segmentLen > aNumElements) {
        break;
      }

      // Destroying the segment destroys all elements contained therein.
      mSegments.popLast();
      last->~Segment();
      this->free_(last);

      MOZ_ASSERT(aNumElements >= segmentLen);
      aNumElements -= segmentLen;
      if (aNumElements == 0) {
        return;
      }
    } while (true);

    // Handle the case where the last segment contains more elements
    // than we want to pop.
    MOZ_ASSERT(last);
    MOZ_ASSERT(last == mSegments.getLast());
    MOZ_ASSERT(aNumElements < last->Length());
    for (uint32_t i = 0; i < aNumElements; ++i) {
      last->PopLast();
    }
    MOZ_ASSERT(last->Length() != 0);
  }

  // Use this class to iterate over a SegmentedVector, like so:
  //
  //  for (auto iter = v.Iter(); !iter.Done(); iter.Next()) {
  //    MyElem& elem = iter.Get();
  //    f(elem);
  //  }
  //
  // Note, adding new entries to the SegmentedVector while using iterators
  // is supported, but removing is not!
  // If an iterator has entered Done() state, adding more entries to the
  // vector doesn't affect it.
  class IterImpl
  {
    friend class SegmentedVector;

    Segment* mSegment;
    size_t mIndex;

    explicit IterImpl(SegmentedVector* aVector, bool aFromFirst)
      : mSegment(aFromFirst ? aVector->mSegments.getFirst() :
                              aVector->mSegments.getLast())
      , mIndex(aFromFirst ? 0 :
                            (mSegment ? mSegment->Length() - 1 : 0))
    {
      MOZ_ASSERT_IF(mSegment, mSegment->Length() > 0);
    }

  public:
    bool Done() const { return !mSegment; }

    T& Get()
    {
      MOZ_ASSERT(!Done());
      return (*mSegment)[mIndex];
    }

    const T& Get() const
    {
      MOZ_ASSERT(!Done());
      return (*mSegment)[mIndex];
    }

    void Next()
    {
      MOZ_ASSERT(!Done());
      mIndex++;
      if (mIndex == mSegment->Length()) {
        mSegment = mSegment->getNext();
        mIndex = 0;
      }
    }

    void Prev()
    {
      MOZ_ASSERT(!Done());
      if (mIndex == 0) {
        mSegment = mSegment->getPrevious();
        if (mSegment) {
          mIndex = mSegment->Length() - 1;
        }
      } else {
        --mIndex;
      }
    }
  };

  IterImpl Iter() { return IterImpl(this, true); }
  IterImpl IterFromLast() { return IterImpl(this, false); }

  // Measure the memory consumption of the vector excluding |this|. Note that
  // it only measures the vector itself. If the vector elements contain
  // pointers to other memory blocks, those blocks must be measured separately
  // during a subsequent iteration over the vector.
  size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
  {
    return mSegments.sizeOfExcludingThis(aMallocSizeOf);
  }

  // Like sizeOfExcludingThis(), but measures |this| as well.
  size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
  {
    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
  }

private:
  mozilla::LinkedList<Segment> mSegments;
};

} // namespace mozilla

#endif /* mozilla_SegmentedVector_h */