Source code

Revision control

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Copyright 2015, Mozilla Foundation and contributors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "ClearKeyDecryptionManager.h"

#include "psshparser/PsshParser.h"

#include <assert.h>
#include <string.h>
#include <vector>
#include <algorithm>

#include "mozilla/CheckedInt.h"

using namespace cdm;

bool AllZero(const std::vector<uint32_t>& aBytes) {
  return all_of(aBytes.begin(), aBytes.end(),
                [](uint32_t b) { return b == 0; });
}

class ClearKeyDecryptor : public RefCounted {
 public:
  ClearKeyDecryptor();

  void InitKey(const Key& aKey);
  bool HasKey() const { return !mKey.empty(); }

  Status Decrypt(uint8_t* aBuffer, uint32_t aBufferSize,
                 const CryptoMetaData& aMetadata);

  const Key& DecryptionKey() const { return mKey; }

 private:
  ~ClearKeyDecryptor();

  Key mKey;
};

/* static */ ClearKeyDecryptionManager* ClearKeyDecryptionManager::sInstance =
    nullptr;

/* static */ ClearKeyDecryptionManager* ClearKeyDecryptionManager::Get() {
  if (!sInstance) {
    sInstance = new ClearKeyDecryptionManager();
  }
  return sInstance;
}

ClearKeyDecryptionManager::ClearKeyDecryptionManager() {
  CK_LOGD("ClearKeyDecryptionManager::ClearKeyDecryptionManager");
}

ClearKeyDecryptionManager::~ClearKeyDecryptionManager() {
  CK_LOGD("ClearKeyDecryptionManager::~ClearKeyDecryptionManager");

  sInstance = nullptr;

  for (auto it = mDecryptors.begin(); it != mDecryptors.end(); it++) {
    it->second->Release();
  }
  mDecryptors.clear();
}

bool ClearKeyDecryptionManager::HasSeenKeyId(const KeyId& aKeyId) const {
  CK_LOGD("ClearKeyDecryptionManager::SeenKeyId %s",
          mDecryptors.find(aKeyId) != mDecryptors.end() ? "t" : "f");
  return mDecryptors.find(aKeyId) != mDecryptors.end();
}

bool ClearKeyDecryptionManager::IsExpectingKeyForKeyId(
    const KeyId& aKeyId) const {
  CK_LOGARRAY("ClearKeyDecryptionManager::IsExpectingKeyForId ", aKeyId.data(),
              aKeyId.size());
  const auto& decryptor = mDecryptors.find(aKeyId);
  return decryptor != mDecryptors.end() && !decryptor->second->HasKey();
}

bool ClearKeyDecryptionManager::HasKeyForKeyId(const KeyId& aKeyId) const {
  CK_LOGD("ClearKeyDecryptionManager::HasKeyForKeyId");
  const auto& decryptor = mDecryptors.find(aKeyId);
  return decryptor != mDecryptors.end() && decryptor->second->HasKey();
}

const Key& ClearKeyDecryptionManager::GetDecryptionKey(const KeyId& aKeyId) {
  assert(HasKeyForKeyId(aKeyId));
  return mDecryptors[aKeyId]->DecryptionKey();
}

void ClearKeyDecryptionManager::InitKey(KeyId aKeyId, Key aKey) {
  CK_LOGD("ClearKeyDecryptionManager::InitKey ", aKeyId.data(), aKeyId.size());
  if (IsExpectingKeyForKeyId(aKeyId)) {
    CK_LOGARRAY("Initialized Key ", aKeyId.data(), aKeyId.size());
    mDecryptors[aKeyId]->InitKey(aKey);
  } else {
    CK_LOGARRAY("Failed to initialize key ", aKeyId.data(), aKeyId.size());
  }
}

void ClearKeyDecryptionManager::ExpectKeyId(KeyId aKeyId) {
  CK_LOGD("ClearKeyDecryptionManager::ExpectKeyId ", aKeyId.data(),
          aKeyId.size());
  if (!HasSeenKeyId(aKeyId)) {
    mDecryptors[aKeyId] = new ClearKeyDecryptor();
  }
  mDecryptors[aKeyId]->AddRef();
}

void ClearKeyDecryptionManager::ReleaseKeyId(KeyId aKeyId) {
  CK_LOGD("ClearKeyDecryptionManager::ReleaseKeyId");
  assert(HasSeenKeyId(aKeyId));

  ClearKeyDecryptor* decryptor = mDecryptors[aKeyId];
  if (!decryptor->Release()) {
    mDecryptors.erase(aKeyId);
  }
}

Status ClearKeyDecryptionManager::Decrypt(std::vector<uint8_t>& aBuffer,
                                          const CryptoMetaData& aMetadata) {
  return Decrypt(&aBuffer[0], aBuffer.size(), aMetadata);
}

Status ClearKeyDecryptionManager::Decrypt(uint8_t* aBuffer,
                                          uint32_t aBufferSize,
                                          const CryptoMetaData& aMetadata) {
  CK_LOGD("ClearKeyDecryptionManager::Decrypt");
  if (!HasKeyForKeyId(aMetadata.mKeyId)) {
    CK_LOGARRAY("Unable to find decryptor for keyId: ", aMetadata.mKeyId.data(),
                aMetadata.mKeyId.size());
    return Status::kNoKey;
  }

  CK_LOGARRAY("Found decryptor for keyId: ", aMetadata.mKeyId.data(),
              aMetadata.mKeyId.size());
  return mDecryptors[aMetadata.mKeyId]->Decrypt(aBuffer, aBufferSize,
                                                aMetadata);
}

ClearKeyDecryptor::ClearKeyDecryptor() { CK_LOGD("ClearKeyDecryptor ctor"); }

ClearKeyDecryptor::~ClearKeyDecryptor() {
  if (HasKey()) {
    CK_LOGARRAY("ClearKeyDecryptor dtor; key = ", mKey.data(), mKey.size());
  } else {
    CK_LOGD("ClearKeyDecryptor dtor");
  }
}

void ClearKeyDecryptor::InitKey(const Key& aKey) { mKey = aKey; }

Status ClearKeyDecryptor::Decrypt(uint8_t* aBuffer, uint32_t aBufferSize,
                                  const CryptoMetaData& aMetadata) {
  CK_LOGD("ClearKeyDecryptor::Decrypt");
  // If the sample is split up into multiple encrypted subsamples, we need to
  // stitch them into one continuous buffer for decryption.
  std::vector<uint8_t> tmp(aBufferSize);

  if (aMetadata.NumSubsamples()) {
    // Take all encrypted parts of subsamples and stitch them into one
    // continuous encrypted buffer.
    static_assert(sizeof(uintptr_t) == sizeof(uint8_t*),
                  "We need uintptr_t to be exactly the same size as a pointer");
    mozilla::CheckedInt<uintptr_t> data = reinterpret_cast<uintptr_t>(aBuffer);
    const uintptr_t endBuffer =
        reinterpret_cast<uintptr_t>(aBuffer + aBufferSize);
    uint8_t* iter = &tmp[0];
    for (size_t i = 0; i < aMetadata.NumSubsamples(); i++) {
      data += aMetadata.mClearBytes[i];
      if (!data.isValid() || data.value() > endBuffer) {
        // Trying to read past the end of the buffer!
        return Status::kDecryptError;
      }
      const uint32_t& cipherBytes = aMetadata.mCipherBytes[i];
      mozilla::CheckedInt<uintptr_t> dataAfterCipher = data + cipherBytes;
      if (!dataAfterCipher.isValid() || dataAfterCipher.value() > endBuffer) {
        // Trying to read past the end of the buffer!
        return Status::kDecryptError;
      }

      memcpy(iter, reinterpret_cast<uint8_t*>(data.value()), cipherBytes);

      data = dataAfterCipher;
      iter += cipherBytes;
    }

    tmp.resize((size_t)(iter - &tmp[0]));
  } else {
    memcpy(&tmp[0], aBuffer, aBufferSize);
  }

  // It is possible that we could be passed an unencrypted sample, if all
  // encrypted sample lengths are zero, and in this case, a zero length
  // IV is allowed.
  assert(aMetadata.mIV.size() == 8 || aMetadata.mIV.size() == 16 ||
         (aMetadata.mIV.size() == 0 && AllZero(aMetadata.mCipherBytes)));

  std::vector<uint8_t> iv(aMetadata.mIV);
  iv.insert(iv.end(), CENC_KEY_LEN - aMetadata.mIV.size(), 0);

  ClearKeyUtils::DecryptAES(mKey, tmp, iv);

  if (aMetadata.NumSubsamples()) {
    // Take the decrypted buffer, split up into subsamples, and insert those
    // subsamples back into their original position in the original buffer.
    uint8_t* data = aBuffer;
    uint8_t* iter = &tmp[0];
    for (size_t i = 0; i < aMetadata.NumSubsamples(); i++) {
      data += aMetadata.mClearBytes[i];
      uint32_t cipherBytes = aMetadata.mCipherBytes[i];

      memcpy(data, iter, cipherBytes);

      data += cipherBytes;
      iter += cipherBytes;
    }
  } else {
    memcpy(aBuffer, &tmp[0], aBufferSize);
  }

  return Status::kSuccess;
}