Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Wrapper object for reflecting native xpcom objects into JavaScript. */
#include "xpcprivate.h"
#include "XPCMaps.h"
#include "nsWrapperCacheInlines.h"
#include "XPCLog.h"
#include "js/Array.h" // JS::GetArrayLength, JS::IsArrayObject
#include "js/experimental/TypedData.h" // JS_GetTypedArrayLength, JS_IsTypedArrayObject
#include "js/MemoryFunctions.h"
#include "js/Object.h" // JS::GetPrivate, JS::SetPrivate, JS::SetReservedSlot
#include "js/Printf.h"
#include "js/PropertyAndElement.h" // JS_GetProperty, JS_GetPropertyById, JS_SetProperty, JS_SetPropertyById
#include "jsfriendapi.h"
#include "AccessCheck.h"
#include "WrapperFactory.h"
#include "XrayWrapper.h"
#include "nsContentUtils.h"
#include "nsCycleCollectionNoteRootCallback.h"
#include <new>
#include <stdint.h>
#include "mozilla/DeferredFinalize.h"
#include "mozilla/Likely.h"
#include "mozilla/Unused.h"
#include "mozilla/Sprintf.h"
#include "mozilla/dom/BindingUtils.h"
#include "mozilla/ProfilerLabels.h"
#include <algorithm>
using namespace xpc;
using namespace mozilla;
using namespace mozilla::dom;
using namespace JS;
/***************************************************************************/
NS_IMPL_CYCLE_COLLECTION_CLASS(XPCWrappedNative)
// No need to unlink the JS objects: if the XPCWrappedNative is cycle
// collected then its mFlatJSObject will be cycle collected too and
// finalization of the mFlatJSObject will unlink the JS objects (see
// XPC_WN_NoHelper_Finalize and FlatJSObjectFinalized).
NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(XPCWrappedNative)
tmp->ExpireWrapper();
NS_IMPL_CYCLE_COLLECTION_UNLINK_END
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN_INTERNAL(XPCWrappedNative)
if (!tmp->IsValid()) {
return NS_OK;
}
if (MOZ_UNLIKELY(cb.WantDebugInfo())) {
char name[72];
nsCOMPtr<nsIXPCScriptable> scr = tmp->GetScriptable();
if (scr) {
SprintfLiteral(name, "XPCWrappedNative (%s)", scr->GetJSClass()->name);
} else {
SprintfLiteral(name, "XPCWrappedNative");
}
cb.DescribeRefCountedNode(tmp->mRefCnt.get(), name);
} else {
NS_IMPL_CYCLE_COLLECTION_DESCRIBE(XPCWrappedNative, tmp->mRefCnt.get())
}
if (tmp->HasExternalReference()) {
// If our refcount is > 1, our reference to the flat JS object is
// considered "strong", and we're going to traverse it.
//
// If our refcount is <= 1, our reference to the flat JS object is
// considered "weak", and we're *not* going to traverse it.
//
// This reasoning is in line with the slightly confusing lifecycle rules
// for XPCWrappedNatives, described in a larger comment below and also
JSObject* obj = tmp->GetFlatJSObjectPreserveColor();
NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(cb, "mFlatJSObject");
cb.NoteJSChild(JS::GCCellPtr(obj));
}
// XPCWrappedNative keeps its native object alive.
NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(cb, "mIdentity");
cb.NoteXPCOMChild(tmp->GetIdentityObject());
tmp->NoteTearoffs(cb);
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END
void XPCWrappedNative::Suspect(nsCycleCollectionNoteRootCallback& cb) {
if (!IsValid() || IsWrapperExpired()) {
return;
}
MOZ_ASSERT(NS_IsMainThread(),
"Suspecting wrapped natives from non-main thread");
// Only record objects that might be part of a cycle as roots, unless
// the callback wants all traces (a debug feature). Do this even if
// the XPCWN doesn't own the JS reflector object in case the reflector
// keeps alive other C++ things. This is safe because if the reflector
// had died the reference from the XPCWN to it would have been cleared.
JSObject* obj = GetFlatJSObjectPreserveColor();
if (JS::ObjectIsMarkedGray(obj) || cb.WantAllTraces()) {
cb.NoteJSRoot(obj);
}
}
void XPCWrappedNative::NoteTearoffs(nsCycleCollectionTraversalCallback& cb) {
// Tearoffs hold their native object alive. If their JS object hasn't been
// finalized yet we'll note the edge between the JS object and the native
// (see nsXPConnect::Traverse), but if their JS object has been finalized
// then the tearoff is only reachable through the XPCWrappedNative, so we
// record an edge here.
for (XPCWrappedNativeTearOff* to = &mFirstTearOff; to;
to = to->GetNextTearOff()) {
JSObject* jso = to->GetJSObjectPreserveColor();
if (!jso) {
NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(cb, "tearoff's mNative");
cb.NoteXPCOMChild(to->GetNative());
}
}
}
#ifdef XPC_CHECK_CLASSINFO_CLAIMS
static void DEBUG_CheckClassInfoClaims(XPCWrappedNative* wrapper);
#else
# define DEBUG_CheckClassInfoClaims(wrapper) ((void)0)
#endif
/***************************************************************************/
static nsresult FinishCreate(JSContext* cx, XPCWrappedNativeScope* Scope,
XPCNativeInterface* Interface,
nsWrapperCache* cache, XPCWrappedNative* inWrapper,
XPCWrappedNative** resultWrapper);
// static
//
// This method handles the special case of wrapping a new global object.
//
// The normal code path for wrapping natives goes through
// XPCConvert::NativeInterface2JSObject, XPCWrappedNative::GetNewOrUsed,
// and finally into XPCWrappedNative::Init. Unfortunately, this path assumes
// very early on that we have an XPCWrappedNativeScope and corresponding global
// JS object, which are the very things we need to create here. So we special-
// case the logic and do some things in a different order.
nsresult XPCWrappedNative::WrapNewGlobal(JSContext* cx,
xpcObjectHelper& nativeHelper,
nsIPrincipal* principal,
JS::RealmOptions& aOptions,
XPCWrappedNative** wrappedGlobal) {
nsCOMPtr<nsISupports> identity = do_QueryInterface(nativeHelper.Object());
// The object should specify that it's meant to be global.
MOZ_ASSERT(nativeHelper.GetScriptableFlags() &
XPC_SCRIPTABLE_IS_GLOBAL_OBJECT);
// We shouldn't be reusing globals.
MOZ_ASSERT(!nativeHelper.GetWrapperCache() ||
!nativeHelper.GetWrapperCache()->GetWrapperPreserveColor());
// Get the nsIXPCScriptable. This will tell us the JSClass of the object
// we're going to create.
nsCOMPtr<nsIXPCScriptable> scrProto;
nsCOMPtr<nsIXPCScriptable> scrWrapper;
GatherScriptable(identity, nativeHelper.GetClassInfo(),
getter_AddRefs(scrProto), getter_AddRefs(scrWrapper));
MOZ_ASSERT(scrWrapper);
// Finally, we get to the JSClass.
const JSClass* clasp = scrWrapper->GetJSClass();
MOZ_ASSERT(clasp->flags & JSCLASS_IS_GLOBAL);
// Create the global.
aOptions.creationOptions().setTrace(XPCWrappedNative::Trace);
xpc::SetPrefableRealmOptions(aOptions);
RootedObject global(cx,
xpc::CreateGlobalObject(cx, clasp, principal, aOptions));
if (!global) {
return NS_ERROR_FAILURE;
}
XPCWrappedNativeScope* scope = ObjectScope(global);
// Immediately enter the global's realm, so that everything else we
// create ends up there.
JSAutoRealm ar(cx, global);
// Make a proto.
XPCWrappedNativeProto* proto = XPCWrappedNativeProto::GetNewOrUsed(
cx, scope, nativeHelper.GetClassInfo(), scrProto);
if (!proto) {
return NS_ERROR_FAILURE;
}
// Set up the prototype on the global.
MOZ_ASSERT(proto->GetJSProtoObject());
RootedObject protoObj(cx, proto->GetJSProtoObject());
bool success = JS_SetPrototype(cx, global, protoObj);
if (!success) {
return NS_ERROR_FAILURE;
}
// Construct the wrapper, which takes over the strong reference to the
// native object.
RefPtr<XPCWrappedNative> wrapper =
new XPCWrappedNative(std::move(identity), proto);
//
// We don't call ::Init() on this wrapper, because our setup requirements
// are different for globals. We do our setup inline here, instead.
//
wrapper->mScriptable = scrWrapper;
// Set the JS object to the global we already created.
wrapper->SetFlatJSObject(global);
// Set the reserved slot to the XPCWrappedNative.
static_assert(JSCLASS_GLOBAL_APPLICATION_SLOTS > 0,
"Need at least one slot for JSCLASS_SLOT0_IS_NSISUPPORTS");
JS::SetObjectISupports(global, wrapper);
// There are dire comments elsewhere in the code about how a GC can
// happen somewhere after wrapper initialization but before the wrapper is
// added to the hashtable in FinishCreate(). It's not clear if that can
// happen here, but let's just be safe for now.
AutoMarkingWrappedNativePtr wrapperMarker(cx, wrapper);
// Call the common Init finish routine. This mainly just does an AddRef
// on behalf of XPConnect (the corresponding Release is in the finalizer
// hook), but it does some other miscellaneous things too, so we don't
// inline it.
success = wrapper->FinishInit(cx);
MOZ_ASSERT(success);
// Go through some extra work to find the tearoff. This is kind of silly
// on a conceptual level: the point of tearoffs is to cache the results
// of QI-ing mIdentity to different interfaces, and we don't need that
// since we're dealing with nsISupports. But lots of code expects tearoffs
// to exist for everything, so we just follow along.
RefPtr<XPCNativeInterface> iface =
XPCNativeInterface::GetNewOrUsed(cx, &NS_GET_IID(nsISupports));
MOZ_ASSERT(iface);
nsresult status;
success = wrapper->FindTearOff(cx, iface, false, &status);
if (!success) {
return status;
}
// Call the common creation finish routine. This does all of the bookkeeping
// like inserting the wrapper into the wrapper map and setting up the wrapper
// cache.
nsresult rv = FinishCreate(cx, scope, iface, nativeHelper.GetWrapperCache(),
wrapper, wrappedGlobal);
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
// static
nsresult XPCWrappedNative::GetNewOrUsed(JSContext* cx, xpcObjectHelper& helper,
XPCWrappedNativeScope* Scope,
XPCNativeInterface* Interface,
XPCWrappedNative** resultWrapper) {
MOZ_ASSERT(Interface);
nsWrapperCache* cache = helper.GetWrapperCache();
MOZ_ASSERT(!cache || !cache->GetWrapperPreserveColor(),
"We assume the caller already checked if it could get the "
"wrapper from the cache.");
nsresult rv;
MOZ_ASSERT(!Scope->GetRuntime()->GCIsRunning(),
"XPCWrappedNative::GetNewOrUsed called during GC");
nsCOMPtr<nsISupports> identity = do_QueryInterface(helper.Object());
if (!identity) {
NS_ERROR("This XPCOM object fails in QueryInterface to nsISupports!");
return NS_ERROR_FAILURE;
}
RefPtr<XPCWrappedNative> wrapper;
Native2WrappedNativeMap* map = Scope->GetWrappedNativeMap();
// Some things are nsWrapperCache subclasses but never use the cache, so go
// ahead and check our map even if we have a cache and it has no existing
// wrapper: we might have an XPCWrappedNative anyway.
wrapper = map->Find(identity);
if (wrapper) {
if (!wrapper->FindTearOff(cx, Interface, false, &rv)) {
MOZ_ASSERT(NS_FAILED(rv), "returning NS_OK on failure");
return rv;
}
wrapper.forget(resultWrapper);
return NS_OK;
}
// There is a chance that the object wants to have the self-same JSObject
// reflection regardless of the scope into which we are reflecting it.
// Many DOM objects require this. The scriptable helper specifies this
// in preCreate by indicating a 'parent' of a particular scope.
//
// To handle this we need to get the scriptable helper early and ask it.
// It is possible that we will then end up forwarding this entire call
// to this same function but with a different scope.
// If we are making a wrapper for an nsIClassInfo singleton then
// We *don't* want to have it use the prototype meant for instances
// of that class.
uint32_t classInfoFlags;
bool isClassInfoSingleton =
helper.GetClassInfo() == helper.Object() &&
NS_SUCCEEDED(helper.GetClassInfo()->GetFlags(&classInfoFlags)) &&
(classInfoFlags & nsIClassInfo::SINGLETON_CLASSINFO);
nsIClassInfo* info = helper.GetClassInfo();
nsCOMPtr<nsIXPCScriptable> scrProto;
nsCOMPtr<nsIXPCScriptable> scrWrapper;
// Gather scriptable create info if we are wrapping something
// other than an nsIClassInfo object. We need to not do this for
// nsIClassInfo objects because often nsIClassInfo implementations
// are also nsIXPCScriptable helper implementations, but the helper
// code is obviously intended for the implementation of the class
// described by the nsIClassInfo, not for the class info object
// itself.
if (!isClassInfoSingleton) {
GatherScriptable(identity, info, getter_AddRefs(scrProto),
getter_AddRefs(scrWrapper));
}
RootedObject parent(cx, Scope->GetGlobalForWrappedNatives());
mozilla::Maybe<JSAutoRealm> ar;
if (scrWrapper && scrWrapper->WantPreCreate()) {
RootedObject plannedParent(cx, parent);
nsresult rv = scrWrapper->PreCreate(identity, cx, parent, parent.address());
if (NS_FAILED(rv)) {
return rv;
}
rv = NS_OK;
MOZ_ASSERT(!xpc::WrapperFactory::IsXrayWrapper(parent),
"Xray wrapper being used to parent XPCWrappedNative?");
MOZ_ASSERT(JS_IsGlobalObject(parent),
"Non-global being used to parent XPCWrappedNative?");
ar.emplace(static_cast<JSContext*>(cx), parent);
if (parent != plannedParent) {
XPCWrappedNativeScope* betterScope = ObjectScope(parent);
MOZ_ASSERT(betterScope != Scope,
"How can we have the same scope for two different globals?");
return GetNewOrUsed(cx, helper, betterScope, Interface, resultWrapper);
}
// Take the performance hit of checking the hashtable again in case
// the preCreate call caused the wrapper to get created through some
// interesting path (the DOM code tends to make this happen sometimes).
if (cache) {
RootedObject cached(cx, cache->GetWrapper());
if (cached) {
wrapper = XPCWrappedNative::Get(cached);
}
} else {
wrapper = map->Find(identity);
}
if (wrapper) {
if (!wrapper->FindTearOff(cx, Interface, false, &rv)) {
MOZ_ASSERT(NS_FAILED(rv), "returning NS_OK on failure");
return rv;
}
wrapper.forget(resultWrapper);
return NS_OK;
}
} else {
ar.emplace(static_cast<JSContext*>(cx), parent);
}
AutoMarkingWrappedNativeProtoPtr proto(cx);
// If there is ClassInfo (and we are not building a wrapper for the
// nsIClassInfo interface) then we use a wrapper that needs a prototype.
// Note that the security check happens inside FindTearOff - after the
// wrapper is actually created, but before JS code can see it.
if (info && !isClassInfoSingleton) {
proto = XPCWrappedNativeProto::GetNewOrUsed(cx, Scope, info, scrProto);
if (!proto) {
return NS_ERROR_FAILURE;
}
wrapper = new XPCWrappedNative(std::move(identity), proto);
} else {
RefPtr<XPCNativeInterface> iface = Interface;
if (!iface) {
iface = XPCNativeInterface::GetISupports(cx);
}
XPCNativeSetKey key(cx, iface);
RefPtr<XPCNativeSet> set = XPCNativeSet::GetNewOrUsed(cx, &key);
if (!set) {
return NS_ERROR_FAILURE;
}
wrapper = new XPCWrappedNative(std::move(identity), Scope, set.forget());
}
MOZ_ASSERT(!xpc::WrapperFactory::IsXrayWrapper(parent),
"Xray wrapper being used to parent XPCWrappedNative?");
// We use an AutoMarkingPtr here because it is possible for JS gc to happen
// after we have Init'd the wrapper but *before* we add it to the hashtable.
// This would cause the mSet to get collected and we'd later crash. I've
// *seen* this happen.
AutoMarkingWrappedNativePtr wrapperMarker(cx, wrapper);
if (!wrapper->Init(cx, scrWrapper)) {
return NS_ERROR_FAILURE;
}
if (!wrapper->FindTearOff(cx, Interface, false, &rv)) {
MOZ_ASSERT(NS_FAILED(rv), "returning NS_OK on failure");
return rv;
}
return FinishCreate(cx, Scope, Interface, cache, wrapper, resultWrapper);
}
static nsresult FinishCreate(JSContext* cx, XPCWrappedNativeScope* Scope,
XPCNativeInterface* Interface,
nsWrapperCache* cache, XPCWrappedNative* inWrapper,
XPCWrappedNative** resultWrapper) {
MOZ_ASSERT(inWrapper);
Native2WrappedNativeMap* map = Scope->GetWrappedNativeMap();
RefPtr<XPCWrappedNative> wrapper;
// Deal with the case where the wrapper got created as a side effect
// of one of our calls out of this code. Add() returns the (possibly
// pre-existing) wrapper that ultimately ends up in the map, which is
// what we want.
wrapper = map->Add(inWrapper);
if (!wrapper) {
return NS_ERROR_FAILURE;
}
if (wrapper == inWrapper) {
JSObject* flat = wrapper->GetFlatJSObject();
MOZ_ASSERT(!cache || !cache->GetWrapperPreserveColor() ||
flat == cache->GetWrapperPreserveColor(),
"This object has a cached wrapper that's different from "
"the JSObject held by its native wrapper?");
if (cache && !cache->GetWrapperPreserveColor()) {
cache->SetWrapper(flat);
}
}
DEBUG_CheckClassInfoClaims(wrapper);
wrapper.forget(resultWrapper);
return NS_OK;
}
// This ctor is used if this object will have a proto.
XPCWrappedNative::XPCWrappedNative(nsCOMPtr<nsISupports>&& aIdentity,
XPCWrappedNativeProto* aProto)
: mMaybeProto(aProto), mSet(aProto->GetSet()) {
MOZ_ASSERT(NS_IsMainThread());
mIdentity = aIdentity;
mFlatJSObject.setFlags(FLAT_JS_OBJECT_VALID);
MOZ_ASSERT(mMaybeProto, "bad ctor param");
MOZ_ASSERT(mSet, "bad ctor param");
}
// This ctor is used if this object will NOT have a proto.
XPCWrappedNative::XPCWrappedNative(nsCOMPtr<nsISupports>&& aIdentity,
XPCWrappedNativeScope* aScope,
RefPtr<XPCNativeSet>&& aSet)
: mMaybeScope(TagScope(aScope)), mSet(std::move(aSet)) {
MOZ_ASSERT(NS_IsMainThread());
mIdentity = aIdentity;
mFlatJSObject.setFlags(FLAT_JS_OBJECT_VALID);
MOZ_ASSERT(aScope, "bad ctor param");
MOZ_ASSERT(mSet, "bad ctor param");
}
XPCWrappedNative::~XPCWrappedNative() { Destroy(); }
void XPCWrappedNative::Destroy() {
mScriptable = nullptr;
#ifdef DEBUG
// Check that this object has already been swept from the map.
XPCWrappedNativeScope* scope = GetScope();
if (scope) {
Native2WrappedNativeMap* map = scope->GetWrappedNativeMap();
MOZ_ASSERT(map->Find(GetIdentityObject()) != this);
}
#endif
if (mIdentity) {
XPCJSRuntime* rt = GetRuntime();
if (rt && rt->GetDoingFinalization()) {
DeferredFinalize(mIdentity.forget().take());
} else {
mIdentity = nullptr;
}
}
mMaybeScope = nullptr;
}
// A hack for bug 517665, increase the probability for GC.
// TODO: Try removing this and just using the actual size of the object.
static const size_t GCMemoryFactor = 2;
inline void XPCWrappedNative::SetFlatJSObject(JSObject* object) {
MOZ_ASSERT(!mFlatJSObject);
MOZ_ASSERT(object);
JS::AddAssociatedMemory(object, sizeof(*this) * GCMemoryFactor,
JS::MemoryUse::XPCWrappedNative);
mFlatJSObject = object;
mFlatJSObject.setFlags(FLAT_JS_OBJECT_VALID);
}
inline void XPCWrappedNative::UnsetFlatJSObject() {
MOZ_ASSERT(mFlatJSObject);
JS::RemoveAssociatedMemory(mFlatJSObject.unbarrieredGetPtr(),
sizeof(*this) * GCMemoryFactor,
JS::MemoryUse::XPCWrappedNative);
mFlatJSObject = nullptr;
mFlatJSObject.unsetFlags(FLAT_JS_OBJECT_VALID);
}
// This is factored out so that it can be called publicly.
// static
nsIXPCScriptable* XPCWrappedNative::GatherProtoScriptable(
nsIClassInfo* classInfo) {
MOZ_ASSERT(classInfo, "bad param");
nsCOMPtr<nsIXPCScriptable> helper;
nsresult rv = classInfo->GetScriptableHelper(getter_AddRefs(helper));
if (NS_SUCCEEDED(rv) && helper) {
return helper;
}
return nullptr;
}
// static
void XPCWrappedNative::GatherScriptable(nsISupports* aObj,
nsIClassInfo* aClassInfo,
nsIXPCScriptable** aScrProto,
nsIXPCScriptable** aScrWrapper) {
MOZ_ASSERT(!*aScrProto, "bad param");
MOZ_ASSERT(!*aScrWrapper, "bad param");
nsCOMPtr<nsIXPCScriptable> scrProto;
nsCOMPtr<nsIXPCScriptable> scrWrapper;
// Get the class scriptable helper (if present)
if (aClassInfo) {
scrProto = GatherProtoScriptable(aClassInfo);
}
// Do the same for the wrapper specific scriptable
scrWrapper = do_QueryInterface(aObj);
if (scrWrapper) {
// A whole series of assertions to catch bad uses of scriptable flags on
// the scrWrapper...
// Can't set WANT_PRECREATE on an instance scriptable without also
// setting it on the class scriptable.
MOZ_ASSERT_IF(scrWrapper->WantPreCreate(),
scrProto && scrProto->WantPreCreate());
// Can't set DONT_ENUM_QUERY_INTERFACE on an instance scriptable
// without also setting it on the class scriptable (if present).
MOZ_ASSERT_IF(scrWrapper->DontEnumQueryInterface() && scrProto,
scrProto->DontEnumQueryInterface());
// Can't set ALLOW_PROP_MODS_DURING_RESOLVE on an instance scriptable
// without also setting it on the class scriptable (if present).
MOZ_ASSERT_IF(scrWrapper->AllowPropModsDuringResolve() && scrProto,
scrProto->AllowPropModsDuringResolve());
} else {
scrWrapper = scrProto;
}
scrProto.forget(aScrProto);
scrWrapper.forget(aScrWrapper);
}
bool XPCWrappedNative::Init(JSContext* cx, nsIXPCScriptable* aScriptable) {
// Setup our scriptable...
MOZ_ASSERT(!mScriptable);
mScriptable = aScriptable;
// create our flatJSObject
const JSClass* jsclazz =
mScriptable ? mScriptable->GetJSClass() : &XPC_WN_NoHelper_JSClass;
// We should have the global jsclass flag if and only if we're a global.
MOZ_ASSERT_IF(mScriptable, !!mScriptable->IsGlobalObject() ==
!!(jsclazz->flags & JSCLASS_IS_GLOBAL));
MOZ_ASSERT(jsclazz && jsclazz->name && jsclazz->flags &&
jsclazz->getResolve() && jsclazz->hasFinalize(),
"bad class");
RootedObject protoJSObject(cx, HasProto() ? GetProto()->GetJSProtoObject()
: JS::GetRealmObjectPrototype(cx));
if (!protoJSObject) {
return false;
}
JSObject* object = JS_NewObjectWithGivenProto(cx, jsclazz, protoJSObject);
if (!object) {
return false;
}
SetFlatJSObject(object);
JS::SetObjectISupports(mFlatJSObject, this);
return FinishInit(cx);
}
bool XPCWrappedNative::FinishInit(JSContext* cx) {
// This reference will be released when mFlatJSObject is finalized.
// Since this reference will push the refcount to 2 it will also root
// mFlatJSObject;
MOZ_ASSERT(1 == mRefCnt, "unexpected refcount value");
NS_ADDREF(this);
return true;
}
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(XPCWrappedNative)
NS_INTERFACE_MAP_ENTRY(nsIXPConnectWrappedNative)
NS_INTERFACE_MAP_ENTRY(nsIXPConnectJSObjectHolder)
NS_INTERFACE_MAP_ENTRY_AMBIGUOUS(nsISupports, nsIXPConnectWrappedNative)
NS_INTERFACE_MAP_END
NS_IMPL_CYCLE_COLLECTING_ADDREF(XPCWrappedNative)
// Release calls Destroy() immediately when the refcount drops to 0 to
// clear the weak references nsXPConnect has to XPCWNs and to ensure there
// are no pointers to dying protos.
NS_IMPL_CYCLE_COLLECTING_RELEASE_WITH_LAST_RELEASE(XPCWrappedNative, Destroy())
/*
* Wrapped Native lifetime management is messy!
*
* - At creation we push the refcount to 2 (only one of which is owned by
* the native caller that caused the wrapper creation).
* - During the JS GC Mark phase we mark any wrapper with a refcount > 1.
* - The *only* thing that can make the wrapper get destroyed is the
* finalization of mFlatJSObject. And *that* should only happen if the only
* reference is the single extra (internal) reference we hold.
*
* - The wrapper has a pointer to the nsISupports 'view' of the wrapped native
* object i.e... mIdentity. This is held until the wrapper's refcount goes
* to zero and the wrapper is released, or until an expired wrapper (i.e.,
* one unlinked by the cycle collector) has had its JS object finalized.
*
* - The wrapper also has 'tearoffs'. It has one tearoff for each interface
* that is actually used on the native object. 'Used' means we have either
* needed to QueryInterface to verify the availability of that interface
* of that we've had to QueryInterface in order to actually make a call
* into the wrapped object via the pointer for the given interface.
*
* - Each tearoff's 'mNative' member (if non-null) indicates one reference
* held by our wrapper on the wrapped native for the given interface
* associated with the tearoff. If we release that reference then we set
* the tearoff's 'mNative' to null.
*
* - We use the occasion of the JavaScript GCCallback for the JSGC_MARK_END
* event to scan the tearoffs of all wrappers for non-null mNative members
* that represent unused references. We can tell that a given tearoff's
* mNative is unused by noting that no live XPCCallContexts hold a pointer
* to the tearoff.
*
* - As a time/space tradeoff we may decide to not do this scanning on
* *every* JavaScript GC. We *do* want to do this *sometimes* because
* we want to allow for wrapped native's to do their own tearoff patterns.
* So, we want to avoid holding references to interfaces that we don't need.
* At the same time, we don't want to be bracketing every call into a
* wrapped native object with a QueryInterface/Release pair. And we *never*
* make a call into the object except via the correct interface for which
* we've QI'd.
*
* - Each tearoff *can* have a mJSObject whose lazily resolved properties
* represent the methods/attributes/constants of that specific interface.
* This is optionally reflected into JavaScript as "foo.nsIFoo" when "foo"
* is the name of mFlatJSObject and "nsIFoo" is the name of the given
* interface associated with the tearoff. When we create the tearoff's
* mJSObject we set it's parent to be mFlatJSObject. This way we know that
* when mFlatJSObject get's collected there are no outstanding reachable
* tearoff mJSObjects. Note that we must clear the private of any lingering
* mJSObjects at this point because we have no guarentee of the *order* of
* finalization within a given gc cycle.
*/
void XPCWrappedNative::FlatJSObjectFinalized() {
if (!IsValid()) {
return;
}
// Iterate the tearoffs and null out each of their JSObject's privates.
// This will keep them from trying to access their pointers to the
// dying tearoff object. We can safely assume that those remaining
// JSObjects are about to be finalized too.
for (XPCWrappedNativeTearOff* to = &mFirstTearOff; to;
to = to->GetNextTearOff()) {
JSObject* jso = to->GetJSObjectPreserveColor();
if (jso) {
JS::SetReservedSlot(jso, XPCWrappedNativeTearOff::TearOffSlot,
JS::UndefinedValue());
to->JSObjectFinalized();
}
// We also need to release any native pointers held...
RefPtr<nsISupports> native = to->TakeNative();
if (native && GetRuntime()) {
DeferredFinalize(native.forget().take());
}
to->SetInterface(nullptr);
}
nsWrapperCache* cache = nullptr;
CallQueryInterface(mIdentity, &cache);
if (cache) {
cache->ClearWrapper(mFlatJSObject.unbarrieredGetPtr());
}
UnsetFlatJSObject();
MOZ_ASSERT(mIdentity, "bad pointer!");
if (IsWrapperExpired()) {
Destroy();
}
// Note that it's not safe to touch mNativeWrapper here since it's
// likely that it has already been finalized.
Release();
}
void XPCWrappedNative::FlatJSObjectMoved(JSObject* obj, const JSObject* old) {
JS::AutoAssertGCCallback inCallback;
MOZ_ASSERT(mFlatJSObject == old);
nsWrapperCache* cache = nullptr;
CallQueryInterface(mIdentity, &cache);
if (cache) {
cache->UpdateWrapper(obj, old);
}
mFlatJSObject = obj;
}
void XPCWrappedNative::SystemIsBeingShutDown() {
if (!IsValid()) {
return;
}
// The long standing strategy is to leak some objects still held at shutdown.
// The general problem is that propagating release out of xpconnect at
// shutdown time causes a world of problems.
// We leak mIdentity (see above).
// Short circuit future finalization.
JS::SetObjectISupports(mFlatJSObject, nullptr);
UnsetFlatJSObject();
XPCWrappedNativeProto* proto = GetProto();
if (HasProto()) {
proto->SystemIsBeingShutDown();
}
// We don't clear mScriptable here. The destructor will do it.
// Cleanup the tearoffs.
for (XPCWrappedNativeTearOff* to = &mFirstTearOff; to;
to = to->GetNextTearOff()) {
if (JSObject* jso = to->GetJSObjectPreserveColor()) {
JS::SetReservedSlot(jso, XPCWrappedNativeTearOff::TearOffSlot,
JS::UndefinedValue());
to->SetJSObject(nullptr);
}
// We leak the tearoff mNative
// (for the same reason we leak mIdentity - see above).
Unused << to->TakeNative().take();
to->SetInterface(nullptr);
}
}
/***************************************************************************/
bool XPCWrappedNative::ExtendSet(JSContext* aCx,
XPCNativeInterface* aInterface) {
if (!mSet->HasInterface(aInterface)) {
XPCNativeSetKey key(mSet, aInterface);
RefPtr<XPCNativeSet> newSet = XPCNativeSet::GetNewOrUsed(aCx, &key);
if (!newSet) {
return false;
}
mSet = std::move(newSet);
}
return true;
}
XPCWrappedNativeTearOff* XPCWrappedNative::FindTearOff(
JSContext* cx, XPCNativeInterface* aInterface,
bool needJSObject /* = false */, nsresult* pError /* = nullptr */) {
nsresult rv = NS_OK;
XPCWrappedNativeTearOff* to;
XPCWrappedNativeTearOff* firstAvailable = nullptr;
XPCWrappedNativeTearOff* lastTearOff;
for (lastTearOff = to = &mFirstTearOff; to;
lastTearOff = to, to = to->GetNextTearOff()) {
if (to->GetInterface() == aInterface) {
if (needJSObject && !to->GetJSObjectPreserveColor()) {
AutoMarkingWrappedNativeTearOffPtr tearoff(cx, to);
bool ok = InitTearOffJSObject(cx, to);
// During shutdown, we don't sweep tearoffs. So make sure
// to unmark manually in case the auto-marker marked us.
// We shouldn't ever be getting here _during_ our
// Mark/Sweep cycle, so this should be safe.
to->Unmark();
if (!ok) {
to = nullptr;
rv = NS_ERROR_OUT_OF_MEMORY;
}
}
if (pError) {
*pError = rv;
}
return to;
}
if (!firstAvailable && to->IsAvailable()) {
firstAvailable = to;
}
}
to = firstAvailable;
if (!to) {
to = lastTearOff->AddTearOff();
}
{
// Scope keeps |tearoff| from leaking across the rest of the function.
AutoMarkingWrappedNativeTearOffPtr tearoff(cx, to);
rv = InitTearOff(cx, to, aInterface, needJSObject);
// During shutdown, we don't sweep tearoffs. So make sure to unmark
// manually in case the auto-marker marked us. We shouldn't ever be
// getting here _during_ our Mark/Sweep cycle, so this should be safe.
to->Unmark();
if (NS_FAILED(rv)) {
to = nullptr;
}
}
if (pError) {
*pError = rv;
}
return to;
}
XPCWrappedNativeTearOff* XPCWrappedNative::FindTearOff(JSContext* cx,
const nsIID& iid) {
RefPtr<XPCNativeInterface> iface = XPCNativeInterface::GetNewOrUsed(cx, &iid);
return iface ? FindTearOff(cx, iface) : nullptr;
}
nsresult XPCWrappedNative::InitTearOff(JSContext* cx,
XPCWrappedNativeTearOff* aTearOff,
XPCNativeInterface* aInterface,
bool needJSObject) {
// Determine if the object really does this interface...
const nsIID* iid = aInterface->GetIID();
nsISupports* identity = GetIdentityObject();
// This is an nsRefPtr instead of an nsCOMPtr because it may not be the
// canonical nsISupports for this object.
RefPtr<nsISupports> qiResult;
// We are about to call out to other code.
// So protect our intended tearoff.
aTearOff->SetReserved();
if (NS_FAILED(identity->QueryInterface(*iid, getter_AddRefs(qiResult))) ||
!qiResult) {
aTearOff->SetInterface(nullptr);
return NS_ERROR_NO_INTERFACE;
}
// Guard against trying to build a tearoff for a shared nsIClassInfo.
if (iid->Equals(NS_GET_IID(nsIClassInfo))) {
nsCOMPtr<nsISupports> alternate_identity(do_QueryInterface(qiResult));
if (alternate_identity.get() != identity) {
aTearOff->SetInterface(nullptr);
return NS_ERROR_NO_INTERFACE;
}
}
// Guard against trying to build a tearoff for an interface that is
// aggregated and is implemented as a nsIXPConnectWrappedJS using this
// self-same JSObject. The XBL system does this. If we mutate the set
// of this wrapper then we will shadow the method that XBL has added to
// the JSObject that it has inserted in the JS proto chain between our
// JSObject and our XPCWrappedNativeProto's JSObject. If we let this
// set mutation happen then the interface's methods will be added to
// our JSObject, but calls on those methods will get routed up to
// native code and into the wrappedJS - which will do a method lookup
// on *our* JSObject and find the same method and make another call
// into an infinite loop.
nsCOMPtr<nsIXPConnectWrappedJS> wrappedJS(do_QueryInterface(qiResult));
if (wrappedJS) {
RootedObject jso(cx, wrappedJS->GetJSObject());
if (jso == mFlatJSObject) {
// The implementing JSObject is the same as ours! Just say OK
// without actually extending the set.
//
// XXX It is a little cheesy to have FindTearOff return an
// 'empty' tearoff. But this is the centralized place to do the
// QI activities on the underlying object. *And* most caller to
// FindTearOff only look for a non-null result and ignore the
// actual tearoff returned. The only callers that do use the
// returned tearoff make sure to check for either a non-null
// JSObject or a matching Interface before proceeding.
// I think we can get away with this bit of ugliness.
aTearOff->SetInterface(nullptr);
return NS_OK;
}
}
if (NS_FAILED(nsXPConnect::SecurityManager()->CanCreateWrapper(
cx, *iid, identity, GetClassInfo()))) {
// the security manager vetoed. It should have set an exception.
aTearOff->SetInterface(nullptr);
return NS_ERROR_XPC_SECURITY_MANAGER_VETO;
}
// If this is not already in our set we need to extend our set.
// Note: we do not cache the result of the previous call to HasInterface()
// because we unlocked and called out in the interim and the result of the
// previous call might not be correct anymore.
if (!mSet->HasInterface(aInterface) && !ExtendSet(cx, aInterface)) {
aTearOff->SetInterface(nullptr);
return NS_ERROR_NO_INTERFACE;
}
aTearOff->SetInterface(aInterface);
aTearOff->SetNative(qiResult);
if (needJSObject && !InitTearOffJSObject(cx, aTearOff)) {
return NS_ERROR_OUT_OF_MEMORY;
}
return NS_OK;
}
bool XPCWrappedNative::InitTearOffJSObject(JSContext* cx,
XPCWrappedNativeTearOff* to) {
JSObject* obj = JS_NewObject(cx, &XPC_WN_Tearoff_JSClass);
if (!obj) {
return false;
}
JS::SetReservedSlot(obj, XPCWrappedNativeTearOff::TearOffSlot,
JS::PrivateValue(to));
to->SetJSObject(obj);
JS::SetReservedSlot(obj, XPCWrappedNativeTearOff::FlatObjectSlot,
JS::ObjectValue(*mFlatJSObject));
return true;
}
/***************************************************************************/
static bool Throw(nsresult errNum, XPCCallContext& ccx) {
XPCThrower::Throw(errNum, ccx);
return false;
}
/***************************************************************************/
class MOZ_STACK_CLASS CallMethodHelper final {
XPCCallContext& mCallContext;
nsresult mInvokeResult;
const nsXPTInterfaceInfo* const mIFaceInfo;
const nsXPTMethodInfo* mMethodInfo;
nsISupports* const mCallee;
const uint16_t mVTableIndex;
HandleId mIdxValueId;
AutoTArray<nsXPTCVariant, 8> mDispatchParams;
uint8_t mJSContextIndex; // TODO make const
uint8_t mOptArgcIndex; // TODO make const
Value* const mArgv;
const uint32_t mArgc;
MOZ_ALWAYS_INLINE bool GetArraySizeFromParam(const nsXPTType& type,
HandleValue maybeArray,
uint32_t* result);
MOZ_ALWAYS_INLINE bool GetInterfaceTypeFromParam(const nsXPTType& type,
nsID* result) const;
MOZ_ALWAYS_INLINE bool GetOutParamSource(uint8_t paramIndex,
MutableHandleValue srcp) const;
MOZ_ALWAYS_INLINE bool GatherAndConvertResults();
MOZ_ALWAYS_INLINE bool QueryInterfaceFastPath();
nsXPTCVariant* GetDispatchParam(uint8_t paramIndex) {
if (paramIndex >= mJSContextIndex) {
paramIndex += 1;
}
if (paramIndex >= mOptArgcIndex) {
paramIndex += 1;
}
return &mDispatchParams[paramIndex];
}
const nsXPTCVariant* GetDispatchParam(uint8_t paramIndex) const {
return const_cast<CallMethodHelper*>(this)->GetDispatchParam(paramIndex);
}
MOZ_ALWAYS_INLINE bool InitializeDispatchParams();
MOZ_ALWAYS_INLINE bool ConvertIndependentParams(bool* foundDependentParam);
MOZ_ALWAYS_INLINE bool ConvertIndependentParam(uint8_t i);
MOZ_ALWAYS_INLINE bool ConvertDependentParams();
MOZ_ALWAYS_INLINE bool ConvertDependentParam(uint8_t i);
MOZ_ALWAYS_INLINE nsresult Invoke();
public:
explicit CallMethodHelper(XPCCallContext& ccx)
: mCallContext(ccx),
mInvokeResult(NS_ERROR_UNEXPECTED),
mIFaceInfo(ccx.GetInterface()->GetInterfaceInfo()),
mMethodInfo(nullptr),
mCallee(ccx.GetTearOff()->GetNative()),
mVTableIndex(ccx.GetMethodIndex()),
mIdxValueId(ccx.GetContext()->GetStringID(XPCJSContext::IDX_VALUE)),
mJSContextIndex(UINT8_MAX),
mOptArgcIndex(UINT8_MAX),
mArgv(ccx.GetArgv()),
mArgc(ccx.GetArgc())
{
// Success checked later.
mIFaceInfo->GetMethodInfo(mVTableIndex, &mMethodInfo);
}
~CallMethodHelper();
MOZ_ALWAYS_INLINE bool Call();
// Trace implementation so we can put our CallMethodHelper in a Rooted<T>.
void trace(JSTracer* aTrc);
};
// static
bool XPCWrappedNative::CallMethod(XPCCallContext& ccx,
CallMode mode /*= CALL_METHOD */) {
nsresult rv = ccx.CanCallNow();
if (NS_FAILED(rv)) {
return Throw(rv, ccx);
}
JS::Rooted<CallMethodHelper> helper(ccx, /* init = */ ccx);
return helper.get().Call();
}
bool CallMethodHelper::Call() {
mCallContext.SetRetVal(JS::UndefinedValue());
mCallContext.GetContext()->SetPendingException(nullptr);
using Flags = js::ProfilingStackFrame::Flags;
if (mVTableIndex == 0) {
AUTO_PROFILER_LABEL_DYNAMIC_FAST(mIFaceInfo->Name(), "QueryInterface", DOM,
mCallContext.GetJSContext(),
uint32_t(Flags::STRING_TEMPLATE_METHOD) |
uint32_t(Flags::RELEVANT_FOR_JS));
return QueryInterfaceFastPath();
}
if (!mMethodInfo) {
Throw(NS_ERROR_XPC_CANT_GET_METHOD_INFO, mCallContext);
return false;
}
// Add profiler labels matching the WebIDL profiler labels,
// which also use the DOM category.
Flags templateFlag = Flags::STRING_TEMPLATE_METHOD;
if (mMethodInfo->IsGetter()) {
templateFlag = Flags::STRING_TEMPLATE_GETTER;
}
if (mMethodInfo->IsSetter()) {
templateFlag = Flags::STRING_TEMPLATE_SETTER;
}
AUTO_PROFILER_LABEL_DYNAMIC_FAST(
mIFaceInfo->Name(), mMethodInfo->NameOrDescription(), DOM,
mCallContext.GetJSContext(),
uint32_t(templateFlag) | uint32_t(Flags::RELEVANT_FOR_JS));
if (!InitializeDispatchParams()) {
return false;
}
// Iterate through the params doing conversions of independent params only.
// When we later convert the dependent params (if any) we will know that
// the params upon which they depend will have already been converted -
// regardless of ordering.
bool foundDependentParam = false;
if (!ConvertIndependentParams(&foundDependentParam)) {
return false;
}
if (foundDependentParam && !ConvertDependentParams()) {
return false;
}
mInvokeResult = Invoke();
if (JS_IsExceptionPending(mCallContext)) {
return false;
}
if (NS_FAILED(mInvokeResult)) {
ThrowBadResult(mInvokeResult, mCallContext);
return false;
}
return GatherAndConvertResults();
}
CallMethodHelper::~CallMethodHelper() {
for (nsXPTCVariant& param : mDispatchParams) {
uint32_t arraylen = 0;
if (!GetArraySizeFromParam(param.type, UndefinedHandleValue, &arraylen)) {
continue;
}
xpc::DestructValue(param.type, &param.val, arraylen);
}
}
bool CallMethodHelper::GetArraySizeFromParam(const nsXPTType& type,
HandleValue maybeArray,
uint32_t* result) {
if (type.Tag() != nsXPTType::T_LEGACY_ARRAY &&
type.Tag() != nsXPTType::T_PSTRING_SIZE_IS &&
type.Tag() != nsXPTType::T_PWSTRING_SIZE_IS) {
*result = 0;
return true;
}
uint8_t argnum = type.ArgNum();
uint32_t* lengthp = &GetDispatchParam(argnum)->val.u32;
// TODO fixup the various exceptions that are thrown
// If the array length wasn't passed, it might have been listed as optional.
// When converting arguments from JS to C++, we pass the array as
// |maybeArray|, and give ourselves the chance to infer the length. Once we
// have it, we stick it in the right slot so that we can find it again when
// cleaning up the params. from the array.
if (argnum >= mArgc && maybeArray.isObject()) {
MOZ_ASSERT(mMethodInfo->Param(argnum).IsOptional());
RootedObject arrayOrNull(mCallContext, &maybeArray.toObject());
bool isArray;
bool ok = false;
if (JS::IsArrayObject(mCallContext, maybeArray, &isArray) && isArray) {
ok = JS::GetArrayLength(mCallContext, arrayOrNull, lengthp);
} else if (JS_IsTypedArrayObject(&maybeArray.toObject())) {
size_t len = JS_GetTypedArrayLength(&maybeArray.toObject());
if (len <= UINT32_MAX) {
*lengthp = len;
ok = true;
}
}
if (!ok) {
return Throw(NS_ERROR_XPC_CANT_CONVERT_OBJECT_TO_ARRAY, mCallContext);
}
}
*result = *lengthp;
return true;
}
bool CallMethodHelper::GetInterfaceTypeFromParam(const nsXPTType& type,
nsID* result) const {
result->Clear();
const nsXPTType& inner = type.InnermostType();
if (inner.Tag() == nsXPTType::T_INTERFACE) {
if (!inner.GetInterface()) {
return Throw(NS_ERROR_XPC_CANT_GET_PARAM_IFACE_INFO, mCallContext);
}
*result = inner.GetInterface()->IID();
} else if (inner.Tag() == nsXPTType::T_INTERFACE_IS) {
const nsXPTCVariant* param = GetDispatchParam(inner.ArgNum());
if (param->type.Tag() != nsXPTType::T_NSID &&
param->type.Tag() != nsXPTType::T_NSIDPTR) {
return Throw(NS_ERROR_UNEXPECTED, mCallContext);
}
const void* ptr = &param->val;
if (param->type.Tag() == nsXPTType::T_NSIDPTR) {
ptr = *static_cast<nsID* const*>(ptr);
}
if (!ptr) {
return ThrowBadParam(NS_ERROR_XPC_CANT_GET_PARAM_IFACE_INFO,
inner.ArgNum(), mCallContext);
}
*result = *static_cast<const nsID*>(ptr);
}
return true;
}
bool CallMethodHelper::GetOutParamSource(uint8_t paramIndex,
MutableHandleValue srcp) const {
const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(paramIndex);
bool isRetval = &paramInfo == mMethodInfo->GetRetval();
if (paramInfo.IsOut() && !isRetval) {
MOZ_ASSERT(paramIndex < mArgc || paramInfo.IsOptional(),
"Expected either enough arguments or an optional argument");
Value arg = paramIndex < mArgc ? mArgv[paramIndex] : JS::NullValue();
if (paramIndex < mArgc) {
RootedObject obj(mCallContext);
if (!arg.isPrimitive()) {
obj = &arg.toObject();
}
if (!obj || !JS_GetPropertyById(mCallContext, obj, mIdxValueId, srcp)) {
// Explicitly passed in unusable value for out param. Note
// that if i >= mArgc we already know that |arg| is JS::NullValue(),
// and that's ok.
ThrowBadParam(NS_ERROR_XPC_NEED_OUT_OBJECT, paramIndex, mCallContext);
return false;
}
}
}
return true;
}
bool CallMethodHelper::GatherAndConvertResults() {
// now we iterate through the native params to gather and convert results
uint8_t paramCount = mMethodInfo->GetParamCount();
for (uint8_t i = 0; i < paramCount; i++) {
const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i);
if (!paramInfo.IsOut()) {
continue;
}
const nsXPTType& type = paramInfo.GetType();
nsXPTCVariant* dp = GetDispatchParam(i);
RootedValue v(mCallContext, NullValue());
uint32_t array_count = 0;
nsID param_iid;
if (!GetInterfaceTypeFromParam(type, &param_iid) ||
!GetArraySizeFromParam(type, UndefinedHandleValue, &array_count))
return false;
nsresult err;
if (!XPCConvert::NativeData2JS(mCallContext, &v, &dp->val, type, &param_iid,
array_count, &err)) {
ThrowBadParam(err, i, mCallContext);
return false;
}
if (&paramInfo == mMethodInfo->GetRetval()) {
mCallContext.SetRetVal(v);
} else if (i < mArgc) {
// we actually assured this before doing the invoke
MOZ_ASSERT(mArgv[i].isObject(), "out var is not object");
RootedObject obj(mCallContext, &mArgv[i].toObject());
if (!JS_SetPropertyById(mCallContext, obj, mIdxValueId, v)) {
ThrowBadParam(NS_ERROR_XPC_CANT_SET_OUT_VAL, i, mCallContext);
return false;
}
} else {
MOZ_ASSERT(paramInfo.IsOptional(),
"Expected either enough arguments or an optional argument");
}
}
return true;
}
bool CallMethodHelper::QueryInterfaceFastPath() {
MOZ_ASSERT(mVTableIndex == 0,
"Using the QI fast-path for a method other than QueryInterface");
if (mArgc < 1) {
Throw(NS_ERROR_XPC_NOT_ENOUGH_ARGS, mCallContext);
return false;
}
if (!mArgv[0].isObject()) {
ThrowBadParam(NS_ERROR_XPC_BAD_CONVERT_JS, 0, mCallContext);
return false;
}
JS::RootedValue iidarg(mCallContext, mArgv[0]);
Maybe<nsID> iid = xpc::JSValue2ID(mCallContext, iidarg);
if (!iid) {
ThrowBadParam(NS_ERROR_XPC_BAD_CONVERT_JS, 0, mCallContext);
return false;
}
nsISupports* qiresult = nullptr;
mInvokeResult = mCallee->QueryInterface(iid.ref(), (void**)&qiresult);
if (NS_FAILED(mInvokeResult)) {
ThrowBadResult(mInvokeResult, mCallContext);
return false;
}
RootedValue v(mCallContext, NullValue());
nsresult err;
bool success = XPCConvert::NativeData2JS(mCallContext, &v, &qiresult,
{nsXPTType::T_INTERFACE_IS},
iid.ptr(), 0, &err);
NS_IF_RELEASE(qiresult);
if (!success) {
ThrowBadParam(err, 0, mCallContext);
return false;
}
mCallContext.SetRetVal(v);
return true;
}
bool CallMethodHelper::InitializeDispatchParams() {
const uint8_t wantsOptArgc = mMethodInfo->WantsOptArgc() ? 1 : 0;
const uint8_t wantsJSContext = mMethodInfo->WantsContext() ? 1 : 0;
const uint8_t paramCount = mMethodInfo->GetParamCount();
uint8_t requiredArgs = paramCount;
// XXX ASSUMES that retval is last arg. The xpidl compiler ensures this.
if (mMethodInfo->HasRetval()) {
requiredArgs--;
}
if (mArgc < requiredArgs || wantsOptArgc) {
if (wantsOptArgc) {
// The implicit JSContext*, if we have one, comes first.
mOptArgcIndex = requiredArgs + wantsJSContext;
}
// skip over any optional arguments
while (requiredArgs &&
mMethodInfo->GetParam(requiredArgs - 1).IsOptional()) {
requiredArgs--;
}
if (mArgc < requiredArgs) {
Throw(NS_ERROR_XPC_NOT_ENOUGH_ARGS, mCallContext);
return false;
}
}
mJSContextIndex = mMethodInfo->IndexOfJSContext();
// Allocate enough space in mDispatchParams up-front.
// XXX(Bug 1631371) Check if this should use a fallible operation as it
// pretended earlier.
mDispatchParams.AppendElements(paramCount + wantsJSContext + wantsOptArgc);
// Initialize each parameter to a valid state (for safe cleanup later).
for (uint8_t i = 0, paramIdx = 0; i < mDispatchParams.Length(); i++) {
nsXPTCVariant& dp = mDispatchParams[i];
if (i == mJSContextIndex) {
// Fill in the JSContext argument
dp.type = nsXPTType::T_VOID;
dp.val.p = mCallContext;
} else if (i == mOptArgcIndex) {
// Fill in the optional_argc argument
dp.type = nsXPTType::T_U8;
dp.val.u8 = std::min<uint32_t>(mArgc, paramCount) - requiredArgs;
} else {
// Initialize normal arguments.
const nsXPTParamInfo& param = mMethodInfo->Param(paramIdx);
dp.type = param.Type();
xpc::InitializeValue(dp.type, &dp.val);
// Specify the correct storage/calling semantics. This will also set
// the `ptr` field to be self-referential.
if (param.IsIndirect()) {
dp.SetIndirect();
}
// Advance to the next normal parameter.
paramIdx++;
}
}
return true;
}
bool CallMethodHelper::ConvertIndependentParams(bool* foundDependentParam) {
const uint8_t paramCount = mMethodInfo->GetParamCount();
for (uint8_t i = 0; i < paramCount; i++) {
const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i);
if (paramInfo.GetType().IsDependent()) {
*foundDependentParam = true;
} else if (!ConvertIndependentParam(i)) {
return false;
}
}
return true;
}
bool CallMethodHelper::ConvertIndependentParam(uint8_t i) {
const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i);
const nsXPTType& type = paramInfo.Type();
nsXPTCVariant* dp = GetDispatchParam(i);
// Even if there's nothing to convert, we still need to examine the
// JSObject container for out-params. If it's null or otherwise invalid,
// we want to know before the call, rather than after.
//
// This is a no-op for 'in' params.
RootedValue src(mCallContext);
if (!GetOutParamSource(i, &src)) {
return false;
}
// All that's left to do is value conversion. Bail early if we don't need
// to do that.
if (!paramInfo.IsIn()) {
return true;
}
// Some types usually don't support default values, but we want to handle
// the default value if IsOptional is true.
if (i >= mArgc) {
MOZ_ASSERT(paramInfo.IsOptional(), "missing non-optional argument!");
if (type.Tag() == nsXPTType::T_NSID) {
// Use a default value of the null ID for optional NSID objects.
dp->ext.nsid.Clear();
return true;
}
if (type.Tag() == nsXPTType::T_ARRAY) {
// Use a default value of empty array for optional Array objects.
dp->ext.array.Clear();
return true;
}
}
// We're definitely some variety of 'in' now, so there's something to
// convert. The source value for conversion depends on whether we're
// dealing with an 'in' or an 'inout' parameter. 'inout' was handled above,
// so all that's left is 'in'.
if (!paramInfo.IsOut()) {
// Handle the 'in' case.
MOZ_ASSERT(i < mArgc || paramInfo.IsOptional(),
"Expected either enough arguments or an optional argument");
if (i < mArgc) {
src = mArgv[i];
} else if (type.Tag() == nsXPTType::T_JSVAL) {
src.setUndefined();
} else {
src.setNull();
}
}
nsID param_iid = {0};
const nsXPTType& inner = type.InnermostType();
if (inner.Tag() == nsXPTType::T_INTERFACE) {
if (!inner.GetInterface()) {
return ThrowBadParam(NS_ERROR_XPC_CANT_GET_PARAM_IFACE_INFO, i,
mCallContext);
}
param_iid = inner.GetInterface()->IID();
}
nsresult err;
if (!XPCConvert::JSData2Native(mCallContext, &dp->val, src, type, &param_iid,
0, &err)) {
ThrowBadParam(err, i, mCallContext);
return false;
}
return true;
}
bool CallMethodHelper::ConvertDependentParams() {
const uint8_t paramCount = mMethodInfo->GetParamCount();
for (uint8_t i = 0; i < paramCount; i++) {
const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i);
if (!paramInfo.GetType().IsDependent()) {
continue;
}
if (!ConvertDependentParam(i)) {
return false;
}
}
return true;
}
bool CallMethodHelper::ConvertDependentParam(uint8_t i) {
const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i);
const nsXPTType& type = paramInfo.Type();
nsXPTCVariant* dp = GetDispatchParam(i);
// Even if there's nothing to convert, we still need to examine the
// JSObject container for out-params. If it's null or otherwise invalid,
// we want to know before the call, rather than after.
//
// This is a no-op for 'in' params.
RootedValue src(mCallContext);
if (!GetOutParamSource(i, &src)) {
return false;
}
// All that's left to do is value conversion. Bail early if we don't need
// to do that.
if (!paramInfo.IsIn()) {
return true;
}
// We're definitely some variety of 'in' now, so there's something to
// convert. The source value for conversion depends on whether we're
// dealing with an 'in' or an 'inout' parameter. 'inout' was handled above,
// so all that's left is 'in'.
if (!paramInfo.IsOut()) {
// Handle the 'in' case.
MOZ_ASSERT(i < mArgc || paramInfo.IsOptional(),
"Expected either enough arguments or an optional argument");
src = i < mArgc ? mArgv[i] : JS::NullValue();
}
nsID param_iid;
uint32_t array_count;
if (!GetInterfaceTypeFromParam(type, &param_iid) ||
!GetArraySizeFromParam(type, src, &array_count))
return false;
nsresult err;
if (!XPCConvert::JSData2Native(mCallContext, &dp->val, src, type, &param_iid,
array_count, &err)) {
ThrowBadParam(err, i, mCallContext);
return false;
}
return true;
}
nsresult CallMethodHelper::Invoke() {
uint32_t argc = mDispatchParams.Length();
nsXPTCVariant* argv = mDispatchParams.Elements();
return NS_InvokeByIndex(mCallee, mVTableIndex, argc, argv);
}
static void TraceParam(JSTracer* aTrc, void* aVal, const nsXPTType& aType,
uint32_t aArrayLen = 0) {
if (aType.Tag() == nsXPTType::T_JSVAL) {
JS::TraceRoot(aTrc, (JS::Value*)aVal, "XPCWrappedNative::CallMethod param");
} else if (aType.Tag() == nsXPTType::T_ARRAY) {
auto* array = (xpt::detail::UntypedTArray*)aVal;
const nsXPTType& elty = aType.ArrayElementType();
for (uint32_t i = 0; i < array->Length(); ++i) {
TraceParam(aTrc, elty.ElementPtr(array->Elements(), i), elty);
}
} else if (aType.Tag() == nsXPTType::T_LEGACY_ARRAY && *(void**)aVal) {
const nsXPTType& elty = aType.ArrayElementType();
for (uint32_t i = 0; i < aArrayLen; ++i) {
TraceParam(aTrc, elty.ElementPtr(*(void**)aVal, i), elty);
}
}
}
void CallMethodHelper::trace(JSTracer* aTrc) {
// We need to note each of our initialized parameters which contain jsvals.
for (nsXPTCVariant& param : mDispatchParams) {
// We only need to trace parameters which have an innermost JSVAL.
if (param.type.InnermostType().Tag() != nsXPTType::T_JSVAL) {
continue;
}
uint32_t arrayLen = 0;
if (!GetArraySizeFromParam(param.type, UndefinedHandleValue, &arrayLen)) {
continue;
}
TraceParam(aTrc, &param.val, param.type, arrayLen);
}
}
/***************************************************************************/
// interface methods
JSObject* XPCWrappedNative::GetJSObject() { return GetFlatJSObject(); }
XPCWrappedNative* nsIXPConnectWrappedNative::AsXPCWrappedNative() {
return static_cast<XPCWrappedNative*>(this);
}
nsresult nsIXPConnectWrappedNative::DebugDump(int16_t depth) {
return AsXPCWrappedNative()->DebugDump(depth);
}
nsresult XPCWrappedNative::DebugDump(int16_t depth) {
#ifdef DEBUG
depth--;
XPC_LOG_ALWAYS(
("XPCWrappedNative @ %p with mRefCnt = %" PRIuPTR, this, mRefCnt.get()));
XPC_LOG_INDENT();
if (HasProto()) {
XPCWrappedNativeProto* proto = GetProto();
if (depth && proto) {
proto->DebugDump(depth);
} else {
XPC_LOG_ALWAYS(("mMaybeProto @ %p", proto));
}
} else
XPC_LOG_ALWAYS(("Scope @ %p", GetScope()));
if (depth && mSet) {
mSet->DebugDump(depth);
} else {
XPC_LOG_ALWAYS(("mSet @ %p", mSet.get()));
}
XPC_LOG_ALWAYS(("mFlatJSObject of %p", mFlatJSObject.unbarrieredGetPtr()));
XPC_LOG_ALWAYS(("mIdentity of %p", mIdentity.get()));
XPC_LOG_ALWAYS(("mScriptable @ %p", mScriptable.get()));
if (depth && mScriptable) {
XPC_LOG_INDENT();
XPC_LOG_ALWAYS(("mFlags of %x", mScriptable->GetScriptableFlags()));
XPC_LOG_ALWAYS(("mJSClass @ %p", mScriptable->GetJSClass()));
XPC_LOG_OUTDENT();
}
XPC_LOG_OUTDENT();
#endif
return NS_OK;
}
/***************************************************************************/
char* XPCWrappedNative::ToString(
XPCWrappedNativeTearOff* to /* = nullptr */) const {
#ifdef DEBUG
# define FMT_ADDR " @ 0x%p"
# define FMT_STR(str) str
# define PARAM_ADDR(w) , w
#else
# define FMT_ADDR ""
# define FMT_STR(str)
# define PARAM_ADDR(w)
#endif
UniqueChars sz;
UniqueChars name;
nsCOMPtr<nsIXPCScriptable> scr = GetScriptable();
if (scr) {
name = JS_smprintf("%s", scr->GetJSClass()->name);
}
if (to) {
const char* fmt = name ? " (%s)" : "%s";
name = JS_sprintf_append(std::move(name), fmt,
to->GetInterface()->GetNameString());
} else if (!name) {
XPCNativeSet* set = GetSet();
XPCNativeInterface** array = set->GetInterfaceArray();
uint16_t count = set->GetInterfaceCount();
MOZ_RELEASE_ASSERT(count >= 1, "Expected at least one interface");
MOZ_ASSERT(*array[0]->GetIID() == NS_GET_IID(nsISupports),
"The first interface must be nsISupports");
// The first interface is always nsISupports, so don't print it, unless
// there are no others.
if (count == 1) {
name = JS_sprintf_append(std::move(name), "nsISupports");
} else if (count == 2) {
name =
JS_sprintf_append(std::move(name), "%s", array[1]->GetNameString());
} else {
for (uint16_t i = 1; i < count; i++) {
const char* fmt = (i == 1) ? "(%s"
: (i == count - 1) ? ", %s)"
: ", %s";
name =
JS_sprintf_append(std::move(name), fmt, array[i]->GetNameString());
}
}
}
if (!name) {
return nullptr;
}
const char* fmt = "[xpconnect wrapped %s" FMT_ADDR FMT_STR(" (native")
FMT_ADDR FMT_STR(")") "]";
if (scr) {
fmt = "[object %s" FMT_ADDR FMT_STR(" (native") FMT_ADDR FMT_STR(")") "]";
}
sz =
JS_smprintf(fmt, name.get() PARAM_ADDR(this) PARAM_ADDR(mIdentity.get()));
return sz.release();
#undef FMT_ADDR
#undef PARAM_ADDR
}
/***************************************************************************/
#ifdef XPC_CHECK_CLASSINFO_CLAIMS
static void DEBUG_CheckClassInfoClaims(XPCWrappedNative* wrapper) {
if (!wrapper || !wrapper->GetClassInfo()) {
return;
}
nsISupports* obj = wrapper->GetIdentityObject();
XPCNativeSet* set = wrapper->GetSet();
uint16_t count = set->GetInterfaceCount();
for (uint16_t i = 0; i < count; i++) {
nsIClassInfo* clsInfo = wrapper->GetClassInfo();
XPCNativeInterface* iface = set->GetInterfaceAt(i);
const nsXPTInterfaceInfo* info = iface->GetInterfaceInfo();
nsISupports* ptr;
nsresult rv = obj->QueryInterface(info->IID(), (void**)&ptr);
if (NS_SUCCEEDED(rv)) {
NS_RELEASE(ptr);
continue;
}
if (rv == NS_ERROR_OUT_OF_MEMORY) {
continue;
}
// Houston, We have a problem...
char* className = nullptr;
char* contractID = nullptr;
const char* interfaceName = info->Name();
clsInfo->GetContractID(&contractID);
if (wrapper->GetScriptable()) {
wrapper->GetScriptable()->GetClassName(&className);
}
printf(
"\n!!! Object's nsIClassInfo lies about its interfaces!!!\n"
" classname: %s \n"
" contractid: %s \n"
" unimplemented interface name: %s\n\n",
className ? className : "<unknown>",
contractID ? contractID : "<unknown>", interfaceName);
if (className) {
free(className);
}
if (contractID) {
free(contractID);
}
}
}
#endif