Source code

Revision control

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "jit/AtomicOperations.h"
#include "jsapi-tests/tests.h"
#include "vm/ArrayBufferObject.h"
#include "vm/SharedMem.h"
#include "vm/Uint8Clamped.h"
#include "wasm/WasmJS.h"
using namespace js;
// Machinery to disguise pointer addresses to the C++ compiler -- quite possibly
// not thread-safe.
extern void setHiddenPointer(void* p);
extern void* getHiddenPointer();
void* hidePointerValue(void* p) {
setHiddenPointer(p);
return getHiddenPointer();
}
//////////////////////////////////////////////////////////////////////
//
// Lock-freedom predicates
BEGIN_REUSABLE_TEST(testAtomicLockFree8) {
// isLockfree8() must not return true if there are no 8-byte atomics
CHECK(!jit::AtomicOperations::isLockfree8() ||
jit::AtomicOperations::hasAtomic8());
// We must have lock-free 8-byte atomics on every platform where we support
// wasm, but we don't care otherwise.
CHECK(!wasm::HasSupport(cx) || jit::AtomicOperations::isLockfree8());
return true;
}
END_TEST(testAtomicLockFree8)
// The JS spec requires specific behavior for all but 1 and 2.
BEGIN_REUSABLE_TEST(testAtomicLockFreeJS) {
static_assert(jit::AtomicOperations::isLockfreeJS(1) ==
true); // false is allowed by spec but not in SpiderMonkey
static_assert(jit::AtomicOperations::isLockfreeJS(2) == true); // ditto
static_assert(jit::AtomicOperations::isLockfreeJS(8) == true); // ditto
static_assert(jit::AtomicOperations::isLockfreeJS(3) == false); // required
static_assert(jit::AtomicOperations::isLockfreeJS(4) == true); // required
static_assert(jit::AtomicOperations::isLockfreeJS(5) == false); // required
static_assert(jit::AtomicOperations::isLockfreeJS(6) == false); // required
static_assert(jit::AtomicOperations::isLockfreeJS(7) == false); // required
return true;
}
END_TEST(testAtomicLockFreeJS)
//////////////////////////////////////////////////////////////////////
//
// Fence
// This only tests that fenceSeqCst is defined and that it doesn't crash if we
// call it, but it has no return value and its effect is not observable here.
BEGIN_REUSABLE_TEST(testAtomicFence) {
jit::AtomicOperations::fenceSeqCst();
return true;
}
END_TEST(testAtomicFence)
//////////////////////////////////////////////////////////////////////
//
// Memory access primitives
// These tests for the atomic load and store primitives ascertain that the
// primitives are defined and that they load and store the values they should,
// but not that the primitives are actually atomic wrt to the memory subsystem.
// Memory for testing atomics. This must be aligned to the natural alignment of
// the type we're testing; for now, use 8-byte alignment for all.
MOZ_ALIGNED_DECL(8, static uint8_t atomicMem[8]);
MOZ_ALIGNED_DECL(8, static uint8_t atomicMem2[8]);
// T is the primitive type we're testing, and A and B are references to constant
// bindings holding values of that type.
//
// No bytes of A and B should be 0 or FF. A+B and A-B must not overflow.
#define ATOMIC_TESTS(T, A, B) \
T* q = (T*)hidePointerValue((void*)atomicMem); \
*q = A; \
SharedMem<T*> p = \
SharedMem<T*>::shared((T*)hidePointerValue((T*)atomicMem)); \
CHECK(*q == A); \
CHECK(jit::AtomicOperations::loadSeqCst(p) == A); \
CHECK(*q == A); \
jit::AtomicOperations::storeSeqCst(p, B); \
CHECK(*q == B); \
CHECK(jit::AtomicOperations::exchangeSeqCst(p, A) == B); \
CHECK(*q == A); \
CHECK(jit::AtomicOperations::compareExchangeSeqCst(p, (T)0, (T)1) == \
A); /*failure*/ \
CHECK(*q == A); \
CHECK(jit::AtomicOperations::compareExchangeSeqCst(p, A, B) == \
A); /*success*/ \
CHECK(*q == B); \
*q = A; \
CHECK(jit::AtomicOperations::fetchAddSeqCst(p, B) == A); \
CHECK(*q == A + B); \
*q = A; \
CHECK(jit::AtomicOperations::fetchSubSeqCst(p, B) == A); \
CHECK(*q == A - B); \
*q = A; \
CHECK(jit::AtomicOperations::fetchAndSeqCst(p, B) == A); \
CHECK(*q == (A & B)); \
*q = A; \
CHECK(jit::AtomicOperations::fetchOrSeqCst(p, B) == A); \
CHECK(*q == (A | B)); \
*q = A; \
CHECK(jit::AtomicOperations::fetchXorSeqCst(p, B) == A); \
CHECK(*q == (A ^ B)); \
*q = A; \
CHECK(jit::AtomicOperations::loadSafeWhenRacy(p) == A); \
jit::AtomicOperations::storeSafeWhenRacy(p, B); \
CHECK(*q == B); \
T* q2 = (T*)hidePointerValue((void*)atomicMem2); \
SharedMem<T*> p2 = \
SharedMem<T*>::shared((T*)hidePointerValue((void*)atomicMem2)); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::memcpySafeWhenRacy(p2, p, sizeof(T)); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::memcpySafeWhenRacy(p2, p.unwrap(), sizeof(T)); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::memcpySafeWhenRacy(p2.unwrap(), p, sizeof(T)); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::memmoveSafeWhenRacy(p2, p, sizeof(T)); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::podCopySafeWhenRacy(p2, p, 1); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::podMoveSafeWhenRacy(p2, p, 1); \
CHECK(*q2 == A); \
return true
BEGIN_REUSABLE_TEST(testAtomicOperationsU8) {
const uint8_t A = 0xab;
const uint8_t B = 0x37;
ATOMIC_TESTS(uint8_t, A, B);
}
END_TEST(testAtomicOperationsU8)
BEGIN_REUSABLE_TEST(testAtomicOperationsI8) {
const int8_t A = 0x3b;
const int8_t B = 0x27;
ATOMIC_TESTS(int8_t, A, B);
}
END_TEST(testAtomicOperationsI8)
BEGIN_REUSABLE_TEST(testAtomicOperationsU16) {
const uint16_t A = 0xabdc;
const uint16_t B = 0x3789;
ATOMIC_TESTS(uint16_t, A, B);
}
END_TEST(testAtomicOperationsU16)
BEGIN_REUSABLE_TEST(testAtomicOperationsI16) {
const int16_t A = 0x3bdc;
const int16_t B = 0x2737;
ATOMIC_TESTS(int16_t, A, B);
}
END_TEST(testAtomicOperationsI16)
BEGIN_REUSABLE_TEST(testAtomicOperationsU32) {
const uint32_t A = 0xabdc0588;
const uint32_t B = 0x37891942;
ATOMIC_TESTS(uint32_t, A, B);
}
END_TEST(testAtomicOperationsU32)
BEGIN_REUSABLE_TEST(testAtomicOperationsI32) {
const int32_t A = 0x3bdc0588;
const int32_t B = 0x27371843;
ATOMIC_TESTS(int32_t, A, B);
}
END_TEST(testAtomicOperationsI32)
BEGIN_REUSABLE_TEST(testAtomicOperationsU64) {
if (!jit::AtomicOperations::hasAtomic8()) {
return true;
}
const uint64_t A(0x9aadf00ddeadbeef);
const uint64_t B(0x4eedbead1337f001);
ATOMIC_TESTS(uint64_t, A, B);
}
END_TEST(testAtomicOperationsU64)
BEGIN_REUSABLE_TEST(testAtomicOperationsI64) {
if (!jit::AtomicOperations::hasAtomic8()) {
return true;
}
const int64_t A(0x2aadf00ddeadbeef);
const int64_t B(0x4eedbead1337f001);
ATOMIC_TESTS(int64_t, A, B);
}
END_TEST(testAtomicOperationsI64)
// T is the primitive float type we're testing, and A and B are references to
// constant bindings holding values of that type.
//
// Stay away from 0, NaN, infinities, and denormals.
#define ATOMIC_FLOAT_TESTS(T, A, B) \
T* q = (T*)hidePointerValue((void*)atomicMem); \
*q = A; \
SharedMem<T*> p = \
SharedMem<T*>::shared((T*)hidePointerValue((T*)atomicMem)); \
CHECK(*q == A); \
CHECK(jit::AtomicOperations::loadSafeWhenRacy(p) == A); \
jit::AtomicOperations::storeSafeWhenRacy(p, B); \
CHECK(*q == B); \
T* q2 = (T*)hidePointerValue((void*)atomicMem2); \
SharedMem<T*> p2 = \
SharedMem<T*>::shared((T*)hidePointerValue((void*)atomicMem2)); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::memcpySafeWhenRacy(p2, p, sizeof(T)); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::memcpySafeWhenRacy(p2, p.unwrap(), sizeof(T)); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::memcpySafeWhenRacy(p2.unwrap(), p, sizeof(T)); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::memmoveSafeWhenRacy(p2, p, sizeof(T)); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::podCopySafeWhenRacy(p2, p, 1); \
CHECK(*q2 == A); \
*q = A; \
*q2 = B; \
jit::AtomicOperations::podMoveSafeWhenRacy(p2, p, 1); \
CHECK(*q2 == A); \
return true
BEGIN_REUSABLE_TEST(testAtomicOperationsF32) {
const float A(123.25);
const float B(-987.75);
ATOMIC_FLOAT_TESTS(float, A, B);
}
END_TEST(testAtomicOperationsF32)
BEGIN_REUSABLE_TEST(testAtomicOperationsF64) {
const double A(123.25);
const double B(-987.75);
ATOMIC_FLOAT_TESTS(double, A, B);
}
END_TEST(testAtomicOperationsF64)
#define ATOMIC_CLAMPED_TESTS(T, A, B) \
T* q = (T*)hidePointerValue((void*)atomicMem); \
*q = A; \
SharedMem<T*> p = \
SharedMem<T*>::shared((T*)hidePointerValue((T*)atomicMem)); \
CHECK(*q == A); \
CHECK(jit::AtomicOperations::loadSafeWhenRacy(p) == A); \
jit::AtomicOperations::storeSafeWhenRacy(p, B); \
CHECK(*q == B); \
return true
BEGIN_REUSABLE_TEST(testAtomicOperationsU8Clamped) {
const uint8_clamped A(0xab);
const uint8_clamped B(0x37);
ATOMIC_CLAMPED_TESTS(uint8_clamped, A, B);
}
END_TEST(testAtomicOperationsU8Clamped)
#undef ATOMIC_TESTS
#undef ATOMIC_FLOAT_TESTS
#undef ATOMIC_CLAMPED_TESTS