Revision control

Line Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* Functions for reading and writing integers in various endiannesses. */

/*
 * The classes LittleEndian and BigEndian expose static methods for
 * reading and writing 16-, 32-, and 64-bit signed and unsigned integers
 * in their respective endianness.  The naming scheme is:
 *
 * {Little,Big}Endian::{read,write}{Uint,Int}<bitsize>
 *
 * For instance, LittleEndian::readInt32 will read a 32-bit signed
 * integer from memory in little endian format.  Similarly,
 * BigEndian::writeUint16 will write a 16-bit unsigned integer to memory
 * in big-endian format.
 *
 * The class NativeEndian exposes methods for conversion of existing
 * data to and from the native endianness.  These methods are intended
 * for cases where data needs to be transferred, serialized, etc.
 * swap{To,From}{Little,Big}Endian byteswap a single value if necessary.
 * Bulk conversion functions are also provided which optimize the
 * no-conversion-needed case:
 *
 * - copyAndSwap{To,From}{Little,Big}Endian;
 * - swap{To,From}{Little,Big}EndianInPlace.
 *
 * The *From* variants are intended to be used for reading data and the
 * *To* variants for writing data.
 *
 * Methods on NativeEndian work with integer data of any type.
 * Floating-point data is not supported.
 *
 * For clarity in networking code, "Network" may be used as a synonym
 * for "Big" in any of the above methods or class names.
 *
 * As an example, reading a file format header whose fields are stored
 * in big-endian format might look like:
 *
 * class ExampleHeader
 * {
 * private:
 *   uint32_t mMagic;
 *   uint32_t mLength;
 *   uint32_t mTotalRecords;
 *   uint64_t mChecksum;
 *
 * public:
 *   ExampleHeader(const void* data)
 *   {
 *     const uint8_t* ptr = static_cast<const uint8_t*>(data);
 *     mMagic = BigEndian::readUint32(ptr); ptr += sizeof(uint32_t);
 *     mLength = BigEndian::readUint32(ptr); ptr += sizeof(uint32_t);
 *     mTotalRecords = BigEndian::readUint32(ptr); ptr += sizeof(uint32_t);
 *     mChecksum = BigEndian::readUint64(ptr);
 *   }
 *   ...
 * };
 */

#ifndef mozilla_EndianUtils_h
#define mozilla_EndianUtils_h

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Compiler.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/TypeTraits.h"

#include <stdint.h>
#include <string.h>

#if defined(_MSC_VER)
#  include <stdlib.h>
#  pragma intrinsic(_byteswap_ushort)
#  pragma intrinsic(_byteswap_ulong)
#  pragma intrinsic(_byteswap_uint64)
#endif

#if defined(_WIN64)
#  if defined(_M_X64) || defined(_M_AMD64) || defined(_AMD64_)
#    define MOZ_LITTLE_ENDIAN 1
#  else
#    error "CPU type is unknown"
#  endif
#elif defined(_WIN32)
#  if defined(_M_IX86)
#    define MOZ_LITTLE_ENDIAN 1
#  elif defined(_M_ARM)
#    define MOZ_LITTLE_ENDIAN 1
#  else
#    error "CPU type is unknown"
#  endif
#elif defined(__APPLE__) || defined(__powerpc__) || defined(__ppc__)
#  if __LITTLE_ENDIAN__
#    define MOZ_LITTLE_ENDIAN 1
#  elif __BIG_ENDIAN__
#    define MOZ_BIG_ENDIAN 1
#  endif
#elif defined(__GNUC__) && \
      defined(__BYTE_ORDER__) && \
      defined(__ORDER_LITTLE_ENDIAN__) && \
      defined(__ORDER_BIG_ENDIAN__)
   /*
    * Some versions of GCC provide architecture-independent macros for
    * this.  Yes, there are more than two values for __BYTE_ORDER__.
    */
#  if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#    define MOZ_LITTLE_ENDIAN 1
#  elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#    define MOZ_BIG_ENDIAN 1
#  else
#    error "Can't handle mixed-endian architectures"
#  endif
/*
 * We can't include useful headers like <endian.h> or <sys/isa_defs.h>
 * here because they're not present on all platforms.  Instead we have
 * this big conditional that ideally will catch all the interesting
 * cases.
 */
#elif defined(__sparc) || defined(__sparc__) || \
      defined(_POWER) || defined(__hppa) || \
      defined(_MIPSEB) || defined(__ARMEB__) || \
      defined(__s390__) || defined(__AARCH64EB__) || \
      (defined(__sh__) && defined(__LITTLE_ENDIAN__)) || \
      (defined(__ia64) && defined(__BIG_ENDIAN__))
#  define MOZ_BIG_ENDIAN 1
#elif defined(__i386) || defined(__i386__) || \
      defined(__x86_64) || defined(__x86_64__) || \
      defined(_MIPSEL) || defined(__ARMEL__) || \
      defined(__alpha__) || defined(__AARCH64EL__) || \
      (defined(__sh__) && defined(__BIG_ENDIAN__)) || \
      (defined(__ia64) && !defined(__BIG_ENDIAN__))
#  define MOZ_LITTLE_ENDIAN 1
#endif

#if MOZ_BIG_ENDIAN
#  define MOZ_LITTLE_ENDIAN 0
#elif MOZ_LITTLE_ENDIAN
#  define MOZ_BIG_ENDIAN 0
#else
#  error "Cannot determine endianness"
#endif

#if defined(__clang__)
#  if __has_builtin(__builtin_bswap16)
#    define MOZ_HAVE_BUILTIN_BYTESWAP16 __builtin_bswap16
#  endif
#elif defined(__GNUC__)
#  define MOZ_HAVE_BUILTIN_BYTESWAP16 __builtin_bswap16
#elif defined(_MSC_VER)
#  define MOZ_HAVE_BUILTIN_BYTESWAP16 _byteswap_ushort
#endif

namespace mozilla {

namespace detail {

/*
 * We need wrappers here because free functions with default template
 * arguments and/or partial specialization of function templates are not
 * supported by all the compilers we use.
 */
template<typename T, size_t Size = sizeof(T)>
struct Swapper;

template<typename T>
struct Swapper<T, 2>
{
  static T swap(T aValue)
  {
#if defined(MOZ_HAVE_BUILTIN_BYTESWAP16)
    return MOZ_HAVE_BUILTIN_BYTESWAP16(aValue);
#else
    return T(((aValue & 0x00ff) << 8) | ((aValue & 0xff00) >> 8));
#endif
  }
};

template<typename T>
struct Swapper<T, 4>
{
  static T swap(T aValue)
  {
#if defined(__clang__) || defined(__GNUC__)
    return T(__builtin_bswap32(aValue));
#elif defined(_MSC_VER)
    return T(_byteswap_ulong(aValue));
#else
    return T(((aValue & 0x000000ffU) << 24) |
             ((aValue & 0x0000ff00U) << 8) |
             ((aValue & 0x00ff0000U) >> 8) |
             ((aValue & 0xff000000U) >> 24));
#endif
  }
};

template<typename T>
struct Swapper<T, 8>
{
  static inline T swap(T aValue)
  {
#if defined(__clang__) || defined(__GNUC__)
    return T(__builtin_bswap64(aValue));
#elif defined(_MSC_VER)
    return T(_byteswap_uint64(aValue));
#else
    return T(((aValue & 0x00000000000000ffULL) << 56) |
             ((aValue & 0x000000000000ff00ULL) << 40) |
             ((aValue & 0x0000000000ff0000ULL) << 24) |
             ((aValue & 0x00000000ff000000ULL) << 8) |
             ((aValue & 0x000000ff00000000ULL) >> 8) |
             ((aValue & 0x0000ff0000000000ULL) >> 24) |
             ((aValue & 0x00ff000000000000ULL) >> 40) |
             ((aValue & 0xff00000000000000ULL) >> 56));
#endif
  }
};

enum Endianness { Little, Big };

#if MOZ_BIG_ENDIAN
#  define MOZ_NATIVE_ENDIANNESS detail::Big
#else
#  define MOZ_NATIVE_ENDIANNESS detail::Little
#endif

class EndianUtils
{
  /**
   * Assert that the memory regions [aDest, aDest+aCount) and
   * [aSrc, aSrc+aCount] do not overlap.  aCount is given in bytes.
   */
  static void assertNoOverlap(const void* aDest, const void* aSrc,
                              size_t aCount)
  {
    DebugOnly<const uint8_t*> byteDestPtr = static_cast<const uint8_t*>(aDest);
    DebugOnly<const uint8_t*> byteSrcPtr = static_cast<const uint8_t*>(aSrc);
    MOZ_ASSERT((byteDestPtr <= byteSrcPtr &&
                byteDestPtr + aCount <= byteSrcPtr) ||
               (byteSrcPtr <= byteDestPtr &&
                byteSrcPtr + aCount <= byteDestPtr));
  }

  template<typename T>
  static void assertAligned(T* aPtr)
  {
    MOZ_ASSERT((uintptr_t(aPtr) % sizeof(T)) == 0, "Unaligned pointer!");
  }

protected:
  /**
   * Return |aValue| converted from SourceEndian encoding to DestEndian
   * encoding.
   */
  template<Endianness SourceEndian, Endianness DestEndian, typename T>
  static inline T maybeSwap(T aValue)
  {
    if (SourceEndian == DestEndian) {
      return aValue;
    }
    return Swapper<T>::swap(aValue);
  }

  /**
   * Convert |aCount| elements at |aPtr| from SourceEndian encoding to
   * DestEndian encoding.
   */
  template<Endianness SourceEndian, Endianness DestEndian, typename T>
  static inline void maybeSwapInPlace(T* aPtr, size_t aCount)
  {
    assertAligned(aPtr);

    if (SourceEndian == DestEndian) {
      return;
    }
    for (size_t i = 0; i < aCount; i++) {
      aPtr[i] = Swapper<T>::swap(aPtr[i]);
    }
  }

  /**
   * Write |aCount| elements to the unaligned address |aDest| in DestEndian
   * format, using elements found at |aSrc| in SourceEndian format.
   */
  template<Endianness SourceEndian, Endianness DestEndian, typename T>
  static void copyAndSwapTo(void* aDest, const T* aSrc, size_t aCount)
  {
    assertNoOverlap(aDest, aSrc, aCount * sizeof(T));
    assertAligned(aSrc);

    if (SourceEndian == DestEndian) {
      memcpy(aDest, aSrc, aCount * sizeof(T));
      return;
    }

    uint8_t* byteDestPtr = static_cast<uint8_t*>(aDest);
    for (size_t i = 0; i < aCount; ++i) {
      union
      {
        T mVal;
        uint8_t mBuffer[sizeof(T)];
      } u;
      u.mVal = maybeSwap<SourceEndian, DestEndian>(aSrc[i]);
      memcpy(byteDestPtr, u.mBuffer, sizeof(T));
      byteDestPtr += sizeof(T);
    }
  }

  /**
   * Write |aCount| elements to |aDest| in DestEndian format, using elements
   * found at the unaligned address |aSrc| in SourceEndian format.
   */
  template<Endianness SourceEndian, Endianness DestEndian, typename T>
  static void copyAndSwapFrom(T* aDest, const void* aSrc, size_t aCount)
  {
    assertNoOverlap(aDest, aSrc, aCount * sizeof(T));
    assertAligned(aDest);

    if (SourceEndian == DestEndian) {
      memcpy(aDest, aSrc, aCount * sizeof(T));
      return;
    }

    const uint8_t* byteSrcPtr = static_cast<const uint8_t*>(aSrc);
    for (size_t i = 0; i < aCount; ++i) {
      union
      {
        T mVal;
        uint8_t mBuffer[sizeof(T)];
      } u;
      memcpy(u.mBuffer, byteSrcPtr, sizeof(T));
      aDest[i] = maybeSwap<SourceEndian, DestEndian>(u.mVal);
      byteSrcPtr += sizeof(T);
    }
  }
};

template<Endianness ThisEndian>
class Endian : private EndianUtils
{
protected:
  /** Read a uint16_t in ThisEndian endianness from |aPtr| and return it. */
  static MOZ_MUST_USE uint16_t readUint16(const void* aPtr)
  {
    return read<uint16_t>(aPtr);
  }

  /** Read a uint32_t in ThisEndian endianness from |aPtr| and return it. */
  static MOZ_MUST_USE uint32_t readUint32(const void* aPtr)
  {
    return read<uint32_t>(aPtr);
  }

  /** Read a uint64_t in ThisEndian endianness from |aPtr| and return it. */
  static MOZ_MUST_USE uint64_t readUint64(const void* aPtr)
  {
    return read<uint64_t>(aPtr);
  }

  /** Read an int16_t in ThisEndian endianness from |aPtr| and return it. */
  static MOZ_MUST_USE int16_t readInt16(const void* aPtr)
  {
    return read<int16_t>(aPtr);
  }

  /** Read an int32_t in ThisEndian endianness from |aPtr| and return it. */
  static MOZ_MUST_USE int32_t readInt32(const void* aPtr)
  {
    return read<uint32_t>(aPtr);
  }

  /** Read an int64_t in ThisEndian endianness from |aPtr| and return it. */
  static MOZ_MUST_USE int64_t readInt64(const void* aPtr)
  {
    return read<int64_t>(aPtr);
  }

  /** Write |aValue| to |aPtr| using ThisEndian endianness. */
  static void writeUint16(void* aPtr, uint16_t aValue)
  {
    write(aPtr, aValue);
  }

  /** Write |aValue| to |aPtr| using ThisEndian endianness. */
  static void writeUint32(void* aPtr, uint32_t aValue)
  {
    write(aPtr, aValue);
  }

  /** Write |aValue| to |aPtr| using ThisEndian endianness. */
  static void writeUint64(void* aPtr, uint64_t aValue)
  {
    write(aPtr, aValue);
  }

  /** Write |aValue| to |aPtr| using ThisEndian endianness. */
  static void writeInt16(void* aPtr, int16_t aValue)
  {
    write(aPtr, aValue);
  }

  /** Write |aValue| to |aPtr| using ThisEndian endianness. */
  static void writeInt32(void* aPtr, int32_t aValue)
  {
    write(aPtr, aValue);
  }

  /** Write |aValue| to |aPtr| using ThisEndian endianness. */
  static void writeInt64(void* aPtr, int64_t aValue)
  {
    write(aPtr, aValue);
  }

  /*
   * Converts a value of type T to little-endian format.
   *
   * This function is intended for cases where you have data in your
   * native-endian format and you need it to appear in little-endian
   * format for transmission.
   */
  template<typename T>
  MOZ_MUST_USE static T swapToLittleEndian(T aValue)
  {
    return maybeSwap<ThisEndian, Little>(aValue);
  }

  /*
   * Copies |aCount| values of type T starting at |aSrc| to |aDest|, converting
   * them to little-endian format if ThisEndian is Big.
   * As with memcpy, |aDest| and |aSrc| must not overlap.
   */
  template<typename T>
  static void copyAndSwapToLittleEndian(void* aDest, const T* aSrc,
                                        size_t aCount)
  {
    copyAndSwapTo<ThisEndian, Little>(aDest, aSrc, aCount);
  }

  /*
   * Likewise, but converts values in place.
   */
  template<typename T>
  static void swapToLittleEndianInPlace(T* aPtr, size_t aCount)
  {
    maybeSwapInPlace<ThisEndian, Little>(aPtr, aCount);
  }

  /*
   * Converts a value of type T to big-endian format.
   */
  template<typename T>
  MOZ_MUST_USE static T swapToBigEndian(T aValue)
  {
    return maybeSwap<ThisEndian, Big>(aValue);
  }

  /*
   * Copies |aCount| values of type T starting at |aSrc| to |aDest|, converting
   * them to big-endian format if ThisEndian is Little.
   * As with memcpy, |aDest| and |aSrc| must not overlap.
   */
  template<typename T>
  static void copyAndSwapToBigEndian(void* aDest, const T* aSrc,
                                     size_t aCount)
  {
    copyAndSwapTo<ThisEndian, Big>(aDest, aSrc, aCount);
  }

  /*
   * Likewise, but converts values in place.
   */
  template<typename T>
  static void swapToBigEndianInPlace(T* aPtr, size_t aCount)
  {
    maybeSwapInPlace<ThisEndian, Big>(aPtr, aCount);
  }

  /*
   * Synonyms for the big-endian functions, for better readability
   * in network code.
   */

  template<typename T>
  MOZ_MUST_USE static T swapToNetworkOrder(T aValue)
  {
    return swapToBigEndian(aValue);
  }

  template<typename T>
  static void
  copyAndSwapToNetworkOrder(void* aDest, const T* aSrc, size_t aCount)
  {
    copyAndSwapToBigEndian(aDest, aSrc, aCount);
  }

  template<typename T>
  static void
  swapToNetworkOrderInPlace(T* aPtr, size_t aCount)
  {
    swapToBigEndianInPlace(aPtr, aCount);
  }

  /*
   * Converts a value of type T from little-endian format.
   */
  template<typename T>
  MOZ_MUST_USE static T swapFromLittleEndian(T aValue)
  {
    return maybeSwap<Little, ThisEndian>(aValue);
  }

  /*
   * Copies |aCount| values of type T starting at |aSrc| to |aDest|, converting
   * them to little-endian format if ThisEndian is Big.
   * As with memcpy, |aDest| and |aSrc| must not overlap.
   */
  template<typename T>
  static void copyAndSwapFromLittleEndian(T* aDest, const void* aSrc,
                                          size_t aCount)
  {
    copyAndSwapFrom<Little, ThisEndian>(aDest, aSrc, aCount);
  }

  /*
   * Likewise, but converts values in place.
   */
  template<typename T>
  static void swapFromLittleEndianInPlace(T* aPtr, size_t aCount)
  {
    maybeSwapInPlace<Little, ThisEndian>(aPtr, aCount);
  }

  /*
   * Converts a value of type T from big-endian format.
   */
  template<typename T>
  MOZ_MUST_USE static T swapFromBigEndian(T aValue)
  {
    return maybeSwap<Big, ThisEndian>(aValue);
  }

  /*
   * Copies |aCount| values of type T starting at |aSrc| to |aDest|, converting
   * them to big-endian format if ThisEndian is Little.
   * As with memcpy, |aDest| and |aSrc| must not overlap.
   */
  template<typename T>
  static void copyAndSwapFromBigEndian(T* aDest, const void* aSrc,
                                       size_t aCount)
  {
    copyAndSwapFrom<Big, ThisEndian>(aDest, aSrc, aCount);
  }

  /*
   * Likewise, but converts values in place.
   */
  template<typename T>
  static void swapFromBigEndianInPlace(T* aPtr, size_t aCount)
  {
    maybeSwapInPlace<Big, ThisEndian>(aPtr, aCount);
  }

  /*
   * Synonyms for the big-endian functions, for better readability
   * in network code.
   */
  template<typename T>
  MOZ_MUST_USE static T swapFromNetworkOrder(T aValue)
  {
    return swapFromBigEndian(aValue);
  }

  template<typename T>
  static void copyAndSwapFromNetworkOrder(T* aDest, const void* aSrc,
                                          size_t aCount)
  {
    copyAndSwapFromBigEndian(aDest, aSrc, aCount);
  }

  template<typename T>
  static void swapFromNetworkOrderInPlace(T* aPtr, size_t aCount)
  {
    swapFromBigEndianInPlace(aPtr, aCount);
  }

private:
  /**
   * Read a value of type T, encoded in endianness ThisEndian from |aPtr|.
   * Return that value encoded in native endianness.
   */
  template<typename T>
  static T read(const void* aPtr)
  {
    union
    {
      T mVal;
      uint8_t mBuffer[sizeof(T)];
    } u;
    memcpy(u.mBuffer, aPtr, sizeof(T));
    return maybeSwap<ThisEndian, MOZ_NATIVE_ENDIANNESS>(u.mVal);
  }

  /**
   * Write a value of type T, in native endianness, to |aPtr|, in ThisEndian
   * endianness.
   */
  template<typename T>
  static void write(void* aPtr, T aValue)
  {
    T tmp = maybeSwap<MOZ_NATIVE_ENDIANNESS, ThisEndian>(aValue);
    memcpy(aPtr, &tmp, sizeof(T));
  }

  Endian() = delete;
  Endian(const Endian& aTther) = delete;
  void operator=(const Endian& aOther) = delete;
};

template<Endianness ThisEndian>
class EndianReadWrite : public Endian<ThisEndian>
{
private:
  typedef Endian<ThisEndian> super;

public:
  using super::readUint16;
  using super::readUint32;
  using super::readUint64;
  using super::readInt16;
  using super::readInt32;
  using super::readInt64;
  using super::writeUint16;
  using super::writeUint32;
  using super::writeUint64;
  using super::writeInt16;
  using super::writeInt32;
  using super::writeInt64;
};

} /* namespace detail */

class LittleEndian final : public detail::EndianReadWrite<detail::Little>
{};

class BigEndian final : public detail::EndianReadWrite<detail::Big>
{};

typedef BigEndian NetworkEndian;

class NativeEndian final : public detail::Endian<MOZ_NATIVE_ENDIANNESS>
{
private:
  typedef detail::Endian<MOZ_NATIVE_ENDIANNESS> super;

public:
  /*
   * These functions are intended for cases where you have data in your
   * native-endian format and you need the data to appear in the appropriate
   * endianness for transmission, serialization, etc.
   */
  using super::swapToLittleEndian;
  using super::copyAndSwapToLittleEndian;
  using super::swapToLittleEndianInPlace;
  using super::swapToBigEndian;
  using super::copyAndSwapToBigEndian;
  using super::swapToBigEndianInPlace;
  using super::swapToNetworkOrder;
  using super::copyAndSwapToNetworkOrder;
  using super::swapToNetworkOrderInPlace;

  /*
   * These functions are intended for cases where you have data in the
   * given endianness (e.g. reading from disk or a file-format) and you
   * need the data to appear in native-endian format for processing.
   */
  using super::swapFromLittleEndian;
  using super::copyAndSwapFromLittleEndian;
  using super::swapFromLittleEndianInPlace;
  using super::swapFromBigEndian;
  using super::copyAndSwapFromBigEndian;
  using super::swapFromBigEndianInPlace;
  using super::swapFromNetworkOrder;
  using super::copyAndSwapFromNetworkOrder;
  using super::swapFromNetworkOrderInPlace;
};

#undef MOZ_NATIVE_ENDIANNESS

} /* namespace mozilla */

#endif /* mozilla_EndianUtils_h */